CN105188932A - 用于处理样品流体的流体系统 - Google Patents

用于处理样品流体的流体系统 Download PDF

Info

Publication number
CN105188932A
CN105188932A CN201480024548.8A CN201480024548A CN105188932A CN 105188932 A CN105188932 A CN 105188932A CN 201480024548 A CN201480024548 A CN 201480024548A CN 105188932 A CN105188932 A CN 105188932A
Authority
CN
China
Prior art keywords
pearl
chamber
fluid
reagent
reaction chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480024548.8A
Other languages
English (en)
Other versions
CN105188932B (zh
Inventor
A.皮伊里克
R.维姆伯格-弗里伊德
J.T.W.M.范伊梅伦
I.J.M.多贝拉尔-博斯布姆
M.J.范泽斯特
B.D.M.梅杰林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koninklijke Philips NV
Original Assignee
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koninklijke Philips Electronics NV filed Critical Koninklijke Philips Electronics NV
Publication of CN105188932A publication Critical patent/CN105188932A/zh
Application granted granted Critical
Publication of CN105188932B publication Critical patent/CN105188932B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502738Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by integrated valves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/52Containers specially adapted for storing or dispensing a reagent
    • B01L3/527Containers specially adapted for storing or dispensing a reagent for a plurality of reagents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/10Integrating sample preparation and analysis in single entity, e.g. lab-on-a-chip concept
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/16Reagents, handling or storing thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • B01L2300/123Flexible; Elastomeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0475Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
    • B01L2400/0487Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/06Valves, specific forms thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明涉及一种包括包含冻干试剂(LB)的至少一个珠腔(311)和在药筒中的反应腔的流体系统。在一个实施例中,具有不同冻干试剂的一系列珠腔可以被提供,使得样品流体可顺序穿过它们。在另一实施例中,珠腔可位于可移动载体上,例如旋转圆盘传送装置上,从其它们可选择性连接到药筒中的反应腔。在再另一实施例中,珠腔(311)可包括至少一个柔性壁(FW),允许与冻干试剂(LB)的提取相关联的死体积的最小化。

Description

用于处理样品流体的流体系统
技术领域
本发明涉及用于处理样品流体,例如应当受到测定的生物标本的流体的流体系统。
背景技术
US2012/177543A1公开了一种设备,其中使用隔膜泵构件来在显微镜载片上的腔中注入、交换和/或混合流体。
WO2008/157801A2公开了一种具有将液体与干燥试剂分离的多个互连腔的容器。在一些实施例中,腔可具有柔性部分,在柔性部分上可施加压缩力。
发明内容
鉴于该背景,将期望具有允许少量的样品流体的精确和容易处理的装置。
该目的通过根据权利要求1、3和4所述的流体系统和根据权利要求2所述的方法来解决。优选实施例公开在从属权利要求中。
根据本发明的基本实施例的流体系统用于处理样品流体,例如其中应当检测诸如核酸或蛋白质之类的特定物质的存在的生物标本。流体系统包括以下部件:
-具有样品流体的处理能够发生于的至少一个反应腔的药筒。
-包括能够被选择性添加到样品流体的固体试剂的至少一个腔。因为固体试剂将一般具有珠的构造,所述腔将在下文中被称为“珠腔”或“珠存储腔”。
术语“药筒”应当指代其中可提供和处理样品的可交换元件或单元。药筒将通常是一次性使用部件,其通常对于单个样品仅使用一次。而且,珠腔可以位于药筒中或在单独的部件中。
应当注意,(多个)珠腔和(多个)反应腔可以可选地重叠和/或相同。珠腔也可以被特别设计和使用作为反应腔,试剂和样品流体之间的反应发生在其中。
根据本发明的基本实施例的方法用于在流体系统中将试剂添加到样品流体。其包括以下步骤,该步骤可以以列出的或任何其他适当的顺序来执行:
a)在流体系统的“珠腔”中存储固体试剂。
b)将液体泵送到所述珠腔中以溶解试剂。
c)将具有溶解的试剂的该液体泵送到流体系统的“反应腔”中。
该方法可以特别在上述流体系统中执行。通常,被提供用于流体系统的实施例的解释对于该方法也是类似有效的,并且反之亦然。
在步骤b)被泵送到珠腔内的液体优选取自反应腔。在步骤c),该液体因此被泵送回,优选沿着其到达珠腔所经由的相同路线,因此最小化损失的液体量。该液体将一般是样品流体本身。
将液体泵送到珠腔中(步骤b)一般通过将压力施加到液体来完成。优选地,珠腔在该步骤期间暂时扩张。类似地,将液体泵送到反应腔中一般通过使用真空来完成,在真空期间珠腔收缩。
固体试剂(一般是珠)的溶解优选跟随有均化。
在流体系统和该方法中使用的固体试剂优选是以下材料(特别是珠),(多个)试剂可在与液体接触后扩散和溶解到该材料之外。更优选地,固体试剂是冻干的,特别是冻干珠。试剂可例如包括酶,例如聚合酶,蛋白酶K,或逆转录酶,或寡核苷酸(标记或非标记的),核苷酸,抗体(标记或非标记),标记益生元池(例如用于FISH),用于PLA的聚合酶和连接酶,或盐等。
该流体设备和该方法具有以下优点,通过在珠腔中提供固体试剂,便于相应试剂到样品流体中的添加。特别是,固体试剂可被预先存储在流体系统中,而不需要将其从某一外部储存器经过一定距离转移到药筒的反应腔中。
根据一个特别方面,本发明的实施例包括具有珠腔的流体系统,该珠腔具有至少一个柔性壁。
上文提到的柔性壁可优选具有以下特征中的至少一个:
(i)当将减小的压力(真空)施加到其外部时,其可以向外突出,增大珠腔的体积并且因此将流体吸入。
(ii)其是预拉伸的。
为了允许柔性壁的向外突出,必须相邻所述壁提供足够的空间。如果流体设备例如被设计为位于(例如显微镜的)平坦桌面上,而柔性壁面向所述桌面,则可以在相邻柔性壁的桌面中提供孔。而且,应当注意,术语“减小的压力”表示被施加到柔性壁的外部以便使其将外突出的该压力将一般低于在所述柔性壁的内部盛行的压力。外部压力将因此有时还在下文被称为“(部分)真空”。
柔性壁可例如是当流体通过压力的使用被泵送到珠腔内时可扩张并且然后返回到其原始位置或甚至进一步在施加真空时收缩的壁。附加地或替代地,柔性壁可以是预拉伸的壁(例如覆盖珠),其可在试剂与液体的混合之后在施加真空时或由于材料中的弹力对拉伸壁的弹回,而收缩。在所有情况下,柔性壁的使用实现了与具有仅坚硬壁的实施例相比,系统中的有效死区的减少。预拉伸与当流体被泵入时的进一步扩张的组合也是有利的。
柔性壁可以例如通过某一薄膜或箔来实现,特别是通过橡胶箔来实现。其可用于在珠腔中容纳不同体积,而不在死体积中损失过多样品材料。
在优选实施例中,柔性壁由在室温下具有在1MPa到400MPa的范围内的杨氏模量的弹性体材料制成。其应当具有高弹力和破裂强度。在交联材料,如橡胶、硅树脂或聚氨酯之外,还可使用热塑材料,特别是所谓的热塑性弹性体(TPE)。这样的TPE可以具有烯烃、酯、乙醚或尿烷基并且可以是非晶的或半结晶的。优选材料类包括基于烯烃的TPE,由于高化学惰性和生物相容性。
珠腔可以可选地包括相互相对布置的两个柔性壁。
珠腔可以被设计为使得在柔性壁的收缩(自发的或被施加压力)时,在试剂被溶解之后得到的珠腔的死体积实际上是零。
为了主动和可控地移动柔性壁,流体系统可优选包括用于控制在柔性壁的外部上的压力的压力控制器。可以例如使用在柔性壁的外部的减小压力来使所述壁向外突出,增大珠腔的体积并且因此吸入流体。
在另一实施例中,珠腔可包括至少两个隔间,一个隔间容纳固体试剂并且另一隔间包括柔性壁。这分别允许固体试剂和柔性壁的单独和个体地最优布置,其中所述隔间是连接的并且通过管道等流体连通。这样的实施例可以便于柔性壁的外部致动。
根据另一特别方面,本发明的实施例包括具有两个或更多个珠腔的流体系统,珠腔位于可移动载体上,使得这些珠腔中的任意可以被选择性耦合到反应腔。优选地,所述珠腔中的每个包含不同固体试剂。这些固体试剂可然后被选择性和顺序地添加到反应腔中的样品流体中。应当注意,载体的可移动性应当被理解为相对于反应腔。相对于环境,载体、反应腔或两者可实际上是移动的。
该实施例的重要优点是(在反应腔的侧面上)可使用总是相同的通道或管道来将固体试剂从珠腔转移到反应腔。甚至如果必须将大量固体试剂添加到样品流体,则将因此最多存在在转移通道中流体的单次损失。
载体可以在任何可能方式和方向下可移动,使得可实现其珠腔到反应腔的期望耦合。在优选实施例中,载体被设计为可旋转圆盘传送装置。该圆盘传送装置的珠腔可以被圆周布置在来自旋转轴的半径处,使得通过圆盘传送装置的旋转将顺序地将每个珠腔定位为与静止反应腔连接。
载体可以优选包括至少一个“盲”位置。将该盲位置连接到反应腔可以然后用于中断在珠腔和反应腔之间的材料交换。
载体可以可选地是流体系统的集成部分(即永久附着到药筒,同时在有限范围内相对于其可移动)。在优选实施例中,然而载体被设计为初始与药筒分离,但是可附着到药筒。该附着可以优选在药筒中执行测定之前立即发生,允许在使用之前在最优条件(例如在冰箱中)载体对其固体试剂的存储。附着可以是可逆或不是可逆的。在优选实施例中,药筒和载体是用于仅一次检查的一次性使用物品。
在具有载体的实施例的另外发展中,可在载体和药筒之间布置中间元件,其相对于载体和/或药筒可移动。可移动中间元件可例如是包括管道的板。仅在该管道被对准到载体的珠腔和药筒中的反应腔时,在所述珠腔和反应腔之间的材料交换是可能的。
根据另一特别方面,本发明的实施例包括具有流体串联连接的两个或更多珠腔的流体系统。
这意味着,例如样品流体之类的流体可以顺序地流经这些珠腔。被提供在珠腔中的固体试剂的试剂将因此顺序地并且以良好受控的方式被所述流体溶解。
珠腔也可特别地被设计和使用作为反应腔,其中发生在固体试剂和样品流体之间的反应。
根据前面提到的实施例的另外发展,在该系列的至少两个接连珠腔通过阀相互分离。优选地,该系列的所有接连珠腔通过相关阀分离。通过打开和关闭这些阀,可控制(样品)流体经由珠腔的流动。
为了允许流体流入(具有刚性壁的)珠腔(其流体出口仍然是关闭的),所述腔可以可选地连接到通风端口。该系列的腔的每个珠腔可具有单独通风口。附加地或替代地,该系列的腔的一些(或甚至所有)珠腔可连接到公共通风端口。
在下文中,将解释可与上述实施例中的任意组合实现的本发明的各种另外发展。
因此,流体系统可具有包含不同固体试剂(即在第一腔中的试剂不同于在第二腔中的试剂)的两个或更多个珠腔。这些固体试剂可以然后根据应当利用该样品执行的测定在适当时间点从相关珠腔取得并且被添加到样品流体。
为了在其使用之前保护珠腔中的固体试剂,珠腔可以可选地通过可破坏密封物与反应腔分离。所述密封物可例如是覆盖珠腔的出口直到其被例如机械地、通过热和/或通过辐射而破坏为止的箔。如果液体试剂也被结合,或如果珠腔位于可移动载体(在测定的开始之前通过手将其附着到药筒)上,则该实施例是特别有利的。通常,(多个)珠腔将一般通过以任何方式设置用于药筒的包装来被保护以防湿气。
在另一实施例中,珠腔连接到通风端口,其内容,例如围绕固体试剂的气体可被通风到该通风端口,允许另一流体进入珠腔。在珠腔和通风端口之间的连接优选包括可被选择性打开和关闭以控制通风的阀。
流体系统可以可选地包括用于选择性施加压力到流体系统的某个部分(例如反应腔和/或珠腔)的至少一个压力源。压力可以特别是相对于流体系统的环境压力的过压或减压。压力可以例如作用于反应腔中的流体,驱动其到珠腔或将其从那拖走。而且,压力源可用于生成可被引入流体系统以便推进流体的加压气体(例如空气)。
在另一实施例中,流体系统包括用于选择施加压力到珠腔的柔性壁,特别是到该柔性壁的外部(即不面向珠腔的侧面)的压力源。压力可以然后例如作用于可移动薄膜或壁上,使得能够通过施加适当压力可控地移动在薄膜或壁的另一侧上的(样品)材料。
为了控制流体系统内的流体的流动,流体系统的内表面的至少一部分可以是疏水性的,特别是(多个)珠腔的内表面。
在本发明的另一实施例中,流体系统可具有用于提供与样品流体的可控相互作用的致动器。很多处理流程要求例如样品流体的温度的控制。相应地,致动器可以可选地为或包括用于加热和/或冷却样品流体的温度控制器。温度控制器可例如通过珀尔帖元件来实现。其它实施例可包括用于机械操纵样品流体的致动器,例如可便于流体与试剂的混合的压电元件。通常,致动器可被设计为应用能量,例如电磁辐射、热和/或超声到样品。
附图说明
根据下文描述的实施例,本发明的这些和其它方面将变得清楚,并且参考下文描述的实施例来阐明本发明的这些和其它方面。
在图中:
图1示意性示出其中珠及反应腔串联连接的流体系统;
图2示意性示出具有单独反应腔和珠腔的流体系统;
图3示意性示出图2的流体系统的侧视图;
图4示意性示出在泵的致动之后图3的流体系统;
图5示意性示出包括在圆盘传动装置中的珠腔的流体系统上的俯视图;
图6示意性示出穿过具有在药筒上的可移动载体的流体系统的截面图;
图7示出在载体的出口与药筒的入口的对准以及密封物的破裂之后图6的流体系统;
图8示意性示出包含冻干珠的具有柔性壁的珠腔的俯视图;
图9示出图8的珠腔的侧视图;
图10示出在冻干珠的溶解期间图9的流体系统;
图11示出在清空之后图10的流体系统;
图12示意性示出穿过包括具有两个相对柔性壁的珠腔的流体系统的截面;
图13图示利用样品流体对珠腔的填充和在冻干试剂的溶解之后该流体的排出;
图14示意性示出具有拥有柔性壁的珠腔的流体系统的另一实施例;
图15示出图14的系统的修改,其中珠腔具有两个隔间,一个包括冻干珠并且另一个包括柔性壁;
图16示出图15的系统的修改;
图17图示珠腔的并行布置。
类似参考数字或通过100的整数倍区别的数字在图中涉及相同或相似的部件。
具体实施方式
对于执行测定(如PCR和测序)的完全自动、集成诊断设备或药筒,很多试剂需要在药筒中是可用的。生物试剂(如酶)可以是冷冻干燥的(“冻干”),在其期间以珠(冻干珠)的形式获得固体、多空物质。这样的冻干珠允许在比液体溶液更高的温度下的容易处理和存储,并且允许与液体制剂相比长的货架期。附加地,一个珠可包含用于单个试剂的酶的量,使能精确配量。珠可被存储在药筒上或它们可首先在存储条件下(例如冰冻)被单独存储并且在使用之前被插入药筒中。在生物反应之前,可将液体泵送到珠以溶解它们,之后可开始酶反应。
冻干珠的结合的一个挑战是其操纵、溶解和均化并且尤其当使用小反应体积(例如PCR所需要的)时。冻干珠是非常脆和轻的,其使手动操纵有风险。由于它们的多孔本质,珠占据大的体积。当在药筒中结合时,这导致大的死体积,增大了系统的总体积和所要求的其它试剂的量。将冻干珠来回泵送到反应腔导致反应体积的损失和一定死体积。使用通常低的反应体积,死体积应当优选被最小化。
此外,药筒和试剂结合的挑战是湿和干试剂的兼容:干试剂应当优选被存储在低相对湿度下,而存储在塑料容器中的湿试剂应当优选被存储在环境条件下(因为在低相对湿度下存储被填充有湿试剂的容器导致蒸发损失)。如本文公开的概念允许珠被存储在药筒内或外,使得它们可被存储在干燥环境中,与湿试剂分离并且可在测定开始之前被点按到药筒上。
附加地,若干生物过程要求多个相继反应步骤。优选在添加下一反应步骤的酶之前,液体应当被冷却到例如大约0℃-20℃。为了加速,主动冷却优选利用例如帕尔贴元件。然后在溶解珠之后,液体应当被再次加热。这通常被重复许多次,意味着在液体的加热和冷却上损失很多时间。
组合的珠及反应腔的串联布置
为了解决上述问题,本发明的一个实施例预想了多个较大珠及反应腔,每个珠及反应腔包含珠。这些腔可通过单个阀相互分离。通过将样品液体从一个珠及反应腔泵到另一个,珠将溶解并且反应可进行。死体积仅由在之前的珠及反应腔以及在两个腔之间的单个阀中剩余的液体量构成。
图1示意性图示具有同时用作珠腔和反应腔(为此原因,它们还被标注有参考符号“130”)珠及反应腔111、112、113、114……(或简称为“珠腔”)的串联的对应流体系统100的实施例。这些珠腔中的每个包括冻干珠LB,其中不同珠腔的珠优选在它们的化学成分中是不同的。珠腔通过可个体控制的个体阀V1、V2、V3、V4……来相互分离。而且,每个珠腔连接到公共通风端口VP,其中该通风端口的打开和关闭可由相关阀VV控制。
在珠及反应腔111-114之下,可布置个体加热元件来允许温度控制。可例如利用注射器或柱塞来泵送液体样品到在左侧的第一腔111中。当液体到达腔时,相关冻干珠LB将溶解,并且可通过将在该腔下的加热器打开来开启反应。
在反应的终结之后,在第一和第二腔111、112之间的阀V1可打开以及用于相应腔112的通风阀VV,并且液体可向着下一珠及反应腔112继续,其中下一个珠LB被加热并且下一反应可进行。该过程可被重复直到所有反应已被执行。
样品液体的冷却在珠及反应腔中的泵送和到达期间完成,因为管道、阀和腔本身的热容比液体的高。因此,不需要帕尔贴,并且仅加热器被预期是足够的。
流体系统100的死体积仅限于在两个珠及反应腔之间的阀中的体积和在珠及反应腔中剩余在后的体积。
珠腔111-114的壁可以是刚性的。在优选实施例中,然而珠腔的至少一个壁FW也可以是柔性的。每个珠腔111-114例如可以通过柔性箔来邻接。在溶解冻干珠LB和执行反应之后,液体可被泵送到下一珠存储腔。因为柔性壁FW,剩余在后的死体积可通过收缩柔性壁来最小化。
总之,描述了可如何将多个冻干珠结合在药筒中的解决方案。冻干珠通常是大的并且因此它们占据大的体积。作为结果,为了将液体泵送到存储珠的腔中并且然后泵送回,隐含了相对大的死体积。因此替代单个反应腔,使用多个珠及反应腔。每个腔可包含一个或多个冻干珠。阀位于两个腔之间,由此将它们流体分离。在一个反应的终结之后,将液体向着下一腔泵送,其中存在的珠被溶解,并且然后下一反应可开始。由于液体当被从一个腔泵送到另一个时将非常快地冷却的事实,不需要在反应腔之下的主动冷却,这降低了所需的总体时间。使用通风结构来移除腔中存在的空气。
分离的珠腔和反应腔
图2示出在包括相互连接的珠腔1011和反应腔1030的药筒1020中的流体系统1000的俯视图。反应腔1030一般包含大约100-200μl的液体。一个或多个固体(例如冻干)珠LB可被存储在珠存储腔1011中。反应腔具有通风阀V1,其在液体的泵送期间被打开。在反应腔和珠存储腔之间,定位两个阀V2和V3(其也可被减少到单个阀)。用于泵送来自反应腔1030的液体的另外阀V4位于右边。
流体系统1000的简化侧视图在图3和4中给出。为了简化原因,用于关闭液体流的常闭阀仅被表示为矩形。在图3中,反应腔1030被填充有样品流体。柔性箔FW'位于整个药筒1020下面,除了泵送腔PC之外。泵送腔是开放连接,在顶部通过另一柔性箔FW覆盖。覆盖板CP包括该柔性箔FW以及用于覆盖其它腔并且提供对柔性箔的支撑的另一固体层。在填充腔之后,该覆盖结构被放在药筒上。
在默认情况下,在反应腔1030和珠腔1011之间的阀V2+V3是关闭的(没有液体流动)。通风阀V1也是关闭的。在泵送腔PC上,放入加压空气,这意味着过压确保柔性箔FW是平的,如在图3中给出那样。没有液体将从反应腔流到珠。
在泵1040的致动(仅在图3中示意性指示)时,上柔性箔FW将向内弯曲。这在图4中示出。将在泵腔PC中建立欠压。在打开阀V2+V3时,液体将被吸入管道,导向珠腔1011。在到达珠腔时,珠将被立即溶解。在珠的溶解后,压力将再次被放到泵腔中的柔性箔FW上,将生成过压,将包括溶解珠的液体推回到反应腔。因为原则上仅单个阀需要在反应腔和珠腔之间,这导致非常少量的死体积。
最初,柔性箔FW可优选通过泵送腔PC致动若干次(而阀V2+V3关闭以防止液体流动)来预拉伸。箔的预拉伸可有助于具有较大的泵送行程或具有更多可重现泵行程。
可通过最小化管道长度,使(多个)阀更小,和/或仅使用一个替代两个阀,来进一步减小死体积。
泵行程需要足够大以将液体从反应腔吸入珠存储腔,但是流应当优选不超过该点。这意味着在泵送行程中存在最优值。存在影响泵送行程的至少两个变量,其是泵送腔直径和在其顶上的柔性箔的直径。
已利用3mm直径的泵送腔与6mm箔直径执行了成功的实验。较大直径的箔意味着箔可被更高地弯曲,这导致多少更大的泵送行程。应当注意,在该上下文中,泵行程以及反应腔两者的体积是要优化的重要参数,因为这些体积(以及它们的比)确定了从反应腔运输到珠腔的液体量,其中过高泵行程可导致珠腔的溢流。实验显示,该概念对相对小的死体积有效。药筒本身容易制造。做出正常药筒设计,仅需要将其顶上放置顶板,但是这需要在最终设计中完成以任何方式覆盖反应腔等。
具有圆盘传送装置的流体系统
图5示意性示出在流体系统200的另一实施例上的俯视图,所述系统包括药筒220和围绕旋转轴X可旋转的圆盘传送装置210。药筒220包括经由具有阀V1的输送管道221连接到外部的反应腔230。在外部,所述输送管道221接触圆盘传送装置210(如果其在适当的位置处)。特别地,沿着圆盘传送装置210的圆周分布的珠腔211、212……216中的每个可(流体地)连接到输送管道,如果其被旋转到适当位置的话。
圆盘传送装置210包含以冻干珠LB的形式的一个或多个试剂。圆盘传送装置210可附着到用于执行生物测定的药筒220。通过圆盘传送装置的旋转,可选择某一珠LB,并且可建立在珠和药筒内的流体之间的流体接触。根据该实施例,单独密封物可以可选地存在,其必须被弄破以建立在药筒的流体和珠LB之间的物理接触。当利用缓冲液做出流体接触时,珠中的试剂将溶解并且(酶)反应可启动。
圆盘传送装置210可在运行实验之前被放置在药筒220的顶上,或圆盘传送装置可已经存在于药筒顶上。圆盘传送装置优选在制造期间被预填充不同珠LB,从而用户不需要处理或需要有限的(如在药筒顶上点按珠圆盘传送装置)处理。
描述的概念由于两个事实而以低死体积操作:首先,通过旋转,可经由同一流体管道221访问不同珠LB。第二,在珠LB和缓冲液之间仅要求非常局部的物理接触以通过毛细管力溶解珠,而不需要完全填充包含珠的珠腔。这使能在大约100-200μl的小总体积中使用若干不同珠。
描述的实施例可以以很多方式来修改。一个基本元件是以图5中的顶视图可视化的珠圆盘传送装置210。在该示例中,存在五个珠腔212-216,每个包含一个冻干珠LB(然而这不是受限的;原则上珠腔可包含多个珠)。一个腔211是空的,或全部封闭。如果该“盲腔”211接触药筒220的输送管道221,则流体连接是不可能的。然后珠圆盘传送装置被调谐,使得在珠LB之一(如珠腔216中示出的)和在输送管道221中的反应混合物之间的流体连接变得可能。当液体被泵送到珠存储腔216时,包围在珠LB中的试剂将溶解并且反应可启动。该流程可被重复许多次,每次做出到另一珠的流体连接。在这些步骤中,使用相同输送管道221来泵送液体,由此限制死体积。珠腔可以可选地通过柔性壁来邻接。
可以在珠圆盘传送装置和反应腔之间的输送管道221中提供一个或多个阀V1用于选择性关闭该管道。如果盲腔211接触输送管道,则在反应腔和珠之一之间不存在可能的流体接触。在轻微旋转珠圆盘传送装置时并且在打开在珠及反应腔之间的阀V1之后,可将液体泵送到珠存储腔并且珠将溶解。在溶解后,包含溶解的珠的液体可被泵送回。
在另一实施例中,珠圆盘传送装置可位于或部分位于药筒的反应腔之上(相对于重力)。可使用具有例如一个孔在其中的中间层(未示出)来做出在(多个)珠腔和反应腔之间的连接。通过旋转该中间层,孔可被定位于正好在珠之下,并且该珠将落入下面的反应腔中的液体内。如果需要,可使用少量的加压空气来向着反应腔引导珠。
在示出的示例中,一旦珠被访问,珠的不透液分离可能处于危险中,取决于在圆盘传送装置和药筒之间的配合的精度和表面的亲水性。可通过使表面疏水并且通过控制在圆盘传送装置和药筒之间的间隙处于紧密度容限内来控制交叉污染的风险。
在再另一实施例中,可通过使用密封箔覆盖包含珠的珠腔来实现完全封闭和密封的珠存储。在圆盘传送装置旋转到期望位置之后,密封物可被破损,例如通过(例如激光)辐射束,其融化或弄破在允许与药筒的流体接触的位置处的膜。附加地或替代地,用于建立在珠存储腔和反应腔之间的连接的其它装置是适用的,例如机械装置。
在图6和7中示出具有药筒1120和可相对于药筒移动的载体1110的流体系统1100的替代实施例。载体1110将在下文被假定为可旋转圆盘传送装置,尽管其可以通常通过平移和/或旋转来可移动。
圆盘传送装置的珠腔1111中的冻干珠LB被覆盖有柔性箔FW。在图6中,在药筒中的反应腔1130和冻干珠LB之间不存在流体连接。在旋转圆盘传送装置之后(仅画出仅其的单个腔),将作出从反应腔到珠的流体连接。如图7中所示,液体可被泵送到珠腔中(珠可溶解)并且被再次泵送回,仅留下最小量的液体。
珠腔1111可最初通过可破坏箔来密封,该箔可在珠应当被访问时被弄破(图7)。
总之,已描述了在药筒中存储和使用作为冻干珠的试剂的另一方式,根据其,在允许在最优条件下(例如冰冻的和在低相对湿度下)的存储的单独单元、珠载体或圆盘传送装置中存储珠。可在药筒和珠圆盘传送装置之间做出连接,并且可通过在药筒的微流体系统和珠之间做出流体接触,导致自发溶解,并且通过泵送回到反应腔以均化,来拾取试剂。然后可通过珠圆盘传送装置的旋转,暴露下一珠,来启动下一反应。使用同一微流体管道用于所有试剂,确保最小死体积。
具有柔性壁的流体系统
本发明的另一实施例的必要特征是包含固体(例如冻干)珠并且至少在一侧上被覆盖有柔性壁,例如柔性箔的珠腔。该壁/箔当被暴露到过压或真空时可弹性变形。变形可用于:
-将液体泵送到珠存储腔中并且溶解珠;
-允许良好均化;
-清空珠存储腔使得液体的剩余损失(死体积)是适度小的。
相应地,该实施例允许在药筒中的珠存储,珠的溶解,珠的均化,有限死体积和容易的制造过程。
图8-11示意性示出其中实现上述一般原理的第一实施例。冻干珠LB位于流体系统300的珠腔311(其可以是药筒320的部分)中。冻干珠LB的典型尺寸可以是大约1mm到大约10mm。
流体系统300包括载体材料322。该载体包括在珠腔的位置处的孔,所述孔被柔性壁FW或薄膜覆盖(从底到顶)。包含管道结构的双面带331和333被布置在载体材料332的顶侧和底侧上,将柔性壁FW附着到载体。而且,(例如在载体的底部处的带331中)提供阀结构以关闭/打开管道。特别地,设置填充阀V1,经由其液体能够可控地进入珠存储腔311,并且设置可(但是不一定是)用于通风的通风阀VV。
柔性壁FW初始被预拉伸以覆盖珠LB。
在存储期间,珠LB被固定在流体系统300中。阀可优选地是常闭阀,但是不一定需要如此,因为管道尺寸(大约100μm)比珠尺寸小的多。以该方式,脆的珠不太可能移动或破裂。
图10图示了当珠LB需要被溶解时发生的过程。填充阀V1在该情况下被打开并且液体进入珠存储腔311。柔性薄膜FW由于建立的压力而扩张。这允许冻干珠溶解和均化。
图11图示了溶解的珠的移除的随后过程。为了清空珠存储腔311,其中珠现在被完全均化,液体流可反转,将具有试剂的液体运送到反应腔330。柔性箔FW可在该过程期间收缩,仅留下最低限度量的死体积(比当将使用刚性顶部时小得多)。
通常,将存在留在珠存储腔中的少量液体。作为替代实施例以可能减小该量,可使用通风管道。当首先在通风阀VV之后建立过压(例如通过加热或其它手段)并且然后打开阀时,过压可进一步被用于帮助液体流到珠存储腔311之外。
图12图示了流体系统400的替代实施例,其中使用柔性箔或薄膜FW在珠腔411中的冻干珠LB的两侧上。该实施例具有较低死体积的潜力,因为珠腔411可在液体被向外泵送到反应腔430中时完全收缩。
图13图示流体系统400的另一实施例,其是第一实施例(300)的变型。在该示例中,柔性箔FW位于药筒520的底部,正好在到来自压力源540的加压空气的连接的顶上(图13a)。在珠LB在珠腔511中的溶解和药筒的填充期间,通风阀VV被打开并且珠可被溶解(图13b)。当溶解的珠被泵送到反应腔530时,通风阀VV被关闭。随后通过泵送并且通过从底部到柔性箔FW的外部施加加压空气来清空珠腔511(图13c)。
作为附加替代方式,还可以具有在珠存储腔之上的孔。在该情况下,还可连接真空并且通过使用真空,珠腔可被填充。
图14、15和16图示流体系统600、700和800的三个不同实施例,其中柔性箔FW被定位为在管道中进一步远离。
图图示了两个基本概念:首先,关于具有柔性壁的珠腔存在一般概念。在将液体泵送到腔后,壁可扩张。该壁可被定位为靠近珠(甚至封装珠),如在图14中示出的,或其可以在流体系统中稍微进一步远离(图15、16)。这些实施例可被表征为“被动”操作。
在图16中,附加示出流体连接840。在该实施例中,箔FW扮演更加主动的角色,并且这将促进液体流到珠腔内。可使用还相同种类的概念来溶解珠LB并且将溶解珠泵送回到反应腔:通过施加真空到箔FW上,液体可被吸入珠存储腔中。通过然后施加加压空气,箔可将液体推回到反应腔。
为了当经由泵送设备840施加真空时允许柔性箔FW的向外突出,在药筒820所在于的桌面中提供孔。
应当注意,泵送设备也可类似地被添加到图14和15的系统(在利用字母“X”指示的位置处)。而且,可以可选地包括阀在反应腔630、730、830和相关珠腔之间。
对于上文解释的所有实施例,制造是相对简单的,因为不需要作出附加的层。珠可被仅放在“地板”层上,在其之后其可被柔性箔密封。作为选择的材料,可使用下列材料(三个示例不是限制):载体材料:PMMA;压敏粘合剂(聚酯载体):例如NittoDenko5015P;柔性箔:柔性橡胶,例如在PP基础上的烯族弹性体,具有大约10-1000μm,优选大约100μm的一般厚度。
假如使用多个冻干珠,可共享阀,如在图17中示意性示出的。在该情况下,对于每个珠LB,可使用在一行中的三个阀(V1、V2,和V3、V4和V5之一)。此外,还可串联设置珠腔(参考图1)。
总之,已公开了流体系统的另外实施例,其允许在药筒内的冻干珠的存储、溶解和均化。该实施例特征在于至少一个柔性薄膜(如橡胶箔)的使用。该柔性箔可在液体泵送期间扩张(但是对于所有实施例不是必须的),珠可在珠存储腔中被溶解到该液体中。药筒的清空通过将液体泵送出药筒外来完成。具有柔性薄膜的(多个)侧将然后收缩,因为通过将液体泵送出并且由此在珠存储腔中留下仅非常有限的死体积来建立欠压。
描述的实施例提供了冻干珠在微流体药筒中的结合,而不具有大体积的冻干珠(包含一些空气)的缺点。通过使用柔性壁并且在不必完全填充腔的情况下使珠与液体接触来减小死体积。在接触后,珠碎裂并且溶解在液体中。具有柔性壁使得更容易首先容纳大体积的珠并且然后在溶解期间利用珠的收缩减小腔体积。将多个珠腔串联和/或放置在圆盘传送装置上是另外的措施来保持体积尽可能小,并且做出用于复杂药筒(或具有复杂功能的药筒)的成本高效解决方案。能够致动柔性壁是与使用以任何方式利用柔性薄膜的气动驱动的技术组合中非常有用的扩展。
本发明的所有描述实施例能够适用于需要被均化和混合的珠所存储于的任何药筒技术。应用可以是例如PCR或qPCR、protK处置,核酸检测的样品制备,免疫组织化学着色反应,或用于组织病理学和一般病理学的组织和细胞的着色。可被分析的生物样品尤其包括血液、尿、组织、细胞、包含病原体的缓冲液、排泄物等。
尽管在图和前面描述中详细图示和描述了本发明,但是这样的图示和描述应当被认为是说明性或示例性的而非限制性;本发明不限于所公开的实施例。对公开的实施例的其它变型可由本领域技术人员在实践所要求保护的发明时,根据对图、公开文本和所附权利要求的研究而理解和实现。在权利要求中,词语“包括”不排除其它元件或步骤,并且不定冠词“一”或“一个”不排除多个。单个处理器或其它单元可履行在权利要求中记载的若干项的功能。在相互不同从属权利要求中记载某些措施的简单事实不表明这些措施的组合不能被有利地使用。计算机程序可被存储/分布在适当介质上,例如与其他硬件一起供应或作为其它硬件的部分供应的光学存储介质或固态介质上,但是也可以被分布在其它形式中,例如经由互联网或其它有线或无线电信系统。在权利要求中的任何参考符号不应被解释为限制范围。

Claims (15)

1.一种用于处理样品流体的流体系统(100-1100),包括:
-具有其中能够发生样品流体的处理的至少一个反应腔(130-1130)的药筒(120-1120);
-包括能够被选择性添加到样品流体的固体试剂(LB)的至少一个珠腔(111-1111);
其中珠腔(111-1111)包括至少一个柔性壁(FW)并且其中所述柔性壁
(i)当减小的压力被施加到其外部时能够向外突出,增大珠腔的体积并且因此将流体吸入,和/或
(ii)是预拉伸的。
2.一种用于在流体系统(100-1100)中将试剂添加到样品流体的方法,所述方法包括以下步骤:
a)在流体系统的珠腔(111-1111)中存储以固体形式的试剂(LB);
b)将液体泵送到所述珠腔中以溶解试剂;
c)将具有溶解试剂的液体泵送到流体系统的反应腔(130-1130)中;
其中珠腔(111-1111)包括至少一个柔性壁(FW)并且其中所述柔性壁
(i)当减小的压力被施加到其外部时向外突出,增大珠腔的体积并且因此将流体吸入,和/或
(ii)是预拉伸的。
3.一种特别是根据权利要求1的用于处理样品流体的流体系统(100-1100),包括:
-具有其中能够发生样品流体的处理的至少一个反应腔(130-1130)的药筒(120-1120);
-包括能够被选择性添加到样品流体的固体试剂(LB)的至少一个珠腔(111-1111);
其中珠腔(111-1111)包括至少一个柔性壁(FW)并且其中所述珠腔(711、811)包括至少两个隔间,一个容纳试剂(LB)并且另一个包括该柔性壁(FW)。
4.一种特别是根据权利要求1或3的用于处理样品流体的流体系统(100-1100),包括:
-具有其中能够发生样品流体的处理的至少一个反应腔(130-1130)的药筒(120-1120);
-包括能够被选择性添加到样品流体的固体试剂(LB)的至少一个珠腔(111-1111);
其中至少两个珠腔(211-216、1111)位于可移动载体(210、1110)上,使得它们中的任意能够选择性耦合到反应腔(230、1130)。
5.如权利要求1、3或4所述的流体系统(100-1100)或如权利要求2所述的方法,
特征在于,试剂是冻干的,特别是冻干珠(LB)。
6.根据权利要求1或4所述的流体系统(700、800)或如权利要求2所述的方法,
特征在于珠腔(711、811)包括至少两个隔间,一个容纳试剂(LB)并且另一个包括该柔性壁(FW)。
7.如权利要求1、3或4所述的流体系统(200、1100)或如权利要求2所述的方法,
特征在于,至少两个珠腔(211-216、1111)位于可移动载体(210、1110)上,使得它们中的任意能够选择性耦合到反应腔(230、1130)。
8.如权利要求7所述的流体系统(200、1100)或方法,
特征在于,载体是可旋转圆盘传送装置(210、1110)。
9.如权利要求7所述的流体系统(200、1100)或方法,
特征在于,载体(210、1110)能够被附着到药筒(220、1120)。
10.如权利要求7所述的流体系统(200)或方法,
特征在于,可移动中间元件被布置在载体(210)和药筒(220)之间。
11.如权利要求1、3或4所述的流体系统(100)或如权利要求2所述的方法,
特征在于,其包括流体串联连接的至少两个珠腔(111-114),其中接连的珠腔(111-114)优选通过阀(V1-V5)分离。
12.如权利要求1、3或4所述的流体系统(100-1100)或如权利要求2所述的方法,
特征在于,珠腔(111-1111)通过可破坏密封物与反应腔(130-1130)分离。
13.如权利要求1、3或4所述的流体系统(100-1100)或如权利要求2所述的方法,
特征在于,珠腔(111-1111)优选经由可控阀(VV)连接到通风端口(VP)。
14.如权利要求1、3或4所述的流体系统(100-1100)或如权利要求2所述的方法,
特征在于,其包括用于选择性施加压力到反应腔的压力源(540、840、1040)。
15.如权利要求1或3所述的流体系统(100-1100)或如权利要求2所述的方法,
特征在于,其包括用于选择性施加压力到柔性壁(FW),特别是在其外部的压力源(540、840、1040)。
CN201480024548.8A 2013-04-30 2014-04-29 用于处理样品流体的流体系统 Expired - Fee Related CN105188932B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13165974.0A EP2799137A1 (en) 2013-04-30 2013-04-30 Fluidic system for processing a sample fluid
EP13165974.0 2013-04-30
PCT/EP2014/058703 WO2014177551A1 (en) 2013-04-30 2014-04-29 Fluidic system for processing a sample fluid

Publications (2)

Publication Number Publication Date
CN105188932A true CN105188932A (zh) 2015-12-23
CN105188932B CN105188932B (zh) 2018-05-08

Family

ID=48190820

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480024548.8A Expired - Fee Related CN105188932B (zh) 2013-04-30 2014-04-29 用于处理样品流体的流体系统

Country Status (4)

Country Link
US (1) US10493445B2 (zh)
EP (2) EP2799137A1 (zh)
CN (1) CN105188932B (zh)
WO (1) WO2014177551A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111565846A (zh) * 2018-01-15 2020-08-21 罗伯特·博世有限公司 在微流体装置中提供物质的溶液的方法
CN114405566A (zh) * 2022-02-08 2022-04-29 江苏液滴逻辑生物技术有限公司 一种冻干球预埋结构、数字微流控芯片及预埋注液方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201819415D0 (en) * 2018-11-29 2019-01-16 Quantumdx Group Ltd Microfluidic apparatus and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040874A1 (en) * 2000-11-16 2002-05-23 California Institute Of Technology Apparatus and methods for conducting assays and high throughput screening
WO2003015923A1 (en) * 2001-08-20 2003-02-27 Biomicro Systems, Inc. Fluid mixing in low aspect ratio chambers
US20040037739A1 (en) * 2001-03-09 2004-02-26 Mcneely Michael Method and system for microfluidic interfacing to arrays
WO2007064635A1 (en) * 2005-11-30 2007-06-07 Micronics, Inc. Microfluidic mixing and analytical apparatus and method for affinity capture of a ligand
WO2008157801A2 (en) * 2007-06-21 2008-12-24 Gen-Probe Incorporated Instrument and receptacles for performing processes

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882903A (en) * 1996-11-01 1999-03-16 Sarnoff Corporation Assay system and method for conducting assays
US7332348B2 (en) * 2003-02-28 2008-02-19 Applera Corporation Sample substrate having a divided sample chamber and method of loading thereof
US8852862B2 (en) 2004-05-03 2014-10-07 Handylab, Inc. Method for processing polynucleotide-containing samples
US20070031283A1 (en) 2005-06-23 2007-02-08 Davis Charles Q Assay cartridges and methods for point of care instruments
US9056291B2 (en) 2005-11-30 2015-06-16 Micronics, Inc. Microfluidic reactor system
EP2027249A4 (en) * 2006-05-10 2011-05-25 Univ Texas IDENTIFICATION OF MULTIPLE LEUKOCYTENTYPES
CN105925696A (zh) * 2006-11-06 2016-09-07 科隆迪亚戈有限公司 使用结合元件用于分析的装置和方法
WO2008083446A1 (en) 2007-01-12 2008-07-17 Environmental Biotechnology Crc Pty Limited Sample handling device
EP2017618A1 (en) 2007-07-20 2009-01-21 Koninklijke Philips Electronics N.V. Methods and systems for detecting
JP5551763B2 (ja) 2009-04-23 2014-07-16 コーニンクレッカ フィリップス エヌ ヴェ ゼロデッドボリュームを有するミキサ
EP2601286A4 (en) 2010-08-02 2016-10-05 Brent L Weight UNDER PRESSURE CARTRIDGES FOR POLYMERASE CHAIN REACTIONS
PT2676136T (pt) * 2011-02-15 2021-03-25 Hemosonics Llc Dispositivos, sistemas e métodos para avaliação de hemostasia
WO2012159021A2 (en) 2011-05-19 2012-11-22 Hemosonics, Llc Portable hemostasis analyzer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002040874A1 (en) * 2000-11-16 2002-05-23 California Institute Of Technology Apparatus and methods for conducting assays and high throughput screening
US20040037739A1 (en) * 2001-03-09 2004-02-26 Mcneely Michael Method and system for microfluidic interfacing to arrays
WO2003015923A1 (en) * 2001-08-20 2003-02-27 Biomicro Systems, Inc. Fluid mixing in low aspect ratio chambers
WO2007064635A1 (en) * 2005-11-30 2007-06-07 Micronics, Inc. Microfluidic mixing and analytical apparatus and method for affinity capture of a ligand
WO2008157801A2 (en) * 2007-06-21 2008-12-24 Gen-Probe Incorporated Instrument and receptacles for performing processes

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111565846A (zh) * 2018-01-15 2020-08-21 罗伯特·博世有限公司 在微流体装置中提供物质的溶液的方法
CN111565846B (zh) * 2018-01-15 2021-10-01 罗伯特·博世有限公司 在微流体装置中提供物质的溶液的方法
US11389794B2 (en) 2018-01-15 2022-07-19 Robert Bosch Gmbh Method for providing a solution of the substance in a microfluidic device
CN114405566A (zh) * 2022-02-08 2022-04-29 江苏液滴逻辑生物技术有限公司 一种冻干球预埋结构、数字微流控芯片及预埋注液方法
CN114405566B (zh) * 2022-02-08 2022-12-02 江苏液滴逻辑生物技术有限公司 一种冻干球预埋结构、数字微流控芯片及预埋注液方法

Also Published As

Publication number Publication date
EP2799137A1 (en) 2014-11-05
US10493445B2 (en) 2019-12-03
CN105188932B (zh) 2018-05-08
EP2991764A1 (en) 2016-03-09
WO2014177551A1 (en) 2014-11-06
US20160074858A1 (en) 2016-03-17

Similar Documents

Publication Publication Date Title
JP6963127B2 (ja) アレイのポイント・オブ・ユース排出のためのシステムおよび方法
CN108602066B (zh) 液体存储输送机构以及方法
JP6231989B2 (ja) 充填バイアル
CN101568385B (zh) 用于微流体系统的热转移方法和结构
CA2892980C (en) Device and method for carrying out an assay to detect a nucleic acid in a sample
US11207655B2 (en) Microspotting device
US20180008977A1 (en) Device, System And Method For Processing A Sample
US10843193B2 (en) Dry chemistry container
CN105188932A (zh) 用于处理样品流体的流体系统
KR102263837B1 (ko) 현장진단용 다중 초고속 핵산 추출 및 증폭이 가능한 통합칩
US11099202B2 (en) Reagent delivery system
JP2008532748A (ja) 液体用マイクロ流体バルブ
CN108024799A (zh) 生物材料收集系统
US20160116381A1 (en) Swab port for microfluidic devices
CN106662513A (zh) 自动化样品处理系统和方法
EP3523033A1 (en) Cartridge for testing a sample and method for producing a cartridge of this kind
EP3523034B1 (en) Cartridge and method for testing a sample
JP6093309B2 (ja) 凍結乾燥生体試料の保存容器
EP3933479A1 (en) Microscope for microscopic examination of a sample
US20100178138A1 (en) Apparatus and method for loading cartridge holding reactant into reactant chamber of reactor
US20170056882A1 (en) Serviceable microgravity fluid-handling system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180508

CF01 Termination of patent right due to non-payment of annual fee