CN105140332B - 一种石墨烯‑ZnxAg(1‑x)NyO(1‑y)紫外探测器及其制备方法 - Google Patents

一种石墨烯‑ZnxAg(1‑x)NyO(1‑y)紫外探测器及其制备方法 Download PDF

Info

Publication number
CN105140332B
CN105140332B CN201510496622.2A CN201510496622A CN105140332B CN 105140332 B CN105140332 B CN 105140332B CN 201510496622 A CN201510496622 A CN 201510496622A CN 105140332 B CN105140332 B CN 105140332B
Authority
CN
China
Prior art keywords
graphene
ultraviolet detector
ultraviolet
detector
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510496622.2A
Other languages
English (en)
Other versions
CN105140332A (zh
Inventor
段理
于晓晨
樊继斌
田野
何凤妮
程晓姣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan University
Original Assignee
Changan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan University filed Critical Changan University
Priority to CN201510496622.2A priority Critical patent/CN105140332B/zh
Publication of CN105140332A publication Critical patent/CN105140332A/zh
Application granted granted Critical
Publication of CN105140332B publication Critical patent/CN105140332B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明公开了一种石墨烯‑ZnxAg(1‑x)NyO(1‑y)紫外探测器及其制备方法,该紫外探测器为光电导型紫外探测器,光电导型紫外探测器包括设置在基底上的光敏层和电极,其特征在于,所述的光敏层中含有石墨烯和ZnxAg(1‑x)NyO(1‑y),按摩尔比计,x=0.40~0.99,y=0.01~0.60;制备方法包括石墨烯粉末与乙酸锌、硝酸银和乙酸铵混合溶液制成复合物胶体,随后将胶体旋涂、热处理、紫外臭氧联合处理和共溅射得到石墨烯‑ZnxAg1‑xNyO1‑y紫外探测器。测试结果表明该石墨烯‑ZnxAg1‑xNyO1‑y探测器对波长小于360nm的紫外光辐射具有良好的响应度和响应速度,是一种综合性能优秀的紫外探测器。

Description

一种石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器及其制备方法
技术领域
本发明涉及光电材料与器件领域,具体涉及一种石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器及其制备方法。
背景技术
紫外探测器在很多应用场合均有很高的应用价值。军用方面可用于宇航探测、战斗机尾焰跟踪、导弹尾焰跟踪等;民用方面可用于高压电晕检测、紫外指纹检测、火焰探测等。制造紫外探测器的一类主流材料是半导体材料,半导体紫外探测器体积小、性能稳定、使用方便。半导体紫外探测器可分为光电导效应探测器和光伏效应探测器两大类,其中光电导型紫外探测器具有较好的响应电流,GaN、SiC、ZnO、AlxGa1-xN等化合物半导体紫外探测器已经广泛应用于生产和生活中。
发明内容
本发明的目的在于,提供一种制备石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器的制备方法,所需设备简单成本低廉,且具有优秀的紫外光响应性能,可以作为军用和民用紫外探测器件,有非常大的应用前景。
为了实现上述任务,本发明采取如下的技术解决方案:
一种石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器,该紫外探测器为光电导型紫外探测器,光电导型紫外探测器包括设置在基底上的光敏层和电极,所述的光敏层中含有石墨烯和ZnxAg(1-x)NyO(1-y),按摩尔比计,x=0.40~0.99,y=0.01~0.60。
具体的,按摩尔比计,石墨烯中碳原子与ZnxAg(1-x)NyO(1-y)中锌原子加银原子之和的比为(1~10):(10~1)。
更具体的,所述光敏层的基底为玻璃,所述的电极为Au/Ti电极。
制备所述的石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器的方法,包括将石墨烯与含锌化合物、含银化合物和含氮化合物的混合溶液通过溶胶凝胶法制备成胶体,胶体经旋涂处理、热处理、紫外臭氧联合处理和共溅射处理后即得石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器。
具体的,所述的含锌化合物为乙酸锌,含银化合物为硝酸银,含氮化合物为乙酸铵;
混合溶液中乙酸锌的浓度为0.01mol/L、硝酸银的浓度为0.001~0.01mol/L和乙酸铵的浓度为0.01~0.1mol/L;
胶体中含有石墨烯的碳原子的浓度为0.001~0.1mol/L。
更具体的,所述的旋涂处理包括将胶体旋涂在玻璃上;
所述的热处理包括将旋涂胶体的玻璃在氩气氛围下进行400℃热处理;
所述的紫外臭氧联合处理为将热处理后的旋涂胶体的玻璃置于臭氧氛围中254nm紫外辐射处理;
所述的共溅射处理包括将紫外联合臭氧处理后的带有胶体的玻璃利用Au靶和Ti钯在氩气氛围及气压20Pa的条件下共溅射做成Au/Ti电极。
另外,所述的石墨烯的制备方法包括配制50g/L石墨粉末和20g/L高锰酸钾的浓硫酸混合溶液,将混合溶液依次在10℃、30℃和90℃下各搅拌1小时后加入等体积的质量浓度为30%的双氧水,静置后将沉淀物烘干并在1000℃和氩气下热处理得到石墨烯粉末。
本发明的有益效果为:
(1)本发明制备的石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器和无石墨烯的基于单一ZnxAg(1-x)NyO(1-y)材料的紫外探测器相比,对波长小于360nm的紫外光辐射具有更好的响应度和响应速度;
(2)本发明制备的石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器和石墨烯-ZnxAg1-xO、石墨烯-ZnNyO1-y、石墨烯-ZnO等基于石墨烯和三元、二元化合物 半导体结合得到的紫外探测器相比,对波长小于360nm的紫外光辐射具有更好的响应度。
附图说明
图1是实施例一制备的石墨烯材料的Raman光谱图;
图2是实施例一制备的石墨烯-ZnxAg(1-x)NyO(1-y)探测器的响应光谱曲线;
以下结合说明书附图和具体实施方式对本发明做具体说明。
具体实施方式
本发明制备的石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器为光电导型紫外探测器,光电导型紫外探测器包括设置在基底上的光敏层和电极。该探测器的光敏层中含有石墨烯和ZnxAg(1-x)NyO(1-y)材料,以摩尔比计,石墨烯中碳原子与ZnxAg(1-x)NyO(1-y)材料中锌原子与银原子之和的比例为1:10~10:1,其中ZnxAg(1-x)NyO(1-y)化合物下标摩尔比例为x=0.40~0.99,y=0.01~0.60;玻璃为光敏层的基底,Au/Ti作为本发明紫外探测器的电极。
ZnxAg(1-x)NyO(1-y)是一种四元化合物半导体材料,测试表明其对波长小于360nm的紫外光辐射具有较好的响应度。石墨烯可以看作被剥离的单原子层石墨,其电子迁移率高达105cm2/Vs量级,其透光率超过97%,已被学术界公认为一种革命性的新材料。
发明人的测试表明将ZnxAg(1-x)NyO(1-y)和石墨烯相结合,可以实现更好的紫外探测性能。本发明给出了一套完整的制备石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器的方法:先独立制备出石墨烯粉末,再将石墨烯粉末加入乙酸锌、硝酸银和乙酸铵混合溶液并搅拌形成石墨烯-ZnxAg(1-x)NyO(1-y)复合物胶体,以该胶体为基础通过后续的旋涂、热处理、紫外臭氧联合处理和共溅射四个步骤制备出石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器。
实施例1:
步骤1:利用氧化还原法制备石墨烯粉末,步骤如下:在98%浓硫酸中加入50g/L石墨粉末,20g/L高锰酸钾,依次在10/30/90摄氏度下各搅拌1小时后加入等体积的30%双氧水,静置5天后取出沉淀物,再超声处理2小时离心过滤后烘干得到固体物,在1000摄氏度氩气下热处理1小时得到石墨烯粉末;
步骤2:利用溶胶凝胶法制备石墨烯-ZnxAg(1-x)NyO(1-y)复合物胶体:配置含有0.01mol/L乙酸锌、0.001mol/L硝酸银和0.01mol/L乙酸铵混合溶液,搅拌均匀后将步骤1中制成的石墨烯粉末加入其中,配置成碳原子浓度0.01mol/L的混合悬浊液,加热至90摄氏度后加入PVA至浓度0.5g/L,搅拌2小时再静置至常温搅拌1小时,形成石墨烯-ZnxAg(1-x)NyO(1-y)复合物胶体;
步骤3:将胶体旋涂在玻璃上烘干并重复5次,得到石墨烯-ZnxAg(1-x)NyO(1-y)复合物薄膜,在氩气氛围下400摄氏度热处理1小时后取出薄膜,置于臭氧氛围中用254nm紫外辐射处理30分钟;
步骤4:将石墨烯-ZnxAg(1-x)NyO(1-y)薄膜和玻璃一起放入溅射系统,利用Au靶和Ti钯在氩气氛围下共溅射,气压20Pa,做成顶部的Au/Ti电极,从而完成石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器的制备。
图1是本发明方法制备的石墨烯材料的Raman光谱图,图中可以看出石墨烯的典型G/D/2D特征峰。图2是石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器光谱响应曲线,可以看出其对波长低于360nm的紫外光辐射有很强的响应,但对波长大于400nm的可见光几乎没有响应,说明其具有优秀的光谱选择针对性的紫外探测功能。表1给出了本实施例的石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器在360nm处的响应度和对360nm紫外辐射95%峰值响应时间的具体数值,从表1中可以看出和其它实施例相比,本实施例的石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器具有最高的响应度和最低的响应时间,说明了 其优秀的紫外响应性能。
实施例2:
制备方法与测试同实施例1,但是步骤2中所配制溶液浓度变化为0.01mol/L乙酸锌、0.01mol/L硝酸银、0.01mol/L乙酸铵混合溶液。表1给出了本实时例制备的紫外探测器响应度和响应时间的数值,从表1可以看出本实施例的紫外探测器的响应性能较实施例1差。
实施例3:
制备方法与测试同实施例1,但是步骤2中所配制溶液浓度变化为0.01mol/L乙酸锌、0.001mol/L硝酸银、0.1mol/L乙酸铵混合溶液。表1给出了本实时例制备的紫外探测器响应度和响应时间的数值,从表1可以看出本实施例的紫外探测器的响应性能较实施例1差。
实施例4:
制备方法与测试同实施例1,但是步骤2中将石墨烯粉末加入ZnxAg1-xNyO1-y溶液,配置成碳原子浓度为0.001mol/L的混合悬浊液。表1给出了本实时例制备的紫外探测器响应度和响应时间的数值,从表1可以看出本实施例的紫外探测器的响应性能较实施例1差。
实施例5:
制备方法与测试同实施例1,但是步骤2中将石墨烯粉末加入ZnxAg1-xNyO1-y溶液,配置成碳原子浓度为0.1mol/L的混合悬浊液。表1给出了本实时例制备的紫外探测器响应度和响应时间的数值,从表1可以看出本实施例的紫外探测器的响应性能较实施例1差。
实施例6:
制备方法与测试同实施例1,但是省略了步骤1,且步骤2中不加入石墨烯粉末,最终制成的是无石墨烯的ZnxAg1-xNyO1-y探测器。表1给出了本实时例制备的紫外探测器响应度和响应时间的数值,从表1可以看出本实施例 的紫外探测器的响应性能较实施例1差。
实施例7:
制备方法与测试同实施例1,但是步骤2中的溶液组分中不含硝酸银,最终制成的是石墨烯-ZnNyO1-y紫外探测器。表1给出了本实时例制备的紫外探测器响应度和响应时间的数值,从表1可以看出本实施例的紫外探测器的响应性能较实施例1差。
实施例8:
制备方法与测试同实施例1,但是步骤2中的溶液组分中不含乙酸铵,最终制成的是石墨烯-ZnxAg1-xO紫外探测器。表1给出了本实时例制备的紫外探测器响应度和响应时间的数值,从表1可以看出本实施例的紫外探测器的响应性能较实施例1差。
实施例9:
制备方法与测试同实施例1,但是步骤2中的溶液组分中不含硝酸银和乙酸铵,最终制成的是石墨烯-ZnO紫外探测器。表1给出了本实时例制备的紫外探测器响应度和响应时间的数值,从表1可以看出本实施例的紫外探测器的响应性能较实施例1差。
表1
实施例 响应度(A/W) 上升响应时间(s) 下降响应时间(s)
1 1.33 19.2 11.5
2 0.75 22.8 14.1
3 0.88 21.3 13.6
4 1.16 34.9 19.8
5 0.82 19.9 12.8
6 0.69 64.7 61.2
7 0.82 46.6 42.9
8 0.75 51.0 44.6
9 0.66 55.9 50.3

Claims (7)

1.一种石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器,该紫外探测器为光电导型紫外探测器,光电导型紫外探测器包括设置在基底上的光敏层和电极,其特征在于,所述的光敏层中含有石墨烯和ZnxAg(1-x)NyO(1-y),按摩尔比计,x=0.40~0.99,y=0.01~0.60。
2.如权利要求1所述的石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器,其特征在于,按摩尔比计,石墨烯中碳原子与ZnxAg(1-x)NyO(1-y)中锌原子加银原子之和的比为(1~10):(10~1)。
3.如权利要求1或2所述的石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器,其特征在于,所述光敏层的基底为玻璃,所述的电极为Au/Ti电极。
4.制备权利要求1、2或3所述的石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器的方法,其特征在于,包括将石墨烯与含锌化合物、含银化合物和含氮化合物的混合溶液通过溶胶凝胶法制备成胶体,胶体旋涂于基底上后经热处理和紫外臭氧联合处理,再通过共溅射制备电极即得石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器;
所述的基底为玻璃。
5.如权利要求4所述的制备石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器的方法,其特征在于,所述的含锌化合物为乙酸锌,含银化合物为硝酸银,含氮化合物为乙酸铵;
混合溶液中乙酸锌的浓度为0.01mol/L、硝酸银的浓度为0.001~0.01mol/L和乙酸铵的浓度为0.01~0.1mol/L;
胶体中含有石墨烯的碳原子的浓度为0.001~0.1mol/L。
6.如权利要求4所述的制备石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器的方法,其特征在于,所述的热处理包括将旋涂胶体的玻璃在氩气氛围下进行400℃热处理;所述的紫外臭氧联合处理包括将热处理后的旋涂胶体的玻璃置于臭氧氛围中254nm紫外辐射处理;
所述的共溅射包括将紫外联合臭氧处理后的旋涂胶体的玻璃利用Au靶和Ti钯在氩气氛围及气压20Pa的条件下制备Au/Ti电极。
7.如权利要求4所述的制备石墨烯-ZnxAg(1-x)NyO(1-y)紫外探测器的方法,其特征在于,所述的石墨烯的制备方法包括配制50g/L石墨粉末和20g/L高锰酸钾的浓硫酸混合溶液,将混合溶液依次在10℃、30℃和90℃下各搅拌1小时后加入等体积的质量浓度为30%的双氧水,静置后将沉淀物烘干并在1000℃和氩气下热处理得到石墨烯粉末。
CN201510496622.2A 2015-08-13 2015-08-13 一种石墨烯‑ZnxAg(1‑x)NyO(1‑y)紫外探测器及其制备方法 Expired - Fee Related CN105140332B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510496622.2A CN105140332B (zh) 2015-08-13 2015-08-13 一种石墨烯‑ZnxAg(1‑x)NyO(1‑y)紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510496622.2A CN105140332B (zh) 2015-08-13 2015-08-13 一种石墨烯‑ZnxAg(1‑x)NyO(1‑y)紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN105140332A CN105140332A (zh) 2015-12-09
CN105140332B true CN105140332B (zh) 2017-01-18

Family

ID=54725617

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510496622.2A Expired - Fee Related CN105140332B (zh) 2015-08-13 2015-08-13 一种石墨烯‑ZnxAg(1‑x)NyO(1‑y)紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN105140332B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101154347B1 (ko) * 2009-08-24 2012-06-13 한양대학교 산학협력단 그래핀 박막과 나노 입자를 이용한 광검출기 및 그 제조 방법
CN103441186B (zh) * 2013-08-29 2016-04-06 江苏大学 一种紫外探测器件的制备方法
CN104617180B (zh) * 2015-01-16 2018-01-09 浙江大学 一种石墨烯/氮化硼/氧化锌紫外探测器及其制备方法

Also Published As

Publication number Publication date
CN105140332A (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
Gao et al. High performance, self-powered UV-photodetector based on ultrathin, transparent, SnO2–TiO2 core–shell electrodes
Li et al. Facile electrodeposition of environment-friendly Cu2O/ZnO heterojunction for robust photoelectrochemical biosensing
Marrani et al. Electrochemically deposited ZnO films: an XPS study on the evolution of their surface hydroxide and defect composition upon thermal annealing
Venkateswaran et al. Nano silicon from nano silica using natural resource (RHA) for solar cell fabrication
Selopal et al. Hierarchical self-assembled Cu2S nanostructures: fast and reproducible spray deposition of effective counter electrodes for high efficiency quantum dot solar cells
Yu et al. Engineering paper-based visible light-responsive Sn-self doped domed SnO2 nanotubes for ultrasensitive photoelectrochemical sensor
CN107369763A (zh) 基于Ga2O3/钙钛矿异质结的光电探测器及其制备方法
Guo et al. ZnO@ TiO2 core–shell nanorod arrays with enhanced photoelectrochemical performance
CN104752546B (zh) 一种金属氧化物紫外探测器
CN104781449B (zh) 经表面处理的金属钛材料或钛合金材料的制造方法及表面处理材料
Gunasekaran et al. Fluorine doped ZnO thin film as acetaldehyde sensor
Umar et al. In-doped ZnO hexagonal stepped nanorods and nanodisks as potential scaffold for highly-sensitive phenyl hydrazine chemical sensors
Li et al. ZnO quantum dot/MXene nanoflake hybrids for ultraviolet photodetectors
JP2017054917A (ja) 光電変換層及び光電変換層の製造方法
Nguyen et al. Self-powered UVC photodetector based on europium metal–organic framework for facile monitoring invisible fire
Park et al. A self-powered high-responsivity, fast-response-speed solar-blind ultraviolet photodetector based on CuO/β-Ga2O3 heterojunction with built-in potential control
CN102735735B (zh) 功能化碘氧化铋纳米片状阵列光电有机磷农药生物传感器及制备
CN105932164B (zh) 硫处理提高钙钛矿膜稳定性的方法
CN105140332B (zh) 一种石墨烯‑ZnxAg(1‑x)NyO(1‑y)紫外探测器及其制备方法
Abena et al. Computational analysis of mixed cation mixed halide-based perovskite solar cell using SCAPS-1D software
Prakash et al. Synthesis of ZnO nanostructures by microwave irradiation using albumen as a template
Irannejad et al. Polymer/inorganic hole transport layer for low-temperature-processed perovskite solar cells
Sekar et al. Low-temperature hydrothermal growth of ZnO nanowires on AZO substrates for FACsPb (IBr) 3 perovskite solar cells
Rahman et al. Effect of organic dye on the performance of dye-sensitized solar cell utilizing TiO 2 nanostructure films synthesized via CTAB-assisted liquid phase deposition technique
Yousra et al. Effect of film thickness on the electrical and the photocatalytic properties of ZnO nanorods grown by SILAR technique

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170118