CN105157827A - Integrating sphere transmission radiometer for ontrack spectrum radiation absolute calibration for remote sensor - Google Patents
Integrating sphere transmission radiometer for ontrack spectrum radiation absolute calibration for remote sensor Download PDFInfo
- Publication number
- CN105157827A CN105157827A CN201510197080.9A CN201510197080A CN105157827A CN 105157827 A CN105157827 A CN 105157827A CN 201510197080 A CN201510197080 A CN 201510197080A CN 105157827 A CN105157827 A CN 105157827A
- Authority
- CN
- China
- Prior art keywords
- integrating sphere
- radiometer
- remote sensor
- absolute calibration
- main body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005855 radiation Effects 0.000 title claims abstract description 45
- 238000001228 spectrum Methods 0.000 title abstract description 7
- 230000005540 biological transmission Effects 0.000 title abstract description 6
- ISEUFVQQFVOBCY-UHFFFAOYSA-N prometon Chemical compound COC1=NC(NC(C)C)=NC(NC(C)C)=N1 ISEUFVQQFVOBCY-UHFFFAOYSA-N 0.000 title abstract 5
- 230000003287 optical effect Effects 0.000 claims abstract description 43
- 239000003973 paint Substances 0.000 claims abstract description 8
- 238000005259 measurement Methods 0.000 claims description 44
- 230000003595 spectral effect Effects 0.000 claims description 30
- 238000012546 transfer Methods 0.000 claims description 20
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 claims description 18
- 229910052710 silicon Inorganic materials 0.000 claims description 17
- 239000010703 silicon Substances 0.000 claims description 17
- 238000005192 partition Methods 0.000 claims description 9
- 238000005057 refrigeration Methods 0.000 claims description 9
- 230000004888 barrier function Effects 0.000 claims description 8
- 238000011896 sensitive detection Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 238000003384 imaging method Methods 0.000 abstract description 2
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Landscapes
- Photometry And Measurement Of Optical Pulse Characteristics (AREA)
Abstract
Description
技术领域technical field
本发明属于遥感器在轨光谱辐射定标领域,涉及一种用于卫星遥感器在轨光谱辐射绝对定标的积分球传递辐射计。The invention belongs to the field of on-orbit spectral radiation calibration of remote sensors, and relates to an integrating sphere transfer radiometer used for absolute calibration of on-orbit spectral radiation of satellite remote sensors.
背景技术Background technique
随着人类对全球气候变暖、高分辨率对地观测、极端灾害预报等若干重大问题的持续深入研究,对可溯源至统一辐射基准的高质量航天遥感数据的需求越来越迫切。由于现有的卫星光学遥感载荷光谱辐射定标缺少高精度的统一辐射基准,导致大量卫星的遥感数据存在较大的测量误差,使得现有遥感卫星难以满足气候、资源和环境等某些领域大量的科学数据需求。为满足对地球气候观测的研究需求,各种空间任务提供了大量的观测数据,数据的质量和公布精度的可靠性和充分性成为数据有效使用的关键。但在空间业务中,尤其对于光学传感器,虽然发射前的地面定标手段完善,定标精度高,但是由于发射过程震动以及入轨后空间环境等影响,在轨辐射标度发生衰减和漂移,辐射基准传递链断裂,致使入轨后的仪器无法溯源至SI(国际基本单位制——theinternationalsystemofunitsofmeasurement)。为了提高在轨定标精度,使其不确定度水平与国家计量实验室的一级标准量级相当,需要建立严格可溯源SI的空间在轨辐射基准传递系统,由此建立数据质量和数据精度控制体系,从机制上对遥感辐射定标进行规范,保证所有的直接获取数据或者有源产出数据都能够真实有效的溯源到SI,以前所未有的在轨低不确定度水平,对影响气候变化的参量进行监控。由于太阳总辐照度和光谱辐照度在长时间的尺度内可认为是稳定的,所以将太阳作为在轨遥感器的辐射源,利用空间低温辐射计对其测量,由此形成可溯源SI的基准传递系统。但是由于空间载荷体积重量的限制,直接导致接收的太阳辐射量值有限,当其应用到窄带宽谱段级别时,辐射值已经非常微弱,如何将其监测并用于遥感器光谱辐射定标是关键问题。With the continuous and in-depth research of several major issues such as global warming, high-resolution earth observation, and extreme disaster prediction, the demand for high-quality space remote sensing data that can be traced to a unified radiation reference is becoming more and more urgent. Due to the lack of a high-precision unified radiation reference in the existing satellite optical remote sensing payload spectral radiometric calibration, there are large measurement errors in the remote sensing data of a large number of satellites, which makes it difficult for the existing remote sensing satellites to meet the needs of certain fields such as climate, resources and the environment. scientific data needs. In order to meet the research needs of Earth climate observation, various space missions provide a large amount of observation data, the quality of data and the reliability and sufficiency of published accuracy become the key to the effective use of data. However, in space services, especially for optical sensors, although the ground calibration method before launch is perfect and the calibration accuracy is high, due to the vibration during the launch process and the impact of the space environment after orbiting, the on-orbit radiation scale attenuates and drifts. The transmission chain of the radiation reference was broken, so that the instruments after entering orbit could not be traced to SI (International System of Units of Measurement). In order to improve the accuracy of on-orbit calibration and make its uncertainty level comparable to the first-level standard of the National Metrology Laboratory, it is necessary to establish a space on-orbit radiation reference transfer system that is strictly traceable to SI, thereby establishing data quality and data accuracy. The control system regulates the calibration of remote sensing radiation from the mechanism to ensure that all directly acquired data or active output data can be traced back to SI in a true and effective way. parameters are monitored. Since the total solar irradiance and spectral irradiance can be considered to be stable in a long-term scale, the sun is used as the radiation source of the on-orbit remote sensor, and it is measured by a space cryogenic radiometer, thus forming a traceable SI benchmark delivery system. However, due to the limitation of the volume and weight of the space load, the received solar radiation value is directly limited. When it is applied to the narrow bandwidth spectrum band level, the radiation value is already very weak. How to monitor it and use it for spectral radiation calibration of remote sensors is the key question.
发明内容Contents of the invention
为了解决现有技术中存在的问题,本发明提供了一种可溯源SI的、高集成度、高精度测量的用于遥感器在轨光谱辐射绝对定标的积分球传递辐射计。In order to solve the problems existing in the prior art, the present invention provides a traceable SI, highly integrated, high-precision measuring integrating sphere transfer radiometer for absolute calibration of remote sensor on-orbit spectral radiation.
本发明解决技术问题所采用的技术方案如下:The technical solution adopted by the present invention to solve technical problems is as follows:
用于遥感器在轨光谱辐射绝对定标的积分球传递辐射计,其特征在于,该辐射计包括:积分球主体、滤光片探测器模块和光电测量模块;所述积分球主体内开两个口,反射光通过两个开口分别进入固定在积分球主体外部的滤光片探测器模块和光电测量模块;积分球主体内部涂有漫反射涂料。An integrating sphere transfer radiometer for absolute calibration of remote sensor on-orbit spectral radiation, characterized in that the radiometer includes: an integrating sphere main body, an optical filter detector module and a photoelectric measurement module; two openings are opened inside the integrating sphere main body The reflected light enters the optical filter detector module and the photoelectric measurement module fixed outside the main body of the integrating sphere through two openings; the inside of the main body of the integrating sphere is coated with diffuse reflection paint.
本发明的有益效果是:本发明所提供的用于遥感器在轨光谱辐射绝对定标的积分球传递辐射计将将陷阱探测器标准和滤光片辐射计功能合二为一,结构集成度高,小巧轻便,适合作为在轨载荷进行空间辐射定标。本发明的双口径光阑设计可以提供功率基准与辐照度基准和辐亮度基准之间的转换。本发明所采用的一次反射隔板配合高漫反射率低镜面反射率涂料可以实现入射光在光电测量模块开孔和滤光片探测器开孔处的出射光的高朗伯均匀性。本发明在光电测量模块内采用独特的光调制器系统和数字相敏检波技术,并将InGaAs探测器进行了机械制冷,使其工作在240K低温下,最终实现了10-13W量级、107动态测量范围和最低测量功率水平信噪比可达到400的高精度电路测量控制系统。配合特殊选取的15个窄带滤光片,使用平滑插值算法,本发明中的滤光片探测器实现了对覆盖300~2500nm太阳反射谱段,3~10nm分辨率的光谱辐射定标,基准测量传递不确定度0.3%水平。综上所述,本发明所涉及的用于卫星遥感器在轨光谱辐射绝对定标的积分球传递辐射计具有对低功率信号进行高精度测量的能力,同时具备性能长期稳定的保证,可以为空间在轨溯源低温辐射计标准所使用,配合本发明所具备的将功率基准转换为辐亮度基准及高分辨率低不确定度水平的基准传递的特点,很好地解决了对成像光谱仪等卫星遥感器载荷的高精度在轨溯源SI光谱辐亮度定标的难题。The beneficial effects of the present invention are: the integrating sphere transfer radiometer provided by the present invention for the absolute calibration of the remote sensor's on-orbit spectral radiation will combine the functions of the trap detector standard and the filter radiometer into one, and the structural integration degree High, small and light, suitable for space radiation calibration as an on-orbit payload. The dual-aperture diaphragm design of the present invention can provide a conversion between a power reference and an irradiance reference and a radiance reference. The primary reflective partition used in the present invention cooperates with the paint with high diffuse reflectance and low specular reflectance to realize the high Lambertian uniformity of the incident light at the opening of the photoelectric measurement module and the opening of the optical filter detector. The invention adopts a unique optical modulator system and digital phase-sensitive detection technology in the photoelectric measurement module, and mechanically refrigerates the InGaAs detector to make it work at a low temperature of 240K, and finally realizes 10 -13 W level, 10 7 The dynamic measurement range and the lowest measurement power level signal-to-noise ratio can reach 400 high-precision circuit measurement control system. Cooperating with specially selected 15 narrow-band filters and using a smooth interpolation algorithm, the filter detector in the present invention realizes spectral radiation calibration and benchmark measurement covering 300-2500nm solar reflection spectrum with 3-10nm resolution Transmit uncertainty at 0.3% level. To sum up, the integrating sphere transfer radiometer used for the absolute calibration of the on-orbit spectral radiation of satellite remote sensors involved in the present invention has the ability to perform high-precision measurement of low-power signals, and at the same time has the guarantee of long-term stable performance, which can be used for The low-temperature radiometer standard used in space on-orbit traceability, combined with the characteristics of the present invention, which converts power references into radiance references and high-resolution and low-uncertainty level reference transfers, solves the problem of imaging spectrometers and other satellites. The problem of high-precision on-orbit traceable SI spectral radiance calibration for remote sensor payloads.
附图说明Description of drawings
图1是本发明所提供的积分球辐射计整体系统的结构示意图。Fig. 1 is a structural schematic diagram of the overall system of the integrating sphere radiometer provided by the present invention.
图2是图1中光学测量模块内部的信号测量控制电路原理图。Fig. 2 is a schematic diagram of the signal measurement control circuit inside the optical measurement module in Fig. 1 .
图中:1、积分球主体,2、精密视场光阑,3、第一孔径隔栏,4、第二孔径隔栏,5、一次反射挡板,6、滤光片探测器模块开孔,7、光电测量模块开孔,8、漫反射涂料,9、光电测量封装,10、光调制器系统,11、第一Silicon和InGaAs探测器,12、第一机械制冷装置,13、信号测量控制电路,14、滤光片探测器封装,15、滤光片及其轮换装置,16、第二Silicon和InGaAs探测器,17、第二机械制冷装置。In the figure: 1. The main body of the integrating sphere, 2. The precision field diaphragm, 3. The first aperture barrier, 4. The second aperture barrier, 5. The primary reflection baffle, 6. The opening of the filter detector module , 7. Opening of photoelectric measurement module, 8. Diffuse reflection coating, 9. Photoelectric measurement package, 10. Optical modulator system, 11. The first Silicon and InGaAs detector, 12. The first mechanical refrigeration device, 13. Signal measurement Control circuit, 14, optical filter detector package, 15, optical filter and its rotation device, 16, second Silicon and InGaAs detector, 17, second mechanical refrigeration device.
具体实施方式Detailed ways
下面结合附图和实施例对本发明做进一步详细说明。The present invention will be described in further detail below in conjunction with the accompanying drawings and embodiments.
参见图1,本发明涉及的一种用于卫星遥感器在轨光谱辐射绝对定标的积分球传递辐射计,主要由积分球主体、光电测量模块和滤光片探测器组成。Referring to Fig. 1, the present invention relates to an integrating sphere transfer radiometer for absolute calibration of on-orbit spectral radiation of satellite remote sensors, mainly composed of an integrating sphere main body, a photoelectric measurement module and a filter detector.
积分球主体包括积分球腔1、精密视场光阑2、第一孔径隔栏3、第二孔径隔栏4、一次反射挡板5、滤光片探测器模块开孔6、光电测量模块开孔7、漫反射涂料8。精密视场光阑2装配在积分球腔1的入口处,第一孔径隔栏3和第二孔径隔栏4分别设置在精密视场光阑2内;一次反射挡板5设置在滤光片探测器模块开孔6和光电测量模块开孔7与入射光束的第一次反射面之间,漫反射涂料8均匀分布在积分球腔1内表面和一次反射挡板5全表面。The main body of the integrating sphere includes the integrating sphere cavity 1, the precision field diaphragm 2, the first aperture barrier 3, the second aperture barrier 4, the primary reflection baffle 5, the optical filter detector module opening 6, the photoelectric measurement module opening Hole 7, diffuse reflection paint 8. The precision field diaphragm 2 is assembled at the entrance of the integrating sphere cavity 1, the first aperture partition 3 and the second aperture partition 4 are respectively arranged in the precision field diaphragm 2; the primary reflection baffle 5 is arranged on the filter Between the opening 6 of the detector module, the opening 7 of the photoelectric measurement module and the first reflection surface of the incident light beam, the diffuse reflection paint 8 is evenly distributed on the inner surface of the integrating sphere cavity 1 and the entire surface of the first reflection baffle 5 .
光电测量模块包括光电测量封装9、光调制器系统10、第一Silicon和InGaAs探测器11、第一机械制冷装置12、信号测量控制电路13。光调制器系统10紧邻光电测量模块开孔7之后装配,第一Silicon和InGaAs探测器11安装在经过光调制器系统10的光路上,信号测量控制电路13与第一Silicon和InGaAs探测器11一同封装,第一机械制冷装置12与该封装相连接装配于其后,位于光电测量封装9的尾部。The photoelectric measurement module includes a photoelectric measurement package 9 , an optical modulator system 10 , a first Silicon and InGaAs detector 11 , a first mechanical refrigeration device 12 , and a signal measurement control circuit 13 . The optical modulator system 10 is assembled immediately after the opening 7 of the photoelectric measurement module. The first Silicon and InGaAs detectors 11 are installed on the optical path passing through the optical modulator system 10. The signal measurement control circuit 13 is together with the first Silicon and InGaAs detectors 11. The package, after which the first mechanical refrigeration device 12 is connected and assembled, is located at the tail of the photoelectric measurement package 9 .
滤光片探测器模块包括滤光片探测器封装14、滤光片及其轮换装置15、第二Silicon和InGaAs探测器16、第二机械制冷装置17.滤光片探测器封装14与滤光片探测器模块开孔6相连,滤光片及其轮换装置15安装于探测器模块开孔6之后,第二Silicon和InGaAs探测器16安装在经过滤光片及其轮换装置15之后的光路上,第二机械制冷装置17与第二Silicon和InGaAs探测器16相连,位于滤光片探测器封装14尾部。The filter detector module includes a filter detector package 14, a filter and its rotation device 15, a second Silicon and InGaAs detector 16, a second mechanical refrigeration device 17. The filter detector package 14 and filter The optical filter and its switching device 15 are installed behind the opening 6 of the detector module, and the second Silicon and InGaAs detector 16 is installed on the optical path after the optical filter and its switching device 15 , the second mechanical refrigeration device 17 is connected to the second Silicon and InGaAs detector 16 and is located at the end of the optical filter detector package 14 .
当有光束经过精密视场光阑2入射到积分球腔1中时,如果光束不完全覆盖第一孔径隔栏3和第二孔径隔栏4,是采用功率基准溯源定标;如果光束完全覆盖第一孔径隔栏3和第二孔径隔栏4则是采用辐亮度基准溯源定标;如果只覆盖第一孔径隔栏3和第二孔径隔栏4其中之一,则采用辐照度基准溯源定标。入射光在积分球腔1内经过第一次漫反射后,部分反射光会被一次反射挡板5挡住,避免直接入射进入滤光片探测器模块开孔6和光电测量模块开孔7,这样经过漫反射涂料8的多次反射后,探测器模块开孔6和光电测量模块开孔7将会接收到高朗伯性亮度均匀的光辐射。如图2所示,射入光电测量封装9的光线将会经过光调制器系统10,光调制器系统10由光调制器和频率发生器组成,通过频率发生器控制光调制器的转动频率来对入射光信号叠加固定频率的背景信号,以此进行相位调制。经过相位调制后,光束再入射到第一Silicon和InGaAs探测器11上,由于入射光能量微弱,利用前置放大器对产生的电信号进行适度的放大以便于检测。同时因为入射光叠加了相位调制,所以配合频率发生器产生的与背景信号频率相同的参考信号,经过信号测量控制电路13对其进行数字相敏检波采集后,可以得到噪声水平非常低的测量信号,再配合第一机械制冷装置12为第一Silicon和InGaAs探测器11提供的240K低温环境,最终实现对覆盖1100nm~2500nm太阳反射谱段5~10nm分辨率的微弱光谱辐射进行高精度的探测器响应定标,由此利用定标后的探测器可以计算入射到光电测量模块的相关光辐射量值(功率),由于滤光片探测器模块开孔6和光电测量模块开孔7的开孔面积相同,所以入射到滤光片探测器的光辐射量值可以由此确定,进而对滤光片探测器进行光谱响应定标。探测器模块开孔6接收到与光电测量模块开孔7相同的均匀光辐射,之后入射到滤光片探测器封装14的光经过滤光片及其轮换装置15,由于滤光片不断地更替轮换,所以依次得到15个不同通道相对应的窄带波段范围内波长辐射,这样的准单色光最终被第二Silicon和InGaAs探测器16接收,配合第二机械制冷装置17提供的低温环境,最终完成与光电测试模块相同的高精度弱光信号采集及其响应度定标,建立起第二Silicon和InGaAs探测器16与经过精密视场光阑2入射到积分球腔1的光束功率、辐照度或辐亮度绝对值之间的数学关系,实现利用本发明涉及的积分球辐射计对卫星遥感器的光谱辐射在轨溯源定标测量。利用相同路径的太阳光辐射照射在需要被定标的卫星遥感器和本发明涉及的在轨光谱辐射绝对定标的积分球传递辐射计上,就可以得到卫星遥感器的在轨光谱响应度,使其得到高精度的可溯源SI定标测量。When a light beam enters the integrating sphere cavity 1 through the precision field diaphragm 2, if the light beam does not completely cover the first aperture barrier 3 and the second aperture barrier 4, the power reference traceability calibration is used; if the beam completely covers The first aperture partition 3 and the second aperture partition 4 use the radiance reference traceability calibration; if only one of the first aperture partition 3 and the second aperture partition 4 is covered, use the irradiance reference traceability target. After the incident light is diffusely reflected for the first time in the integrating sphere cavity 1, part of the reflected light will be blocked by the primary reflection baffle 5, so as to avoid direct incident into the opening 6 of the optical filter detector module and the opening 7 of the photoelectric measurement module, so that After multiple reflections by the diffuse reflection paint 8 , the opening 6 of the detector module and the opening 7 of the photoelectric measurement module will receive light radiation with high Lambertian properties and uniform brightness. As shown in Figure 2, the light incident on the photoelectric measurement package 9 will pass through the optical modulator system 10, the optical modulator system 10 is composed of an optical modulator and a frequency generator, and the rotation frequency of the optical modulator is controlled by the frequency generator. Phase modulation is performed by superimposing a fixed-frequency background signal on the incident light signal. After phase modulation, the light beam is incident on the first Silicon and InGaAs detector 11. Since the energy of the incident light is weak, the preamplifier is used to appropriately amplify the generated electrical signal for easy detection. At the same time, because the incident light is superimposed with phase modulation, the reference signal with the same frequency as the background signal generated by the frequency generator can obtain a measurement signal with a very low noise level after the signal measurement control circuit 13 performs digital phase-sensitive detection and acquisition on it. , combined with the 240K low-temperature environment provided by the first mechanical refrigeration device 12 for the first Silicon and InGaAs detector 11, finally realizes a high-precision detector for the weak spectral radiation covering the 1100nm-2500nm solar reflection spectrum with a resolution of 5-10nm Response calibration, thus using the calibrated detector can calculate the relevant light radiation value (power) incident to the photoelectric measurement module, due to the openings of the filter detector module opening 6 and the photoelectric measurement module opening 7 The areas are the same, so the light radiation value incident on the optical filter detector can be determined accordingly, and then the spectral response calibration of the optical filter detector is performed. The opening 6 of the detector module receives the same uniform light radiation as the opening 7 of the photoelectric measurement module, and then the light incident on the optical filter detector package 14 passes through the optical filter and its rotation device 15, due to the continuous replacement of the optical filter Alternate, so the wavelength radiation in the narrow band range corresponding to 15 different channels is sequentially obtained, such quasi-monochromatic light is finally received by the second Silicon and InGaAs detector 16, and cooperates with the low temperature environment provided by the second mechanical refrigeration device 17, finally Complete the same high-precision weak light signal acquisition and responsivity calibration as the photoelectric test module, and establish the second Silicon and InGaAs detector 16 and the beam power and radiation incident on the integrating sphere cavity 1 through the precision field diaphragm 2 The mathematical relationship between the absolute values of luminance or radiance realizes the on-orbit traceability calibration measurement of the spectral radiation of the satellite remote sensor by using the integrating sphere radiometer involved in the present invention. Utilize the solar radiation of the same path to irradiate on the satellite remote sensor to be calibrated and the integrating sphere transfer radiometer of the absolute calibration of the on-orbit spectral radiation involved in the present invention, the on-orbit spectral responsivity of the satellite remote sensor can be obtained, So that it can get high-precision traceable SI calibration measurement.
本发明的用于遥感器在轨光谱辐射绝对定标的积分球传递辐射计具有高精度的微弱光信号采集能力、非常宽的光谱覆盖范围以及精确的测量定标性能,其结构设计特点适合与在轨低温辐射计基准搭配使用,实现卫星遥感器低不确定水平下的可溯源SI在轨光谱辐射绝对定标工作。The integrating sphere transfer radiometer used for absolute calibration of remote sensor on-orbit spectral radiation of the present invention has high-precision weak optical signal collection capability, very wide spectral coverage and precise measurement and calibration performance, and its structural design features are suitable for use with The on-orbit cryogenic radiometer reference is used together to realize the absolute calibration of the traceable SI on-orbit spectral radiation under the low uncertainty level of the satellite remote sensor.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510197080.9A CN105157827B (en) | 2015-04-23 | 2015-04-23 | Integrating sphere for the in-orbit spectral radiance absolute calibration of remote sensor transmits radiometer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510197080.9A CN105157827B (en) | 2015-04-23 | 2015-04-23 | Integrating sphere for the in-orbit spectral radiance absolute calibration of remote sensor transmits radiometer |
Publications (2)
Publication Number | Publication Date |
---|---|
CN105157827A true CN105157827A (en) | 2015-12-16 |
CN105157827B CN105157827B (en) | 2017-07-14 |
Family
ID=54798766
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201510197080.9A Active CN105157827B (en) | 2015-04-23 | 2015-04-23 | Integrating sphere for the in-orbit spectral radiance absolute calibration of remote sensor transmits radiometer |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN105157827B (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106352979A (en) * | 2016-08-22 | 2017-01-25 | 中国科学院国家空间科学中心 | Onboard calibration system and method for spaceborne imaging spectrometer |
CN107192404A (en) * | 2017-05-26 | 2017-09-22 | 中国科学院长春光学精密机械与物理研究所 | A kind of many magnitude mechanical structures and the star simulator with the structure |
CN107677366A (en) * | 2017-09-27 | 2018-02-09 | 中国科学院合肥物质科学研究院 | A kind of irradiance meter observation system of Larger Dynamic scope |
CN107907210A (en) * | 2017-12-11 | 2018-04-13 | 中国人民解放军63908部队 | Optical radiation caliberating device |
CN108955885A (en) * | 2018-07-25 | 2018-12-07 | 中国科学院合肥物质科学研究院 | The spectral radiance observation of satellite remote sensor In-flight calibration and method for self-calibrating |
CN111198036A (en) * | 2020-02-17 | 2020-05-26 | 北京理工大学 | Solar radiation calibration system and method for geostationary orbit optical remote sensor |
CN111272276A (en) * | 2020-02-17 | 2020-06-12 | 北京理工大学 | Lunar radiation calibration system and method by earth stationary orbit optical remote sensor |
CN112229506A (en) * | 2020-09-22 | 2021-01-15 | 中国科学院空天信息创新研究院 | Laser testing device for myriawatt-level high-power integrating sphere |
CN112964358A (en) * | 2021-04-22 | 2021-06-15 | 中国计量科学研究院 | High-stability uniform integrating sphere brightness source system based on galvanometer |
CN113296165A (en) * | 2021-06-01 | 2021-08-24 | 中国电子科技集团公司第四十一研究所 | Spaceborne ultraviolet-vacuum ultraviolet band transmission radiation standard and method |
CN113495060A (en) * | 2020-03-19 | 2021-10-12 | 国家卫星气象中心(国家空间天气监测预警中心) | Method and device for transmitting radiation reference between channels |
CN113916733A (en) * | 2020-07-09 | 2022-01-11 | 北京智感度衡科技有限公司 | Sensor and particulate matter detection device |
CN113945279A (en) * | 2021-09-14 | 2022-01-18 | 中国科学院上海技术物理研究所 | Measurement method of aperture factor for solar diffuse reflection calibration of space optical remote sensing instrument |
CN114509396A (en) * | 2022-04-20 | 2022-05-17 | 中国海洋大学 | A device for measuring and identifying marine plankton luminescence |
CN115655670A (en) * | 2022-11-11 | 2023-01-31 | 中国科学院上海技术物理研究所 | Radiation calibration method with wide band and large dynamic range under color-changing temperature integrating sphere light source |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060132760A1 (en) * | 2004-12-22 | 2006-06-22 | Konica Minolta Sensing, Inc. | Calibration source for calibrating spectroradiometer, calibration method using the same, and calibration system |
CN101650225A (en) * | 2009-09-16 | 2010-02-17 | 中国科学院安徽光学精密机械研究所 | Absolute spectral radiance luminance responsivity calibrating system utilizing wide tunable laser |
WO2011064806A2 (en) * | 2009-11-25 | 2011-06-03 | Consiglio Nazionale Delle Ricerche | Method and apparatus for measurements of luminous isotropic radiation as obtained by means of laser spectroscopy techniques, in particular for sub- micrometric particulate measurements |
US20110184678A1 (en) * | 2010-01-25 | 2011-07-28 | Orb Optronix Inc | Automated systems and methods for characterizing light-emitting devices |
CN102486404A (en) * | 2010-12-06 | 2012-06-06 | 中国科学院西安光学精密机械研究所 | Ultraviolet low-light star equal simulation and star equal calibration system |
CN102829868A (en) * | 2012-08-23 | 2012-12-19 | 中国兵器工业第二0五研究所 | Imaging spectrometer absolute radiation calibration method |
CN202770622U (en) * | 2012-08-17 | 2013-03-06 | 中国电子科技集团公司第四十一研究所 | Integrating sphere light source radiation non-uniformity calibration system |
CN103196555A (en) * | 2013-03-14 | 2013-07-10 | 中国科学院安徽光学精密机械研究所 | Spectrum programmable light source system applied to hyper-spectrum calibration |
CN103256977A (en) * | 2013-05-16 | 2013-08-21 | 中国科学院长春光学精密机械与物理研究所 | Radiance calibration method of large visual field optical remote sensing instrument |
CN203824740U (en) * | 2014-05-09 | 2014-09-10 | 安庆师范学院 | High precision spectrum radiation scaling device |
CN104154930A (en) * | 2014-07-14 | 2014-11-19 | 中国科学院长春光学精密机械与物理研究所 | Multi-color-temperature and multi-star-magnitude single-star simulator |
JP2015057591A (en) * | 2013-08-09 | 2015-03-26 | 株式会社島津製作所 | Analytic method and analyzer for concentration of suspended matter in suspension liquid |
-
2015
- 2015-04-23 CN CN201510197080.9A patent/CN105157827B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060132760A1 (en) * | 2004-12-22 | 2006-06-22 | Konica Minolta Sensing, Inc. | Calibration source for calibrating spectroradiometer, calibration method using the same, and calibration system |
CN101650225A (en) * | 2009-09-16 | 2010-02-17 | 中国科学院安徽光学精密机械研究所 | Absolute spectral radiance luminance responsivity calibrating system utilizing wide tunable laser |
WO2011064806A2 (en) * | 2009-11-25 | 2011-06-03 | Consiglio Nazionale Delle Ricerche | Method and apparatus for measurements of luminous isotropic radiation as obtained by means of laser spectroscopy techniques, in particular for sub- micrometric particulate measurements |
US20110184678A1 (en) * | 2010-01-25 | 2011-07-28 | Orb Optronix Inc | Automated systems and methods for characterizing light-emitting devices |
CN102486404A (en) * | 2010-12-06 | 2012-06-06 | 中国科学院西安光学精密机械研究所 | Ultraviolet low-light star equal simulation and star equal calibration system |
CN202770622U (en) * | 2012-08-17 | 2013-03-06 | 中国电子科技集团公司第四十一研究所 | Integrating sphere light source radiation non-uniformity calibration system |
CN102829868A (en) * | 2012-08-23 | 2012-12-19 | 中国兵器工业第二0五研究所 | Imaging spectrometer absolute radiation calibration method |
CN103196555A (en) * | 2013-03-14 | 2013-07-10 | 中国科学院安徽光学精密机械研究所 | Spectrum programmable light source system applied to hyper-spectrum calibration |
CN103256977A (en) * | 2013-05-16 | 2013-08-21 | 中国科学院长春光学精密机械与物理研究所 | Radiance calibration method of large visual field optical remote sensing instrument |
JP2015057591A (en) * | 2013-08-09 | 2015-03-26 | 株式会社島津製作所 | Analytic method and analyzer for concentration of suspended matter in suspension liquid |
CN203824740U (en) * | 2014-05-09 | 2014-09-10 | 安庆师范学院 | High precision spectrum radiation scaling device |
CN104154930A (en) * | 2014-07-14 | 2014-11-19 | 中国科学院长春光学精密机械与物理研究所 | Multi-color-temperature and multi-star-magnitude single-star simulator |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106352979A (en) * | 2016-08-22 | 2017-01-25 | 中国科学院国家空间科学中心 | Onboard calibration system and method for spaceborne imaging spectrometer |
CN107192404B (en) * | 2017-05-26 | 2021-01-05 | 中国科学院长春光学精密机械与物理研究所 | Multi-star equal mechanical structure and star simulator with same |
CN107192404A (en) * | 2017-05-26 | 2017-09-22 | 中国科学院长春光学精密机械与物理研究所 | A kind of many magnitude mechanical structures and the star simulator with the structure |
CN107677366A (en) * | 2017-09-27 | 2018-02-09 | 中国科学院合肥物质科学研究院 | A kind of irradiance meter observation system of Larger Dynamic scope |
CN107907210A (en) * | 2017-12-11 | 2018-04-13 | 中国人民解放军63908部队 | Optical radiation caliberating device |
CN107907210B (en) * | 2017-12-11 | 2023-11-21 | 中国人民解放军63908部队 | Optical radiation calibration device |
CN108955885A (en) * | 2018-07-25 | 2018-12-07 | 中国科学院合肥物质科学研究院 | The spectral radiance observation of satellite remote sensor In-flight calibration and method for self-calibrating |
CN111272276A (en) * | 2020-02-17 | 2020-06-12 | 北京理工大学 | Lunar radiation calibration system and method by earth stationary orbit optical remote sensor |
CN111272276B (en) * | 2020-02-17 | 2021-01-05 | 北京理工大学 | Lunar radiometric calibration system and method for geostationary optical remote sensor |
CN111198036A (en) * | 2020-02-17 | 2020-05-26 | 北京理工大学 | Solar radiation calibration system and method for geostationary orbit optical remote sensor |
CN113495060B (en) * | 2020-03-19 | 2024-08-02 | 国家卫星气象中心(国家空间天气监测预警中心) | Inter-channel radiation reference transmission method and device |
CN113495060A (en) * | 2020-03-19 | 2021-10-12 | 国家卫星气象中心(国家空间天气监测预警中心) | Method and device for transmitting radiation reference between channels |
CN113916733A (en) * | 2020-07-09 | 2022-01-11 | 北京智感度衡科技有限公司 | Sensor and particulate matter detection device |
CN112229506A (en) * | 2020-09-22 | 2021-01-15 | 中国科学院空天信息创新研究院 | Laser testing device for myriawatt-level high-power integrating sphere |
CN112229506B (en) * | 2020-09-22 | 2023-03-24 | 中国科学院空天信息创新研究院 | Laser testing device for myriawatt-level high-power integrating sphere |
CN112964358A (en) * | 2021-04-22 | 2021-06-15 | 中国计量科学研究院 | High-stability uniform integrating sphere brightness source system based on galvanometer |
CN113296165A (en) * | 2021-06-01 | 2021-08-24 | 中国电子科技集团公司第四十一研究所 | Spaceborne ultraviolet-vacuum ultraviolet band transmission radiation standard and method |
CN113945279B (en) * | 2021-09-14 | 2023-09-12 | 中国科学院上海技术物理研究所 | Test method for solar diffuse reflectance calibration aperture factor of space optical remote sensing instruments |
CN113945279A (en) * | 2021-09-14 | 2022-01-18 | 中国科学院上海技术物理研究所 | Measurement method of aperture factor for solar diffuse reflection calibration of space optical remote sensing instrument |
CN114509396B (en) * | 2022-04-20 | 2022-07-29 | 中国海洋大学 | Marine plankton luminescence measurement and recognition device |
CN114509396A (en) * | 2022-04-20 | 2022-05-17 | 中国海洋大学 | A device for measuring and identifying marine plankton luminescence |
CN115655670A (en) * | 2022-11-11 | 2023-01-31 | 中国科学院上海技术物理研究所 | Radiation calibration method with wide band and large dynamic range under color-changing temperature integrating sphere light source |
CN115655670B (en) * | 2022-11-11 | 2025-01-21 | 中国科学院上海技术物理研究所 | A method for radiant calibration with wide band and large dynamic range under variable color temperature integrating sphere light source |
Also Published As
Publication number | Publication date |
---|---|
CN105157827B (en) | 2017-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105157827B (en) | Integrating sphere for the in-orbit spectral radiance absolute calibration of remote sensor transmits radiometer | |
Kameda et al. | Preflight calibration test results for optical navigation camera telescope (ONC-T) onboard the Hayabusa2 spacecraft | |
Fischer et al. | A bolometric millimeter-wave system for observations of anisotropy in the cosmic microwave background radiation on medium angular scales | |
Fulbright et al. | Characterization and performance of the Suomi-NPP/VIIRS solar diffuser stability monitor | |
CN108180999A (en) | Infrared detector absolute response degree robot scaling equipment and method based on laser scanning | |
CN105092055A (en) | Cold cloud target-based weather satellite solar reflection band radiometric calibration method | |
Hinderks et al. | QUaD: a high-resolution cosmic microwave background polarimeter | |
Fox et al. | Traceable radiometry underpinning terrestrial-and helio-studies (TRUTHS) | |
CN114279563B (en) | Portable Radiation Standard Source and Its Radiation Calibration Method for Imaging Spectrometer | |
Piacentini et al. | The BOOMERANG North America Instrument: A Balloon-borne Bolometric Radiometer Optimized for Measurements of Cosmic Background Radiation Anisotropies from 0. 3 to 4 | |
US8217326B1 (en) | Method of calibrating earth, lunar and solar spectrometers | |
Fruck et al. | Instrumentation for comparing night sky quality and atmospheric conditions of CTA site candidates | |
CN103873856A (en) | Self-reflection calibration method for space remote sensor on orbit infrared focal plane | |
CN108120510A (en) | A kind of in-orbit absolute radiation calibration method of optical sensor based on reflection mirror array | |
CN106769895A (en) | A kind of method for demarcating measurement whole atmosphere spectral transmittance | |
CN109238465A (en) | A kind of spectrum calibration system suitable for spaceborne wide spectrum camera | |
Thome et al. | Ultra-portable field transfer radiometer for vicarious calibration of earth imaging sensors | |
CN201600451U (en) | External Calibration Device of Atmospheric Temperature Detector Using Interferometric Aperture Synthesis Technology | |
CN208902265U (en) | Spectral Calibration System for Spaceborne Broadband Cameras | |
Zhi et al. | FengYun-3 B satellite medium resolution spectral imager visible on-board calibrator radiometric output degradation analysis | |
CN113296165A (en) | Spaceborne ultraviolet-vacuum ultraviolet band transmission radiation standard and method | |
Liu et al. | G515, Revisited. I. Stellar Populations and Evidence of Nuclear Activity in A Luminous “E+ A” Galaxy | |
US9297699B1 (en) | Method for using the moon's thermal output to track calibration drifts in instruments on board satellites observing the earth | |
Rao et al. | The scientific objectives of the ASTROSAT mission of ISRO | |
Mueller et al. | Gerb: An Earth radiation budget instrument on second generation Meteosat |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |