CN105153429A - 稻草纤维的一种接枝改性方法 - Google Patents

稻草纤维的一种接枝改性方法 Download PDF

Info

Publication number
CN105153429A
CN105153429A CN201510509119.6A CN201510509119A CN105153429A CN 105153429 A CN105153429 A CN 105153429A CN 201510509119 A CN201510509119 A CN 201510509119A CN 105153429 A CN105153429 A CN 105153429A
Authority
CN
China
Prior art keywords
peg
rice
reaction
straw
rice straw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510509119.6A
Other languages
English (en)
Other versions
CN105153429B (zh
Inventor
黄丹
甄莉莉
王祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201510509119.6A priority Critical patent/CN105153429B/zh
Priority to PCT/CN2015/097221 priority patent/WO2017028413A1/zh
Publication of CN105153429A publication Critical patent/CN105153429A/zh
Application granted granted Critical
Publication of CN105153429B publication Critical patent/CN105153429B/zh
Priority to US15/884,075 priority patent/US10501588B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/28Treatment by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4825Polyethers containing two hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4833Polyethers containing oxyethylene units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6484Polysaccharides and derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/64Macromolecular compounds not provided for by groups C08G18/42 - C08G18/63
    • C08G18/6492Lignin containing materials; Wood resins; Wood tars; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7657Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
    • C08G18/7664Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
    • C08G18/7671Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H8/00Macromolecular compounds derived from lignocellulosic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2397/00Characterised by the use of lignin-containing materials
    • C08J2397/02Lignocellulosic material, e.g. wood, straw or bagasse

Abstract

本发明涉及一种利用稻草接枝聚乙二醇(PEG)制备热塑性聚合物的工艺。经粉碎、预处理后的稻草粉,在超声微波协同作用下首先与二异氰酸酯反应60min,然后加入一定比例的PEG,继续反应70min,制得稻草/PEG接枝聚合物。本发明的优点是稻草纤维的预处理和接枝反应的全过程中采用了一种绿色高效的超声-微波协同作用技术,提高了稻草纤维改性反应的可及度和接枝改性反应效果;通过二异氰酸酯的桥接在稻草纤维上接枝了PEG,很好地改善了稻草纤维的热性能,赋予了稻草纤维热塑性。该改性稻草纤维能在不添加增塑剂的情况下热压制得自增强复合材料,克服了传统秸秆废弃物再利用方法的浪费和污染问题,实现了秸秆全利用的目的。

Description

稻草纤维的一种接枝改性方法
所属技术领域
本发明属于生物质资源再利用领域,特别涉及一种稻草秸秆全利用使其具有热塑性的改性方法。
背景技术
稻草等秸秆是年生长农作物的剩余物,资源丰富。其主要化学成分为纤维素、半纤维素和木质素。纤维素表面有大量羟基,易吸水,易形成分子内和分子间氢键,在分子链间侧向缔合成一定的结晶格子,具有高结晶度(60%~70%)的纤维素周围是由半纤维素和三维网状结构的木质素大分子经化学结合而成的母体填充包围而成为增强结构体。故秸秆纤维的熔点远高于其分解温度,难溶、难熔,不具备流延加工和熔融加工性能。使其在材料化应用中受到了很大的限制,通常仅被用于复合材料中的增强体或填充体。而复合材料中大量使用的热塑性或热固性树脂类石化产品不仅不能生物降解,而且有相当多的在秸秆复合材料的生产和使用过程中会释放致癌物甲醛,危害人体健康。虽然目前已有报道使用可再生的天然高分子胶黏剂,如淀粉、大豆蛋白等,这些胶黏剂具有易得、价廉、可降解等优点,但共同的缺陷是胶合强度低、耐水性和储存稳定性差以及易潮解霉变,因此需对其进行改性和加入化学添加剂。如为了改善淀粉的耐水性,采用与脲醛树脂、酚醛树脂等共混改性或用甲醛作为交联剂与淀粉分子交联形成多维网络结构的方法,这样又引入了甲醛有毒物质,有违使用淀粉胶黏剂的初衷。因此,近年来研究和开发绿色环保和可持续发展的秸秆复合材料受到了人们的广泛关注。
本发明的目的是对稻草秸秆纤维(ricestraw,简写为RS)进行热塑化改性。通过二异氰酸酯的桥接在稻草纤维上接枝PEG,制备稻草纤维/PEG接枝高分子化合物,并采用了超声-微波协同合成技术。通过在稻草纤维上引入聚乙二醇柔性链段,使稻草的聚集状态发生改变,热性能明显改善,开发一种全生物质利用的方法。
发明内容
本发明的目的是针对稻草秸秆这种产量比较大的农作物副产物,开发了一种稻草秸秆转换为稻草纤维/PEG接枝高分子化合物的方法,从而能大大提高秸秆产品的附加值,克服了传统秸秆再利用方法浪费和污染的缺点。
本发明提供的一种稻草纤维接枝PEG的热塑性改性方法,包括以下步骤:
1、稻草的预处理
1)稻草粉末制备:用FZ-102微型粉碎机把成束整株稻草粉碎至20~60目,清水浸泡24h,乙醇和去离子水各清洗2遍,主要去除稻草中混杂的泥土。然后抽滤,放入真空干燥箱烘干,备用。
2)高温预处理法:称取8g洗涤过后的稻草粉加入反应釜,加入100mLH2O,在160℃,一个大气压处理1h。处理后的稻草纤维分别用水、乙醇交替洗涤,抽滤,80℃真空干燥。
3)微波预处理法:称取8g洗涤过后的稻草粉加入三口烧瓶中,加入DMSO作溶剂,在60℃,微波功率分别为100、200、300和400W下,处理1-2h。处理后的稻草纤维用乙醇和去离子水洗净,80℃真空烘干。
4)超声预处理法:称取8g洗涤过后的稻草粉加入特制三口烧瓶中,加入DMSO作溶剂,液面没过超声波探头1cm~2cm,在60℃,超声功率分别为300、400、500、600、700和800w处理1h。处理后的稻草纤维用乙醇和去离子水洗净,80℃真空烘干。
5)超声-微波协同预处理法:称取8g洗涤过后的稻草粉加入特制三口烧瓶中,加入DMSO作溶剂,液面没过超声波探头1cm~2cm,在微波功率100、200W,超声波功率300、400、500W下,温度60℃、处理1h。用乙醇和去离子水洗净,80℃真空烘干。
预处理后的稻草粉用红外光谱、扫描电子显微镜和XRD进行了表征。测定了预处理前后稻草粉中综纤维素、木质素和纤维素的含量。表征结果显示最佳的预处理方法是60℃下超声(300W)-微波(100W)协同处理60min。预处理后稻草粉中综纤维素、木质素和纤维素分别为61.23%、15.93%和41.77%。
2、稻草纤维接枝PEG
1)称取一定量严格干燥的预处理稻草粉于三口烧瓶中,加入适量的无水DMSO(以超声变幅杆头没过液面1~2cm为准)和适量的二异氰酸酯(TDI、MDI),通N2除氧,设置微波功率(250,300,350,400W)、超声功率(180,270,360,450W)、温度(60℃)、时间(50,60,70,80min),将二异氰酸酯的一端连接到稻草纤维的羟基上形成酰胺键,分别制得RS-TDI和RS-MDI。
2)在上述反应体系中加入适量的PEG,设置微波功率(250,300,350,400w)、超声功率(270,360,450,540W),在60℃接枝反应一定时间(50,60,70,80min),二异氰酸酯的另一端与PEG反应,分别生成RS-TDI-PEG和RS-MDI-PEG高聚物。
3)反应结束,反应产物倒入适量的乙醇(出现白色浑浊为准)中,静置沉淀半小时,去除上层乳浊液,抽滤,乙醇清洗2遍,去离子水清洗2遍,抽滤,80℃真空干燥12h得粗产物。
4)粗产物用索氏提取器于120℃甲苯中抽提12h,抽提后,先后用无水乙醇和去离子水清洗,80℃真空干燥12h,得稻草纤维接枝PEG的高分子化合物,称重。根据下式分别计算接枝度和增重率
D G ( % ) = M 1 - M M × 100 W t ( % ) = M 1 - M M 1 × 100
式中DG——接枝度,%
Wt——增重率,%
M——接枝前稻草纤维的质量,g
M1——接枝后稻草纤维的质量,g
考察了微波功率、超声功率、反应时间以及反应物用量对接枝效果的影响,表1列出了通过MDI桥接化合物稻草纤维接枝PEG的结果。
获得高效接枝稻草纤维的工艺参数为:PEG与稻草纤维的质量比=1:2.0,二异氰酸酯与PEG的摩尔比为1:1,稻草与二异氰酸酯反应阶段(第一步反应)的微波功率为300W、超声功率为270W,60℃反应60min;RS-MDI(或RS-TDI)与PEG反应阶段的微波功率为300W,超声波功率为360W,60℃反应70min。
PEG接枝改性后的稻草纤维具有好的热塑性,在不添加任何物质的情况下,热压机(Carver热压机,美国CARVER公司)热压温度为180℃,压力为10MPa,热压5min,最后冷却得到自增强复合材料,见图1。
表1反应条件对PEG接枝稻草纤维效果的影响
注:MDI和PEG的摩尔比为1:1.
附图说明
图1PEG接枝改性稻草纤维热压板
具体实施例
实例1:称取8g洗涤过后的稻草粉加入特制三口烧瓶中,加入适量DMSO作溶剂,液面没过超声波探头1cm~2cm,在60℃下超声(300W)-微波(100W)协同处理60min。处理过后的稻草纤维,用乙醇和去离子水洗净,80℃真空烘干。
取上述预处理过的稻草3.0g,加入适量的无水DMSO(以超声变幅杆头没过液面1~2cm为准)和3.75gMDI,通N2除氧,在微波功率300W、超声功率270W、60℃下反应60,min;在该反应体系中加入6.0gPEG-400,设置微波功率300W、超声功率360W,在60℃接枝反应70min。反应结束后,产物倒入适量乙醇的烧杯中,静置、沉淀去除上层乳浊液(未接枝到稻草纤维上的PEG、MDI与PEG反应物、MDI自聚物等),抽滤,乙醇和去离子水各清洗2遍,抽滤,80℃真空干燥12h得粗产物。粗产物用索氏提取器于120℃甲苯中抽提12h,提取物先后用无水乙醇和去离子水清洗,80℃真空干燥12h,得稻草纤维接枝PEG聚合物(RS-MDI-PEG)4.280g(接枝度:42.7%,增重率:29.9%)。在无任何添加剂的情况下,热压机(Carver热压机,美国CARVER公司)热压温度为180℃,压力为10MPa,热压5min,最后冷却得到自增强复合材料。
实例2:称取5g洗涤过后的稻草粉加入特制三口烧瓶中,加入适量DMSO作溶剂,液面没过超声波探头1cm~2cm,在60℃下超声(300W)-微波(100W)协同处理60min。处理过后的稻草纤维,用乙醇和去离子水洗净,80℃真空烘干。
取上述预处理过的稻草3.0g,加入适量的无水DMSO(以超声变幅杆头没过液面1~2cm为准)和3.75gMDI,通N2除氧,在微波功率300W、超声功率270W、60℃下反应60,min;在该反应体系中加入6.0gPEG-400,设置微波功率300W、超声功率360W,在60℃接枝反应70。反应结束后,产物倒入适量无水乙醇的烧杯中,静置、沉淀去除上层乳浊液(未接枝到稻草纤维上的PEG、MDI与PEG反应物、MDI自聚物等),抽滤,无水乙醇清洗2遍,去离子水清洗2遍,抽滤,80℃真空干燥12h得粗产物。粗产物用索氏提取器于120℃甲苯中抽提12h,提取物先后用无水乙醇和去离子水清洗,80℃真空干燥12h,得稻草纤维接枝PEG聚合物(RS-MDI-PEG)4.275g(接枝度:42.5%,增重率:29.8%)。在无任何添加剂的情况下,热压机(Carver热压机,美国CARVER公司)热压温度为180℃,压力为10MPa,热压5min,最后冷却得到自增强复合材料。
实例3:称取5g洗涤过后的稻草粉加入特制三口烧瓶中,加入适量DMSO作溶剂,液面没过超声波探头1cm~2cm,在60℃下超声(300W)-微波(100W)协同处理60min。处理过后的稻草纤维,用乙醇和去离子水洗净,80℃真空烘干。
取上述预处理过的稻草3.0g,加入适量的无水DMSO(以超声变幅杆头没过液面1~2cm为准)和2.61gTDI,通N2除氧,在微波功率300W、超声功率270W、60℃下反应60,min;在该反应体系中加入6.0gPEG-400,设置微波功率300W、超声功率360W,在60℃接枝反应70。反应结束后,产物倒入适量无水乙醇的烧杯中,静置、沉淀去除上层乳浊液(未接枝到稻草纤维上的PEG、TDI与PEG反应物、TDI自聚物等),抽滤,无水乙醇清洗2遍,去离子水清洗2遍,抽滤,80℃真空干燥12h得粗产物。粗产物用索氏提取器于120℃甲苯中抽提12h,提取物先后用无水乙醇和去离子水清洗,80℃真空干燥12h,得稻草纤维接枝PEG聚合物(RS-TDI-PEG)4.261g(接枝度:42.0%,增重率:29.6%)。在无任何添加剂的情况下,热压机(Carver热压机,美国CARVER公司)热压温度为180℃,压力为10MPa,热压5min,最后冷却得到自增强复合材料。
实例4:称取5g洗涤过后的稻草粉加入特制三口烧瓶中,加入适量DMSO作溶剂,液面没过超声波探头1cm~2cm,在60℃下超声(300W)-微波(100W)协同处理60min。处理过后的稻草纤维,用乙醇和去离子水洗净,80℃真空烘干。
取上述预处理过的稻草3.0g,加入适量的无水DMSO(以超声变幅杆头没过液面1~2cm为准)和2.612gTDI,通N2除氧,在微波功率300W、超声功率270W、60℃下反应60,min;在该反应体系中加入6.0gPEG-400,设置微波功率300W、超声功率360W,在60℃接枝反应70。反应结束后,产物倒入适量无水乙醇的烧杯中,静置、沉淀去除上层乳浊液(未接枝到稻草纤维上的PEG、TDI与PEG反应物、TDI自聚物等),抽滤,无水乙醇清洗2遍,去离子水清洗2遍,抽滤,80℃真空干燥12h得粗产物。粗产物用索氏提取器于120℃甲苯中抽提12h,提取物先后用无水乙醇和去离子水清洗,80℃真空干燥12h,得稻草纤维接枝PEG聚合物(RS-TDI-PEG)4.30g(接枝度:43.3%,增重率:30.2%)。在无任何添加剂的情况下,热压机(Carver热压机,美国CARVER公司)热压温度为180℃,压力为10MPa,热压5min,最后冷却得到自增强复合材料。

Claims (3)

1.一种稻草纤维接枝聚乙二醇(PEG)改性的方法,其特征为:
①稻草预处理工艺:将经粉碎、水浸泡,洗涤、烘干后的20~60目的稻草秸秆粉末加入DMSO中,在60℃下超声(300W)-微波(100W)协同处理60min,然后分别用乙醇和水洗净后,真空干燥;
②稻草纤维与二异氰酸酯的接枝工艺:取适量预处理后的干燥的稻草纤维粉于三口烧瓶中,加入无水DMSO,通氮除氧处理后,加入二异氰酸酯,设置微波功率250-400W、超声功率180-450W,温度60℃,反应10-80min;
③接枝PEG工艺:在上述反应体系中加入适量的PEG,设置微波功率250-400W、超声功率270-540W,在60℃接枝反应50-80min;反应结束后的混合物倒入适量无水乙醇中,静置、沉淀、分离去除上层乳浊液,抽滤,滤渣用无水乙醇和去离子水各洗2遍,抽滤,获PEG接枝改性稻草纤维粗产物,80℃真空干燥12h;随后,该粗产物在120℃甲苯中索氏抽提12h,经纯化干燥后得稻草纤维接枝PEG聚合物。
2.按照权利要求1所述的稻草纤维接枝PEG改性的方法,其特征为:②所用的二异氰酸酯为TDI和MDI,其用量与后续所用PEG的摩尔比为1:1,超声-微波功率分别为270W和300W,反应温度为60℃,反应时间为60min。
3.按照权利要求1所述的稻草纤维接枝PEG改性的方法,其特征为:③稻草纤维与PEG的质量比为1:2,超声-微波功率分别为360W和300W,反应温度为60℃,反应时间为70min;合成的稻草纤维PEG接枝聚合物RS-MDI-PEG和RS-TDI-PEG的接枝度分别为42.5-42.7%和42.0-43.3%,其具有好的热塑性,在无任何添加剂的情况下,能热压成型,实现了全生物质利用。
CN201510509119.6A 2015-08-18 2015-08-18 稻草纤维的一种接枝改性方法 Active CN105153429B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510509119.6A CN105153429B (zh) 2015-08-18 2015-08-18 稻草纤维的一种接枝改性方法
PCT/CN2015/097221 WO2017028413A1 (zh) 2015-08-18 2015-12-13 稻草纤维的一种接枝改性方法
US15/884,075 US10501588B2 (en) 2015-08-18 2018-01-30 Grafting method for rice straw fiber modification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510509119.6A CN105153429B (zh) 2015-08-18 2015-08-18 稻草纤维的一种接枝改性方法

Publications (2)

Publication Number Publication Date
CN105153429A true CN105153429A (zh) 2015-12-16
CN105153429B CN105153429B (zh) 2017-12-19

Family

ID=54794500

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510509119.6A Active CN105153429B (zh) 2015-08-18 2015-08-18 稻草纤维的一种接枝改性方法

Country Status (3)

Country Link
US (1) US10501588B2 (zh)
CN (1) CN105153429B (zh)
WO (1) WO2017028413A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112778494A (zh) * 2021-01-26 2021-05-11 安徽博琛生物科技有限公司 一种多纤维复合可降解环保餐具及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662108B (zh) * 2020-12-23 2023-08-15 安徽绿之态秸秆制品有限公司 一种晶须增强秸秆纤维环保家具材料及家具
CN115403900B (zh) * 2022-07-04 2023-06-23 四川轻化工大学 一种制备生物质聚对苯二甲酸乙二醇酯复合材料的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5485895A (en) * 1994-10-07 1996-01-23 Mobil Oil Corporation Multi-phase lubricant process for lubricating with multi-phase lubricants
CN102050922A (zh) * 2009-10-30 2011-05-11 成都海旺科技有限责任公司 超声微波法合成的丙烯酸甲酯接枝淀粉浆料
CN103421214A (zh) * 2013-07-04 2013-12-04 南京林业大学 一种通过c6位氧化制备农作物秸秆增强淀粉塑料的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3519581A (en) * 1967-01-13 1970-07-07 Westvaco Corp Method of producing synthetic lignin-polyisocyanate resin
AU2003228845A1 (en) * 2002-05-03 2003-11-17 Huntsman International Llc Lignocellulosic composites, adhesive systems, and process
AU2003261191A1 (en) * 2002-07-26 2004-02-16 Regents Of The University Of Minnesota Methods for producing biopolymers
US7867359B2 (en) * 2008-04-30 2011-01-11 Xyleco, Inc. Functionalizing cellulosic and lignocellulosic materials
CN101280049B (zh) * 2008-05-22 2010-04-21 昆明理工大学 以麦秆为原料的降解聚氨酯泡沫材料及其制备方法
CN104960064B (zh) * 2008-07-25 2018-08-10 巴斯夫欧洲公司 木质纤维产品及其制备方法
CN101949103B (zh) * 2010-10-08 2012-07-04 东北林业大学 一种秸秆微纳米纤维素的制备方法
CN103965485B (zh) * 2014-05-20 2016-08-24 淮阴师范学院 稻秆的液化方法及其液化产物合成聚氨酯弹性体的方法
EP3177662A1 (en) * 2014-08-08 2017-06-14 Basf Se Continuous process for forming a unitary mat
CN104479101A (zh) * 2014-12-31 2015-04-01 海南大学 一种以水稻秸秆为原料直接制备聚氨酯泡沫的方法及制备的聚氨酯泡沫
CN104530383A (zh) * 2014-12-31 2015-04-22 海南大学 一种由水稻秸秆制备聚氨酯泡沫的方法及制备的聚氨酯泡沫
CN104892958B (zh) * 2015-05-14 2017-06-30 中国石油大学(华东) 含稻壳基多元醇的稻壳基聚氨酯胶黏剂及其制备方法
KR20180002125A (ko) * 2016-06-28 2018-01-08 경희대학교 산학협력단 부탄다이올 용매열 액화 반응을 통한 리그닌 부산물 유래 바이오폴리올의 제조 및 바이오폴리우레탄의 합성
CN106220820A (zh) * 2016-08-20 2016-12-14 谢裕梦 一种木质纤维素的均匀分散方法
CN109021797A (zh) * 2018-06-22 2018-12-18 安徽快来防水防腐有限公司 一种防腐阻燃聚天门冬氨酸聚脲防水涂料及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5485895A (en) * 1994-10-07 1996-01-23 Mobil Oil Corporation Multi-phase lubricant process for lubricating with multi-phase lubricants
CN102050922A (zh) * 2009-10-30 2011-05-11 成都海旺科技有限责任公司 超声微波法合成的丙烯酸甲酯接枝淀粉浆料
CN103421214A (zh) * 2013-07-04 2013-12-04 南京林业大学 一种通过c6位氧化制备农作物秸秆增强淀粉塑料的方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
吕社辉等: "聚乙二醇-纤维素接枝物的合成与表征", 《高分子材料科学与工程》 *
孙广志: "ε-己内酯改性稻草纤维的制备、性能及其应用研究", 《江南大学硕士学位论文》 *
孙广志等: "超声-微波共辐射法合成纤维素-MMA", 《化工学报》 *
邓文键等: "纤维素热塑性改性研究进展", 《化工时刊》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112778494A (zh) * 2021-01-26 2021-05-11 安徽博琛生物科技有限公司 一种多纤维复合可降解环保餐具及其制备方法

Also Published As

Publication number Publication date
US10501588B2 (en) 2019-12-10
US20180148550A1 (en) 2018-05-31
WO2017028413A1 (zh) 2017-02-23
CN105153429B (zh) 2017-12-19

Similar Documents

Publication Publication Date Title
CN104404803B (zh) 秸秆组分分离及秸秆组分全利用的方法
EP2421912B1 (en) Fractionation of biomass for cellulosic ethanol and chemical production
Moubarik et al. Structural and thermal characterization of Moroccan sugar cane bagasse cellulose fibers and their applications as a reinforcing agent in low density polyethylene
CN101855368B (zh) 糖产品制备方法
Megiatto, Jr et al. Sisal fibers: surface chemical modification using reagent obtained from a renewable source; characterization of hemicellulose and lignin as model study
Li et al. Chemical structure of hemicellulosic polymers isolated from bamboo bio‐composite during mold pressing
Yan et al. Fractionation of lignin from eucalyptus bark using amine-sulfonate functionalized ionic liquids
Gosselink et al. Effect of periodate on lignin for wood adhesive application
CN105482128B (zh) 一种提取功能化木质素的方法
CN106917309B (zh) 一种玉米秸穰纤维素速成膜的制备方法
CN110055796B (zh) 一种微纳米木质素纤维素及其制备方法和用途
CN109826044B (zh) 棉杆中纤维素、半纤维素、木质素的分离方法
CN108179646A (zh) 用植物纤维原料生产木糖、高沸醇木质素及纤维的方法
CN105153429A (zh) 稻草纤维的一种接枝改性方法
Gou et al. Environmentally friendly method for the separation of cellulose from steam-exploded rice straw and its high-value applications
Zhang et al. Structure elucidation and properties of different lignins isolated from acorn shell of Quercus variabilis Bl.
CN111472186B (zh) 一种水热预处理制备优质农作物秸秆溶解浆的方法
Ghosh et al. An Integrated Approach for Hemicellulose Extraction from Forest Residue.
Xu et al. Successive fractionations of hemicelluloses and lignin from sorghum stem by sodium hydroxide aqueous solutions with increased concentrations
CN106835791A (zh) 一种用棉秸秆制备纤维材料的方法
CN107880502A (zh) 一种生物全降解塑料及其制备方法
CN104164800A (zh) 用香蕉茎秆制作可降解材料的制备方法
CN106906521A (zh) 一种紫菜提取物纤维的制造方法
CN105779525A (zh) 离子液体与碱液联合预处理生物质的方法
CN103159865B (zh) 半纤维素及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant