CN105153401B - 荧光金纳米团簇及其水性聚氨酯模板法制备方法 - Google Patents

荧光金纳米团簇及其水性聚氨酯模板法制备方法 Download PDF

Info

Publication number
CN105153401B
CN105153401B CN201510669398.2A CN201510669398A CN105153401B CN 105153401 B CN105153401 B CN 105153401B CN 201510669398 A CN201510669398 A CN 201510669398A CN 105153401 B CN105153401 B CN 105153401B
Authority
CN
China
Prior art keywords
gold nano
nano cluster
chain extender
diisocyanate
cluster
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510669398.2A
Other languages
English (en)
Other versions
CN105153401A (zh
Inventor
刘向阳
于芳芳
林乃波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen University
Original Assignee
Xiamen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen University filed Critical Xiamen University
Priority to CN201510669398.2A priority Critical patent/CN105153401B/zh
Publication of CN105153401A publication Critical patent/CN105153401A/zh
Application granted granted Critical
Publication of CN105153401B publication Critical patent/CN105153401B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/83Chemically modified polymers
    • C08G18/834Chemically modified polymers by compounds containing a thiol group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3203Polyhydroxy compounds
    • C08G18/3206Polyhydroxy compounds aliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/34Carboxylic acids; Esters thereof with monohydroxyl compounds
    • C08G18/348Hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6674Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/6692Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/34
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/94Applications in sensors, e.g. biosensors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • C08J2375/04Polyurethanes
    • C08J2375/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0831Gold

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

荧光金纳米团簇及其水性聚氨酯模板法制备方法,涉及一种纳米材料及其制备方法。荧光型金纳米团簇,原料组成为:二异氰酸酯、二元醇、有机锡类催化剂、亲水扩链剂、小分子扩链剂、巯基乙醇、浓度10Mm/L氯金酸丙酮溶液、调节荧光型金纳米团簇的PH=11~13的氢氧化钠,余为水。将二元醇、亲水扩链剂干燥,将其他的预聚单体干燥;将脱水处理的二元醇、二异氰酸酯、亲水扩链剂按比例加入到四口烧瓶中,在氮气保护下反应;待反应体系降温后,加入小分子扩链剂和巯基乙醇反应;待预聚物降至室温,加入氯金酸,加入NaOH溶液调节反应物的pH=11~13,室温下反应≥12h;加入去离子水进行乳化,得荧光纳米金团簇。

Description

荧光金纳米团簇及其水性聚氨酯模板法制备方法
技术领域
本发明涉及一种纳米材料及其制备方法,尤其是涉及一种以经过高分子修饰的荧光金纳米团簇及其水性聚氨酯模板制备方法。
背景技术
金纳米团簇(Gold nanocluters,AuNCs)通常是指在一定分子层保护下,由几个到几百个金原子组成、尺寸小于2nm的分子聚集体,是原子和纳米颗粒的联系纽带。近年来,由于金纳米簇的荧光稳定性好、抗光漂白作用强、毒性小、生物相容性好、生物安全性高、荧光量子产率高、并且简单易制备等优点已成为分析科学和生命学科等领域的研究和应用热点。同时,金纳米团簇因其独特的电子结构和特别的物理、化学性质,广泛应用于生物标记、生化传感、单分子成像及光学成像研究等领域。金纳米团簇(AuNCs)是基于蛋白质或者硫醇类化合物等有机单分子模板而制备得到的。
聚氨酯是聚氨基甲酸酯的简称,英文名称是polyurethane,它是一种高分子材料。聚氨酯是由聚物多元醇与异氰酸酯反应,再经扩链交联反应而制备的一种新兴的有机高分子材料。而水性聚氨酯(WPU)是以水代替有机溶剂作为分散介质的新型聚氨酯体系,也称水分散聚氨酯、水系聚氨酯或水基聚氨酯。水性聚氨酯因以水为溶剂,无污染、安全可靠、机械性能优良、相容性好、易于改性等优点而被广泛应用于轻工、化工、电子、纺织、医疗、建筑、建材、汽车、国防、航天、航空等众多领域。在聚氨酯制备过程中,原料中的许多活性基团会被引入到聚氨酯的分子链上,如-OH、-NCO、C=C、-COOH,再辅以人为设计,通过一些合理的化学反应可以将许多功能化的分子连接到聚氨酯分子链上,从而赋予了聚氨酯一些新的功能。基于上述,本发明在不破坏聚氨酯链的主体结构的前提下,将硫醇分子引入到分子链上,仿照蛋白质为模板制备金纳米团簇的方法,在聚氨酯中制备荧光型的金纳米团簇,不仅开拓了聚氨酯的应用市场,还赋予了聚氨酯荧光性,具有广泛的应用前景。
如中国专利CN 104759636A公布了一种利用山楂籽提取液作为分散剂和生物还原剂制备纳米金的方法。该方法在常压下进行,设备简单,成本低、易于操作,但是该发明中制备的是纳米金粒子,不是纳米金团簇。2008年,研究小组通过聚合物的分子设计向分子中引入巯基,利用含巯基的高分子聚合物和谷胱甘肽为共同的模板,制备硫醇保护的金纳米团簇(R P,Hu M,Qian L,et al.Gold nanoparticle size controlled bypolymeric Au(I)thiolate precursor size[J].Journal of the American ChemicalSociety,2008,130(3):975-982.)。2009年,Xie研究小组在碱性条件(pH>12.0)下,首次以牛血清蛋白为模板合成了QYs为6.0%的BSA-Au25NCs,其中,BSA不仅可以稳定金离子,而且可以通过BSA中酪氨酸残基与金离子发生氧化还原反应而还原金离子(Xie J,Zheng Y,Ying J Y.Protein-directed synthesis of highly fluorescent gold nanoclusters[J].Journal of the American Chemical Society,2009,131(3):888-889.)。2012年,Luo研究小组以鸡蛋清蛋白为模板合成了金纳米团簇(Luo Z,Yuan X,Yu Y,et al.Fromaggregation-induced emission of Au(I)–thiolate complexes to ultrabright Au(0)@Au(I)–thiolate core–shell nanoclusters[J].Journal of the AmericanChemical Society,2012,134(40):16662-16670.)。
发明内容
本发明的目的在提供一种具有较强的光致发光效应,可广泛应用在传感器、金属离子检测、生物显影,生物检测,药物追踪,化学检测等方面的荧光金纳米团簇及其水性聚氨酯模板法制备方法。
为实现上述目的,本发明通过以下技术方案予以实现:
荧光型金纳米团簇,其制备原料组成按质量百分比为:二异氰酸酯17%~30%,二元醇62%~73%,有机锡类催化剂0.04%~0.06%,亲水扩链剂4%~5%,小分子扩链剂3.8%~4.2%,巯基乙醇1.7%~2.6%,浓度10Mm/L氯金酸丙酮溶液3.2%~4.2%,调节荧光型金纳米团簇的PH=11~13的氢氧化钠,余为水;
所述二异氰酸酯与二元醇的摩尔比为(2~4):1。
所述有机锡类催化剂可为二月桂酸二丁基锡、辛酸亚锡中的至少一种。
所述二异氰酸酯可为异佛尔酮二异氰酸酯(IPDI)、甲苯二异氰酸酯(TDI)、4,4-亚甲基-二苯基二异氰酸酯(MDI)、六亚甲基二异氰酸酯(HDI)、4,4-亚甲基-二环己基二异氰酸酯(H12MDI)中的至少一种。
所述二元醇可为聚丙二醇(PPG)、聚乙二醇(PEG)、聚四氢呋喃二醇(PTMG)、聚己二酸1,6-己二醇酯、聚碳酸酯、聚丁二烯二醇中的至少一种,分子量为1500~2500。
所述亲水扩链剂可有磺酸型和羧酸型,可为1,2-二羟基-3-丙磺酸钠、二羟甲基丙酸、二羟甲基丁酸中的至少一种。这里优选二羟甲基丙酸。
所述小分子扩链剂可为一缩二乙二醇、1,4-丁二醇(BDO)、聚醚改性氢醌(HQEE)、环己烷二甲醇、甲基丙二醇、乙二胺和异佛尔酮二胺中的至少一种;这里优选1,4-丁二醇。
所述巯基乙醇作为硫醇基团的载体。
所述氢氧化钠水溶液的浓度可为1~3mol/L。
荧光金纳米团簇的水性聚氨酯模板法制备方法,所述荧光金纳米团簇为上述荧光金纳米团簇,所述制备方法包括以下步骤:
a.将二元醇、亲水扩链剂置于真空烘箱中干燥,将其他的预聚单体加入分子筛进行干燥;
所述真空烘箱的温度可为100~120℃;所述干燥的时间可为3~5h;所述分子筛可为4A分子筛;所述分子筛干燥的时间可为24h以上。
b.将脱水处理的二元醇、二异氰酸酯、亲水扩链剂按比例加入到四口烧瓶中,在氮气保护下,继续反应;
所述升温的温度可至70~80℃,所述继续反应的时间可为3~4h。
c.待反应体系降温后,加入小分子扩链剂和巯基乙醇,继续进行反应,此过程用丙酮降粘;
所述下降温度为50~60℃,所述继续反应时间2~3h。
d.待预聚物降至室温,加入氯金酸,充分搅拌30min以上;
e.加入NaOH溶液调节反应物的PH=11~13,室温下反应≥12h;
f.在剧烈搅拌下,缓慢加入经冷藏处理的去离子水进行乳化,得到水性聚氨酯模板法制备的纳米金团簇。
所述剧烈搅拌的搅拌速度可为1700~2000r/min,所述乳化时间为10min以上。
与现有技术比较,本发明具有如下突出优点:
利用水性聚氨酯为模板制备金纳米团簇的方法,由于金(Au)和硫(S)之间强烈的作用和反应能力使得巯基化合物非常适用于制备金纳米团簇。该发明利用这一性质,通过对聚氨酯分子链的设计,将硫醇分子接枝到聚氨酯分子链上,建立以硫醇型聚氨酯作为合成金纳米团簇的保护剂和还原剂还原氯金酸,原位合成硫醇型聚氨酯保护的强荧光金纳米团簇。
根据本发明通过水性聚氨酯模板法制备的荧光型金纳米团簇具有较强的光致发光效应,因此该发明可以广泛的应用在传感器、金属离子检测、生物显影,生物检测,药物追踪,化学检测等方面。
附图说明
图1为实施例1通过水性聚氨酯模板法制备的荧光型金纳米团簇的TEM图。在图1中,图的刻度尺为5nm。
图2为实施例2通过水性聚氨酯模板法制备的荧光型金纳米团簇的紫外-近红外吸收光谱。在图2中,横坐标为波长(单位:nm);纵坐标为吸光度。
图3为实施例3通过水性聚氨酯模板法制备的荧光型金纳米团簇的荧光光谱。在图3中,横坐标为发射光波长(单位:nm);纵坐标为发射光的强度(单位:a.u.)。
具体实施方式
下面通过具体实施例对本发明作进一步解释说明:
实施例1
采用本发明方法制备金纳米簇。(1)按照IPDI 17%,PTMG 71%的比例加入到烧瓶中,再将质量百分数为4%的二羟甲基丙酸加入到四口烧瓶中,在氮气保护下,升温至85℃加入0.04%二月桂酸二丁基锡,继续反应4h;(2)将反应体系降温至60℃,加入3.8%的1,4-丁二醇和1.7%巯基乙醇,恒温反应3h,此过程用少量丙酮降粘;(3)待预聚物降至室温,按照3.4%加入配制的氯金酸-丙酮溶液,充分搅拌半h;用1mol/L NaOH溶液调节反应物的PH=12,室温下反应12h;(4)在1700r/min搅拌速度下,缓慢加入冷却的去离子水(固含量为40%),乳化15min,得到水性聚氨酯模板法制备的荧光型金纳米团簇。
参见图1可知,本实施例中通过水性聚氨酯模板法制备的荧光型金纳米团簇的粒径在2~3nm。
实施例2
采用本发明方法制备金纳米簇。(1)按照IPDI 30%,PTMG 55%的比例加入到四口烧瓶中,再将质量百分数为4.5%的二羟甲基丙酸加入到四口烧瓶中,在氮气保护下,升温至90℃加入0.05%二月桂酸二丁基锡,继续反应4h;(2)将反应体系降温至60℃,加入4%的1,4-丁二醇和2.3%巯基乙醇,恒温反应3h,此过程用少量丙酮降粘;(3)待预聚物降至室温,按照4.2%的量加入配制的氯金酸-丙酮溶液,充分搅拌半h;加入2mol/L NaOH溶液调节反应物的PH=13,室温下反应14h;(4)在1700r/min搅拌速度下,缓慢加入冷却的去离子水(固含量为40%),乳化15min,得到水性聚氨酯模板法制备的荧光型金纳米团簇。
参见图2可知,通过水性聚氨酯模板法制备的荧光型金纳米团簇的光学性能与金颗粒明显不同,图2是典型的金纳米团簇的紫外吸收光谱。
实施例3
采用本发明方法制备金纳米簇。(1)按照IPDI 25%,PTMG 60%的比例加入到四口烧瓶中,再将质量百分数为5%的二羟甲基丙酸加入到四口烧瓶中,在氮气保护下,升温至90℃加入0.06%二月桂酸二丁基锡,继续反应4h;(2)将反应体系降温至60℃,加入4.2%的1,4-丁二醇和2.6%巯基乙醇,恒温反应3h,此过程用少量丙酮降粘;(3)待预聚物降至室温,按照3.2%的浓度值加入配制的氯金酸-丙酮溶液,充分搅拌半h;加入3mol/L NaOH溶液调节反应物的PH=11,室温下反应18h;(4)在1700r/min搅拌速度下,缓慢加入冷却的去离子水(固含量为40%),乳化15min,得到水性聚氨酯模板法制备的金纳米团簇。
参见图3,可以看到通过水性聚氨酯模板法制备的荧光型金纳米团簇的发射波波长在700nm左右,并且表现出很高的荧光强度。
实施例4
采用本发明方法制备金纳米簇。(1)按照IPDI 25%,PTMG 60%的比例加入到四口烧瓶中,再将质量百分数为4.8%的二羟甲基丙酸加入到四口烧瓶中,在氮气保护下,升温至90℃加入0.06%二月桂酸二丁基锡,继续反应4h;(2)将反应体系降温至60℃,加入4%的1,4-丁二醇和2%巯基乙醇,恒温反应3h,此过程用少量丙酮降粘;(3)待预聚物降至室温,按照4%的百分比加入配制的氯金酸-丙酮溶液,充分搅拌半h;加入1mol/L NaOH溶液调节反应物的PH=11.8,室温下反应14h;(4)在1700r/min搅拌速度下,缓慢加入冷却的去离子水(固含量为40%),乳化15min,得到水性聚氨酯模板法制备的纳米金团簇。
经过紫外可见光谱和荧光光谱的分析,该实施例中制备的荧光型金纳米团簇的发射波长在650nm,并且同样具有较高的荧光效应。

Claims (9)

1.荧光型金纳米团簇,其特征在于,制备原料按质量百分比为:二异氰酸酯17%~30%,二元醇62%~73%,有机锡类催化剂0.04%~0.06%,亲水扩链剂4%~5%,小分子扩链剂3.8%~4.2%,巯基乙醇1.7%~2.6%,浓度10mM/L氯金酸丙酮溶液3.2%~4.2%,氢氧化钠水溶液使反应物的pH值为11~13,余为水;各原料组分质量百分含量之和等于100%;
所述二异氰酸酯与二元醇的摩尔比为(2~4)∶1;所述二元醇为聚丙二醇、聚乙二醇、聚四氢呋喃二醇、聚己二酸1,6-己二醇酯、聚丁二烯二醇中的至少一种,分子量为1500~2500。
2.如权利要求1所述荧光型金纳米团簇,其特征在于,所述二异氰酸酯中的-NCO与二元醇中-OH的摩尔比为(2~4)∶1。
3.如权利要求1所述荧光型金纳米团簇,其特征在于,所述有机锡类催化剂为二月桂酸二丁基锡、辛酸亚锡中的至少一种,加入量为原料总质量的0.04%~0.06%。
4.如权利要求1所述荧光型金纳米团簇,其特征在于,所述二异氰酸酯为异佛尔酮二异氰酸酯、甲苯二异氰酸酯、4,4'-亚甲基-二苯基二异氰酸酯、六亚甲基二异氰酸酯、4,4'-亚甲基-二环己基二异氰酸酯中的至少一种。
5.如权利要求1所述荧光型金纳米团簇,其特征在于,所述亲水扩链剂为1,2-二羟基-3-丙磺酸钠、二羟甲基丙酸、二羟甲基丁酸中的至少一种。
6.如权利要求1所述荧光型金纳米团簇,其特征在于,所述小分子扩链剂为一缩二乙二醇、1,4-丁二醇、环己烷二甲醇、甲基丙二醇、乙二胺和异佛尔酮二胺中的至少一种。
7.如权利要求1所述荧光型金纳米团簇,其特征在于,所述氢氧化钠水溶液的浓度为1~3mol/L。
8.荧光金纳米团簇的水性聚氨酯模板法制备方法,其特征在于,所述荧光型金纳米团簇为权利要求1所述荧光型金纳米团簇,所述制备方法包括以下步骤:
1)将二元醇、亲水扩链剂置于真空烘箱中干燥,将其他的预聚单体加入分子筛进行干燥;
2)将脱水处理的二元醇、二异氰酸酯、亲水扩链剂、有机锡类催化剂按比例加入到四口烧瓶中,在氮气保护下,继续反应;
3)待反应体系降温后,加入小分子扩链剂和巯基乙醇,继续进行反应,此过程用丙酮降粘;
4)待预聚物降至室温,加入氯金酸,充分搅拌30min以上;
5)加入NaOH水溶液调节反应物的pH=11~13,室温下反应≥12h;
6)在剧烈搅拌下,缓慢加入经冷藏处理的去离子水进行乳化,得到水性聚氨酯模板法制备的纳米金团簇。
9.如权利要求8所述荧光金纳米团簇的水性聚氨酯模板法制备方法,其特征在于,步骤1)中,所述真空烘箱的温度为100~120℃;所述干燥的时间为3~5h;所述分子筛为4A分子筛;所述分子筛干燥的时间为24h以上;步骤2)中,所述升温的温度至70~80℃,所述继续反应的时间为3~4h;步骤3)中,所述下降温度为50~60℃,所述继续反应时间为2~3h;步骤6)中,所述剧烈搅拌的搅拌速度为1700~2000r/min,所述乳化时间为10min以上。
CN201510669398.2A 2015-10-13 2015-10-13 荧光金纳米团簇及其水性聚氨酯模板法制备方法 Expired - Fee Related CN105153401B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510669398.2A CN105153401B (zh) 2015-10-13 2015-10-13 荧光金纳米团簇及其水性聚氨酯模板法制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510669398.2A CN105153401B (zh) 2015-10-13 2015-10-13 荧光金纳米团簇及其水性聚氨酯模板法制备方法

Publications (2)

Publication Number Publication Date
CN105153401A CN105153401A (zh) 2015-12-16
CN105153401B true CN105153401B (zh) 2017-11-17

Family

ID=54794474

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510669398.2A Expired - Fee Related CN105153401B (zh) 2015-10-13 2015-10-13 荧光金纳米团簇及其水性聚氨酯模板法制备方法

Country Status (1)

Country Link
CN (1) CN105153401B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115608423B (zh) * 2022-09-27 2023-11-14 中国矿业大学 硅基介孔分子筛内封装精确结构的金纳米团簇及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245333A (zh) * 2008-12-12 2011-11-16 比克化学股份有限公司 金属纳米粒子及其制备方法和用途
CN103920889A (zh) * 2014-04-03 2014-07-16 东南大学 巯基聚乙二醇在制备水溶性金纳米簇中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102245333A (zh) * 2008-12-12 2011-11-16 比克化学股份有限公司 金属纳米粒子及其制备方法和用途
CN103920889A (zh) * 2014-04-03 2014-07-16 东南大学 巯基聚乙二醇在制备水溶性金纳米簇中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Synthesis of gold nanoparticles coated onto polyurethane microspheres;Anne de Cuendias;《Journal of Materials Chemistry》;20051231(第2015年15期);第4196-4199页 *

Also Published As

Publication number Publication date
CN105153401A (zh) 2015-12-16

Similar Documents

Publication Publication Date Title
Liu et al. Effects of nano-ZnO and nano-SiO2 particles on properties of PVA/xylan composite films
CN106750466B (zh) 可逆热致变色薄膜及其制备方法
CN108822527A (zh) 碳量子点改性的水性聚氨酯纳米复合材料及其制备方法
CN111303860B (zh) 一种基于量子点敏化的长余辉发光材料及其应用
CN102993406B (zh) 一种高透明抗紫外光固化聚氨酯-氧化锌纳米复合树脂的制备方法
Luo et al. Biocompatible perovskite quantum dots with superior water resistance enable long-term monitoring of the H 2 S level in vivo
CN103642380A (zh) 纤维素纳米棒原位增强水性聚氨酯涂料
CN105131806A (zh) 水性荧光聚氨酯涂料及其预聚体混合法制备方法
CN105153401B (zh) 荧光金纳米团簇及其水性聚氨酯模板法制备方法
CN110028686A (zh) 一种纤维素纳米晶增强自修复水性聚氨酯材料及其制备方法
CN115521658B (zh) 一种用于防伪包装盒的油墨及其制备方法
Zhang et al. Halloysite nanotube-based self-healing fluorescence hydrogels in fabricating 3D cube containing UV-sensitive QR code information
Zhang et al. Synthesis of water-soluble γ-aminopropyl triethoxysilane-capped ZnO: MgO nanocrystals with biocompatibility
CN113201112A (zh) 一种以木质素作为扩链剂的水性聚氨酯及其制备方法和用途
CN111139071B (zh) 一种碳点/聚氨酯泡沫荧光纳米复合材料制备方法
CN111574733A (zh) 一种高透明性紫外屏蔽膜的制备方法
CN103013520A (zh) 水溶性近红外量子点,其制备方法及应用
Guan et al. Fluorescent CdTe-QD-encoded nanocellulose microspheres by green spraying method
CN109134820B (zh) 一种阴离子水性聚氨酯纳米氧化锌复合材料及其制备方法
CN117487226A (zh) 一种耐老化荧光碳量子点抗菌功能膜
CN108329903B (zh) 一种可变色且具有光热效应的碳量子点的制备方法及其产品、应用
US8858832B2 (en) Construction of quantum dots via a regioselective dendritic functionalized cellulose template
Wen et al. Stepwise assembly protocols for the rational design of lanthanide functionalized carbon dots-hydrogel and its sensing evaluation
KR20030038585A (ko) 은 나노입자를 함유한 폴리우레탄 나노복합체의 합성
Mallakpour et al. Investigation of thermal, mechanical behavior, and contact angle measurements of poly (vinyl chloride) based nanocomposite films containing coated CuO nanoparticles with thiamine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20171117