CN105122673A - Reconfiguration control channel resource mapping collision avoidance - Google Patents

Reconfiguration control channel resource mapping collision avoidance Download PDF

Info

Publication number
CN105122673A
CN105122673A CN201480011167.6A CN201480011167A CN105122673A CN 105122673 A CN105122673 A CN 105122673A CN 201480011167 A CN201480011167 A CN 201480011167A CN 105122673 A CN105122673 A CN 105122673A
Authority
CN
China
Prior art keywords
mrow
msub
type
msubsup
subframe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480011167.6A
Other languages
Chinese (zh)
Other versions
CN105122673B (en
Inventor
何宏
韩承希
符仲凯
阿列克谢·弗拉基米罗维奇·科尔亚耶夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intel IP Corp
Original Assignee
Intel IP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intel IP Corp filed Critical Intel IP Corp
Publication of CN105122673A publication Critical patent/CN105122673A/en
Application granted granted Critical
Publication of CN105122673B publication Critical patent/CN105122673B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/16Arrangements for providing special services to substations
    • H04L12/18Arrangements for providing special services to substations for broadcast or conference, e.g. multicast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0823Errors, e.g. transmission errors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/611Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for multicast or broadcast
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/60Network streaming of media packets
    • H04L65/61Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio
    • H04L65/613Network streaming of media packets for supporting one-way streaming services, e.g. Internet radio for the control of the source by the destination
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/02Protocols based on web technology, e.g. hypertext transfer protocol [HTTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/104Peer-to-peer [P2P] networks
    • H04L67/1074Peer-to-peer [P2P] networks for supporting data block transmission mechanisms
    • H04L67/1076Resource dissemination mechanisms or network resource keeping policies for optimal resource availability in the overlay network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0088Scheduling hand-off measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0083Determination of parameters used for hand-off, e.g. generation or modification of neighbour cell lists
    • H04W36/0085Hand-off measurements
    • H04W36/0094Definition of hand-off measurement parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1215Wireless traffic scheduling for collaboration of different radio technologies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0808Non-scheduled access, e.g. ALOHA using carrier sensing, e.g. carrier sense multiple access [CSMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/12Setup of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/22Manipulation of transport tunnels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • H04W76/38Connection release triggered by timers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/005Discovery of network devices, e.g. terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1045Proxies, e.g. for session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • H04L65/1104Session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/14Reselecting a network or an air interface
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/24Reselection being triggered by specific parameters
    • H04W36/30Reselection being triggered by specific parameters by measured or perceived connection quality data
    • H04W36/302Reselection being triggered by specific parameters by measured or perceived connection quality data due to low signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/34Reselection control
    • H04W36/38Reselection control by fixed network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/30Connection release
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/20Interfaces between hierarchically similar devices between access points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Multimedia (AREA)
  • Environmental & Geological Engineering (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)
  • Two-Way Televisions, Distribution Of Moving Picture Or The Like (AREA)
  • Computer And Data Communications (AREA)

Abstract

A device includes a transceiver to receive, from a base station, a physical downlink shared channel (PDSCH) transmission and processing circuitry to classify downlink (DL) subframe types for a set of DL subframes associated with a first uplink (UL) subframe for transmission of a hybrid automatic report request acknowledgment (HARQ-ACK) and perform physical uplink control channel (PUCCH) resources mapping based on the classified DL subframe Types for an acknowledgement transmission associated with PDSCH transmission reception.

Description

Reconfiguration control channel resource mapping collision avoidance
RELATED APPLICATIONS
This application claims priority to U.S. application serial No. 14/141,876 filed on day 27 of 2013, month 12, and U.S. application serial No. 14/141,876 claims priority to U.S. provisional application serial No. 61/808,597 filed on day 4 of 2013, month 4, both of which are incorporated herein by reference in their entirety.
Background
LTE (long term evolution) communications are evolving, with more and more releases (releases) designed to optimize bandwidth utilization and throughput performance. The use of User Equipment (UE) continues to increase, impeding the ability of communication systems to handle the ever-increasing demand for bandwidth.
Drawings
Fig. 1 is a schematic diagram of an example configuration of a communication network architecture according to an example embodiment.
Fig. 2 is a timing diagram illustrating a Physical Uplink Control Channel (PUCCH) resource collision problem according to an example embodiment.
Fig. 3 is a timing diagram illustrating UL/DL configuration 2 implemented by flexibly changing the transmission direction of subframes #3 and #8 from UL to DL to satisfy an instantaneous traffic condition according to an example embodiment.
Fig. 4 is a table identifying the downlink association set index K for TDD according to the DL reference (DL-reference) UL/DL configuration table 10.1.3.1-1 in 3GPP release 11, according to an example embodiment.
Fig. 5 is a table identifying j and l values for DL subframes within set K associated with subframe 7 for HARQ-ACK feedback, according to an example embodiment.
Fig. 6 is a table of HARQ-ACK resource offset fields identifying DCI formats for corresponding EPDCCHs, according to an example embodiment.
Fig. 7 is a timing diagram illustrating PUCCH mapping according to an example embodiment.
Fig. 8 is a block diagram of a higher layer configuration determination for transmission according to PDSCH, according to an example embodimentIn which in sub-frame n-kiNo corresponding PDCCH/EPDCCH is detected.
FIG. 9 is a block diagram for determining from a higher layer configuration, according to an example embodimentTable of values of (a).
Fig. 10 is a flowchart illustrating a method of Physical Uplink Control Channel (PUCCH) resource mapping, according to an example embodiment.
Fig. 11 is a flowchart illustrating a method of classifying DL subframe types according to an example embodiment.
Fig. 12 is a flowchart illustrating a method of determining an offset of a type 1DL subframe according to an example embodiment.
Fig. 13 is a flowchart illustrating a method of determining an offset of a type 2DL subframe according to an example embodiment.
FIG. 14 is a block diagram of electronic circuitry for performing one or more methods according to an example embodiment.
Detailed Description
In the following description, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific embodiments which may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural, logical and electrical changes may be made without departing from the scope of the present invention. The following description of example embodiments is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined by the appended claims.
Fig. 1 is a schematic diagram of an example configuration of a communication network architecture 100, according to some embodiments. Within the communication network architecture 100, a carrier-based network (e.g., an IEEE802.11 compliant wireless access point, or an LTE/LTE-a cell network operating in accordance with standards from the 3GPP family of standards) is established by the network device 102. The network device 102 may include a wireless access point, Wi-Fi hotspot, or enhanced or evolved node B (enodeb) in communication with communication devices 104A, 104B, 104C (e.g., User Equipment (UE) or communication Stations (STAs)). The carrier-based network includes wireless network connections 106A, 106B, and 106C with communication devices 104A, 104B, 104C, respectively. The communication devices 104A, 104B, 104C are shown to conform to various form factors, including smart phones, mobile phones, and personal computers with integrated or external wireless network communication devices.
Network device 102 is shown in fig. 1 as being connected to a network server 118 in cloud network 116 via network connection 114. The server 118 (or any of the individual servers) may operate to provide various types of information to the communication devices 104A, 104B, 104C, or to receive various types of information from the communication devices 104A, 104B, 104C, including device location, user profiles, user information, websites, emails, and the like. The techniques described herein enable determination of the location of various communication devices 104A, 104B, 104C relative to the network device 102.
The communication devices 104A, 104B, 104C may communicate with the network device 102 when within wireless communication range or otherwise in proximity. As shown, a connection 106A may be established between a mobile device 104A (e.g., a smartphone) and a network device 102; a connection 106B may be established between the mobile device 104B (e.g., mobile phone) and the network device 102; a connection 106C may be established between the mobile device 104C (e.g., a personal computer) and the network device 102.
The wireless communications 106A, 106B, and 106C between the devices 104A, 104B, 104C may utilize Wi-Fi or IEEE802.11 standard protocols, or protocols such as current third generation partnership project (3GPP) Long Term Evolution (LTE) Time Division Duplex (TDD) advanced systems. In an embodiment, communication network 116 and network device 102 comprise an Evolved Universal Terrestrial Radio Access Network (EUTRAN) that uses the third generation partnership project (3GPP) Long Term Evolution (LTE) standard and operates in Time Division Duplex (TDD) mode. The devices 104A, 104B, 104C may include one or more antennas, transceivers, transmitters, or receivers configured to utilize the following standards: Wi-Fi or IEEE802.11 standard protocols, or standards such as 3GPP, LTE or LTE-Advanced, or any combination of these or other communication standards.
The antennas in devices 104A, 104B, 104C or on devices 104A, 104B, 104C may include one or more directional or omnidirectional antennas, including, for example, dipole antennas, monopole antennas, patch antennas, loop antennas, microstrip antennas or other types of antennas suitable for transmission of RF signals. In some embodiments, a single antenna (rather than two or more antennas) with multiple apertures may be used. In these embodiments, each aperture may be considered a separate antenna. In some multiple-input multiple-output (MIMO) embodiments, the antennas may be effectively separated to take advantage of spatial diversity and different channel characteristics that may result between each antenna and the antennas of the transmitting station. In some MIMO embodiments, the antennas may be separated by up to 1/10 wavelengths or more.
In some embodiments, the mobile device 104A may include one or more of the following: a keyboard, a display, a non-volatile memory port, multiple antennas, a graphics processor, an application processor, a speaker, and other mobile device elements. The display may be an LCD screen, including a touch screen. The mobile device 104B may be similar to the mobile device 104A, but need not be the same. The mobile device 104C may include some or all of the features, components, or functions described for the mobile device 104A.
A base station (e.g., an enhanced or evolved node b (enodeb)) may provide wireless communication services to a communication device (e.g., device 104A). Although the exemplary communication system 100 of fig. 1 depicts only three device users 104A, 104B, 104C, in various embodiments any combination of multiple users, devices, servers, and the like may be coupled to the network device 102. For example, three or more users located at a location (e.g., a building, campus, shopping mall, or other area) may independently communicate with the network device 102 using any number of wireless-capable mobile computing devices. Similarly, the communication system 100 may include more than one network device 102. For example, multiple access points or base stations may form an overlapping coverage area in which a device may communicate with at least two instances of network device 102.
Although communication system 100 is illustrated as having several separate functional elements, one or more of the functional elements may be combined and may be implemented by combinations of software-configured elements (e.g., processing elements including Digital Signal Processors (DSPs)) and/or other hardware elements. For example, some elements may comprise one or more microprocessors, DSPs, Application Specific Integrated Circuits (ASICs), Radio Frequency Integrated Circuits (RFICs), and combinations of various hardware and logic circuitry for performing at least the functions described herein. In some embodiments, the functional elements of system 100 may refer to one or more processes running on one or more processing elements.
Embodiments may be implemented in one or a combination of hardware, firmware, and software. Embodiments may also be implemented as instructions stored on a computer-readable storage device, which may be read and executed by at least one processor to perform the operations described herein. The computer-readable storage device may include any non-transitory mechanism for storing information in a form readable by a machine (e.g., a computer). For example, a computer-readable storage medium may include Read Only Memory (ROM), Random Access Memory (RAM), magnetic disk storage media, optical storage media, flash memory devices, and other storage devices and media. In some embodiments, system 100 may include one or more processors and may be configured by instructions stored on a computer-readable storage device.
A new lte wid version 12 has recently been agreed on for "further enhancing lte tdd (redundancy enhancement for uplink/downlink (UL/DL) interface management and traffic adaptation)". Its main purpose is to enable tdd ul/DL reconfiguration for traffic adaptation for TD-LTE systems (including clustered small cell deployments). Unlike legacy (e.g., release 8) enbs, which are semi-static UL/DL configured, the duplex direction of flexible subframes in cells supporting the eIMTA release 12 feature may change dynamically. Many signaling options have been widely discussed in the eimta phase, including System Information Block (SIB), paging, Radio Resource Control (RRC), medium access layer (MAC) and physical layer signaling, features to support different traffic adaptation time scales.
One Physical Uplink Control Channel (PUCCH) resource collision problem caused by UL/DL reconfiguration features (whether SIB/paging/RRC/MAC/L1 signaling) was observed. An example of this problem is shown at 200 in fig. 2. Assume tdd UL/DL configuration 1 is indicated in system information block type 1(SIB1), but the actual tdd UL-DL configuration is UL/DL configuration 2 indicated at 210, which is achieved by flexibly changing the transmission direction of subframes #3 and #8 from UL to DL to meet the instantaneous traffic state and thus maximize the radio spectrum efficiency, as seen at 310 and 315 in fig. 3, respectively. The DL reference UL/DL configuration is known to release 12UL/DL reconfiguration capable UEs so that the UEs can utilize flexible subframe resources. Further, the UE may appropriately determine a hybrid automatic repeat request-acknowledgement (HARQ-ACK) timeline for Physical Dedicated Shared Channel (PDSCH) transmissions according to the DL reference UL/DL configuration. In this example, the DL reference UL/DL configuration is assumed to be tdd UL/DL configuration 2. It can be seen that the PUCCH resources associated with the two PDCCHs (PDCCH 1 in subframe #9 within 215 radio frame n-1 of LE1 and PDCCH2 in subframe #0 within 220 radio frame n of UE 2) are colliding in the same PUCCH1a/1b resource at UL subframe #7 at 225 in radio frame n. The reason for this problem is the same numbered first Control Channel Element (CCE) index (n)CCE,m6) are used by two PDCCHs and two different PDSCHHARQ-ACK timing relationships are assumed at UE1 and UE2, respectively. As a result, the implicitly mapped PUCCH resources are identical at both LEs according to the following equation:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <mi>M</mi> <mo>-</mo> <mi>m</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>m</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>m</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
wherein n isCCE,mIs the number of the first CCE used for transmission of the corresponding PDCCH in the subframe. This is a common PUCCH resource collision problem for all tdd ul/DL reconfiguration signalling methods. Two solutions have been proposed to solve this problem.
In one embodiment, PDSCH subframes are first divided into two types, type 1 and type 2. After classifying the subframes, PUCCH resource mapping is performed based on the DL subframe type. Furthermore, to avoid excessive control overhead, ARO (i.e., HARQ-ACK resource offset field) may be used to compress the PUCCH region.
For UL-DL reconfiguration support in release 12, there is no known PUCCH resource mapping scheme to avoid PUCCH resource mapping collision.
In one embodiment, downlink subframes associated with uplink subframes for HARQ-ACK feedback are classified into the following two types (i.e., type 1 and type 2) according to the tdd UL/DL configuration contained in the SIB1 message and the DL reference UL/DL configuration indicated by higher layer signaling:
the type 1 subframe is a DL subframe associated with UL subframe n for HARQ-ACK feedback according to SIB1tdd UL/DL configuration.
The type 2 subframe is a DL subframe constructed by a two-step method:
step 1: the type 2 subframe is a DL subframe associated with a UL subframe n for HARQ-ACK feedback according to a DL reference UL/DL configuration of a higher layer configuration. The configuration may be determined implicitly based on the tdd ul/DL configuration of two consecutive radio frames recorded in the previous IDF [1] or explicitly indicated by higher layer signaling.
Step 2: if the type 1 subframe overlaps with the type 2 subframe constructed in step 1, the overlapped subframe will be further removed from the type 2 subframe.
In one embodiment (as shown at 300 in fig. 3), assuming TDD configuration 1 is indicated in SIB1 and the DL reference UL/DL configuration is configuration #2, the type 1 subframe includes subframe #1 at 305 and #0 at 310 in radio frame n. Meanwhile, the type 2 subframe includes subframe #3 at 320 in radio frame n and subframe #9 at 325 in radio frame n-1.
Solution 1: PUCCH format 1b with Channel Selection (CS). In order to solve the potential PUCCH resource collision problem, a hybrid PUCCH resource mapping method includes the following. Let M denote the number of elements in set K defined in table 10.1.3.1-1 in 3GPP release 11 shown at 400 in fig. 4, which identifies the downlink association set index K of the TDD according to the DL reference UL/DL configuration. The set K is also divided into two sets: k1And K2Each set comprising several subframes in set K. Set K1Including all type 1 subframes, set K2Including all type 2 subframes. M is M1+M2Wherein M is1And M2Respectively represent a set K1And K2The number of medium DL subframes.
According to DL reference UL/DL configurationRepresenting the sub-frame n-kiAnd HARQ-ACK (i) as from subframe n-kiIn which k is a number of timesiE is K, and i is more than or equal to 0 and less than or equal to M-1. Let j denote the set K1Inner subframe n-kiIn the ascending order of the value of i from j to 0, wherein j is greater than or equal to 0 and less than or equal to M1-1, and l represents the set K2Inner subframe n-kiIn the order of increasing values of i from l to 0, where l is 0. ltoreq. M2-1。
In one embodiment, assuming SIB1tdd UL/DL configuration is configuration 1 and DL reference UL/DL configuration is configuration 2, the respective j and l values of DL subframes within set K associated with subframe 7 for HARQ-ACK feedback are shown at 500 in fig. 5, which spans set K at 510 with DL subframe index in fig. 51And set K at 5152For example.
After PDSCH subframes are indexed in the respective set, PUCCH resource mapping is performed as follows: for the corresponding PDCCH (or in sub-frame n-k)iPDCCH indicating a downlink SPS release), if it corresponds to type 1 subframe j (0 ≦ j ≦ M)1-1), then PUCCH resources
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>j</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </math>
If it corresponds to type 2 subframe l (0. ltoreq. l. ltoreq.M)2-1), then PUCCH resources
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>-</mo> <mi>l</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>-</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </math>
Or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>-</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </math>
Or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>l</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>C</mi> <mi>F</mi> <mi>I</mi> <mo>,</mo> <mi>c</mi> </mrow> </msub> </munderover> <msub> <mi>N</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>-</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </math>
Wherein c is selected from {0, 1, 2, 3}, such that: n is a radical ofc≤nCCE,j<Nc+1,Nc≤nCCE,i<Nc+1NCFI,cIs the Control Format Indicator (CFI) value carried on the Physical Control Format Indicator Channel (PCFICH) in detected subframe c, nCCE,jAnd nCCE,lIs the number of the first CCE used for transmission of the corresponding PDCCH in subframes j and l, respectively. Index j is the set K1Index of type 1 subframe within, index l is set K2Index of type 2 subframe within.
Is a PUCCH resource offset associated with the legacy PDCCH, configured by higher layers for PUCCH resource mapping.A PUCCH resource offset, which is a starting point for providing PUCCH resources for type 2 subframes, may be configured by higher layers in a UE-or cell-specific manner, or calculated using the following equation:
<math> <mrow> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mn>4</mn> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>-</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </math>
this PUCCH format 1a/1b resource for HARQ-ACK signal transmission in response to a PDSCH scheduled by a legacy PDCCH may also be optimized to avoid excessive control overhead by introducing a 2-bit ARO (HARQ-ACK resource offset field) and taking into account the fact that the dynamic PUCCH format 1a/1b resource space is often underutilized. If UL/DL reconfiguration has been activated for one UE, there is always an explicit 2-bit ARO indication field for all DL dci formats carried by UE-specific search spaces on legacy PDCCH across all DL subframes, regardless of subframe type. Equations (1-0), (2-0), (3-0), and (4-0) can be directly extended to (1-1), (2-1), (3-1), and (4-1) by using 2-bit ARO:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>j</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>-</mo> <mi>l</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>l</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>C</mi> <mi>F</mi> <mi>I</mi> <mo>,</mo> <mi>c</mi> </mrow> </msub> </munderover> <msub> <mi>N</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> </math>
ΔARObased on the M value, is determined as follows: if M is 1, then ΔAROThe HARQ-ACK resource offset field in the DCI format for the corresponding EPDCCH is determined according to table 10.1.2.1-1. If M > 1, then ΔAROThe HARQ-ACK resource offset field in the DCI format for the corresponding EPDCCH is determined according to table 1 given at 600 in fig. 6.
If a corresponding DCI is transmitted on at least a Common Search Space (CSS) on a legacy PDCCH in a type 1 subframe, the UE should assume Δ for PUCCH resource mapping using equations (1-1) and (2-1)ARO=0。
Several solutions can be considered for delta1Or Δ2Definition of (1):
for type 1 subframes: alternative 1: the same applies to 0-and M ═ 1.
Alternative 2:
alternative 2-0: - (M)1-j-1)·Nc-j·Nc+1
Alternative 2-1: -M1·(Nc-Nc-1)
Alternative 2-2: -j (N)c+1-Nc)
Alternatives 2-3: - (N)c+1-Nc)
Alternatives 2-4: -M1·Nc
By assuming M at 700 in FIG. 71One example of alternative 2 is shown at 3. As clearly shown in the figure, PUCCH overhead of type 1 subframes can be flexibly reduced by appropriately selecting an ARO setting on the eNB side.
For type 2 subframes, Δ1And Δ2All possible values can be obtained by replacing the symbol j with the symbol l and by using the symbol M2Substitution symbol M1Is reused. Furthermore, some additional values may be used in further embodiments:
alternative 0:
alternative 1: m1·N4
Alternative 2:
alternative 1 and alternative 2 can be usedTo ensure that PUCCH is always available and does not incur eNB scheduler constraints. For PDSCH transmission (subframe n-k)iWhere no corresponding PDCCH/EPDCCH is detected),is determined from the higher layer configuration and table 9.2-2 shown at 800 in fig. 8.
For the corresponding EPDCCH (or in subframe n-k)i(where k isiEPDCCH in e K) indicating downlink SPS release), if EPDCCH-PRB set (EPDCCH-PRB-set) q is configured for distributed transmission, the UE should use:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>n</mi> <mrow> <mi>E</mi> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mn>1</mn> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>N</mi> <mrow> <mi>E</mi> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>n</mi> <mo>-</mo> <msub> <mi>k</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>e</mi> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>-</mo> <mn>0</mn> <mo>)</mo> </mrow> </mrow> </math>
if the EPDCCH-PRB set q is configured for localized transmission:
wherein n isECCE,qIs used for sub-frame n-kiThe number of the first ECCE of the transmission of the corresponding DCI allocation in the EPDCCH-PRB set q (i.e. the lowest ECCE index used to construct the EPDCCH), the EPDCCH-PRB set qBy higher layer parameter pucch-ResourceStartOffset-r11 configuration, subframe n-kiOf EPDCCH-PRB set q in (1)Given in section 6.8A.1 of 3GPPTS36.211V.11.2.0, n' is according to the number used for subframe n-kiThe antenna port for transmission of the medium EPDCCH is determined, which is described in section 6.8a.5 in 3gpp ts 36.211v.11.2.0. If i is 0, then ΔAROThe HARQ-ACK resource offset field in the DCI format of the corresponding EPDCCH is determined according to the values given in table 10.1.2.1-1. If i > 0, then ΔAROThe HARQ-ACK resource offset field in the DCI format of the corresponding EPDCCH is determined according to the table 10.1.3.1-2, where variable m in the table is replaced by i. If the UE is configured to monitor sub-frame n-kilEPDCCH of (1), thenIs equal to sub-frame n-kilIs configured as the number of ECCEs in the EPDCCH-PRB set q for the UE. If the UE is not configured to monitor subframes n-kilEPDCCH of (1), thenEqualing the assumption that EPDCCH-PRB set q is configured for subframe n-kilThe number of the ECCE calculated by the UE. For normal downlink CP, if subframe n-kilIs a special subframe with a special subframe configuration of 0 or 5, thenEqual to 0. For extended downlink CP, if subframe n-kilIs a special subframe with special subframe configuration 0 or 4 or 7, thenEqual to 0.
In some configurations, different DL subframes in a bundling window (bundling window) may have different numbers of ECCEs per PRB pair (even for the same EPDCCH set k, e.g., special subframes, etc.) and also different minimum aggregation levels, in view of the above fact, in order to avoid unnecessary PUCCH overhead, equations (5-0) and (6-0) may become (5-1) and (6-1):
wherein L isiRepresenting the minimum supportable aggregation level in subframe i.
With the second solution, solution 2, PUCCH format 3 is used for HARQ-ACK feedback in another embodiment. On the other hand, another potential solution is that one (e.g., for one antenna port case) or two (e.g., for two antenna port case) PUCCH format 1a/1b resources are configured by higher layers for UL/DL reconfiguration capable UEs, and PUCCH format 3 needs to be configured for HARQ-ACK transmission after activation of UL/DL reconfiguration for one UE.
For single PDSCH transmission or by sub-frames n-kmIn the downlink SPS release indicated by detection of the corresponding PDCCH/EPDCCH (where k ismE K), and the DAI value in PDCCH/EPDCCH is equal to '1', the UE should use PUCCH format 1a/1b and higher layer configured PUCCH format 1a/1b resources for HARQ-ACK feedback.
For a single PDSCH transmission where no corresponding PDCCH/EPDCCH is detected within subframe(s) n-K (where K e K) and no PDCCH/EPDCCH indicates a downlink SPS release within subframe(s) n-K (where K e K), the UE should determine PUCCH resources according to higher layer configuration and tables 9.2-2.
Otherwise, the UE should use PUCCH format 3 and PUCCH resourcesWhereinIs determined from the higher layer configuration and table 10.1.2.2.2-1 shown at 900 in fig. 9. If the DAI value is indicated to be greater than '1' in the PDCCH, the TPC field in the PDCCH allocation having the DAI value greater than '1' should be used to determine a PUCCH resource value from one of four PUCCH resource values configured by a higher layer, where the mapping is defined in table 10.1.2.2.2-1.
If a DAI value greater than '1' is indicated in the EPDCCH, the HARQ-ACK resource offset field in the DCI format of the corresponding EPDCCH allocation with a DAI value greater than '1' should be used to determine a PUCCH resource value from one of the four PUCCH resource values configured by the higher layer, where the mapping is defined in table 10.1.2.2.2-1.
Fig. 10 is a flow diagram illustrating a method 1000, the method 1000 beginning with a UE receiving a Physical Downlink Shared Channel (PDSCH) transmission from a base station at 1010. The processing circuitry is configured to classify a Downlink (DL) subframe type of a set of DL subframes associated with a first Uplink (UL) subframe for transmitting a hybrid automatic report request acknowledgement (HARQ-ACK) at 1020. The processing circuitry also performs Physical Uplink Control Channel (PUCCH) resource mapping based on the classified DL subframe type for acknowledgement transmissions associated with receipt of PDSCH transmissions, at 1030.
Fig. 11 is a flow diagram illustrating a method 1100 of classifying DL subframe types. At 1110, a type 1DL subframe is constructed with the following DL subframes: the DL subframe is associated with a first Uplink (UL) subframe for transmitting HARQ-ACK according to a Time Division Duplex (TDD) UL/DL configuration indicated in a System information Block type 1(SIB1) message. At 1120, a type 2DL subframe is constructed by first identifying a DL subframe associated with a first UL subframe for transmitting HARQ-ACK according to a DL reference UL/DL configuration of a higher layer configuration. If the type 1DL subframe overlaps the type 2DL subframe, the subframe that overlaps between the type 1 and type 2DL subframes is also removed out of the type 2DL subframe at 1130.
Fig. 12 is a flow diagram illustrating a method 1200 of determining an offset for a type 1DL subframe. At 1210, depending on a number of type 1DL subframes associated with a first UL subframe for transmitting HARQ-ACK, processing circuitry is used to determine a HARQ-ACK offset Δ for the type 1DL subframe based on a 2-bit HARQ-ACK resource offset field in a DCI format of a corresponding PDCCHARO. At 1220, if the number of type 1DL subframes is 1, the processing circuit begins selecting Δ from {0, -1, -2, 2}AROThe value is obtained. At 1230, if the number of type 1DL subframes is greater than 1, the processing circuit proceeds from {0, Δ }1-1,Δ2-2, 2} of a value selected from1Or Δ2May be {0, - (M)1-j-1)·Nc-j·Nc+1,-M1(Nc-Nc-1),-j(Nc+1-Nc),-(Nc+1-Nc),-M1·NcJ (0. ltoreq. j < M)1) Is the index of the type 1DL subframe, M1Is the number of type 1DL subframes, c is selected from {0, 1, 2, 3} such that Nc≤nCCE,j<Nc+1
Fig. 13 is a flow diagram illustrating a method 1300 of determining an offset for a type 2DL subframe. At 1310, depending on the number of type 2DL subframes associated with the first UL subframe for transmitting HARQ-ACK, processing circuitry is used to determine a HARQ-ACK offset for the type 2DL subframe based on a 2-bit HARQ-ACK resource offset field in a DCI format of the corresponding PDCCH. If the number of type 2DL subframes is 1, then at 1310, method 1300 processes to select Δ out of {0, -1, -2, 2}AROThe value is obtained. At 1320, if the number of type 2DL subframes is greater than 1, the processing circuit proceeds from {0, Δ }1-1,Δ2-2, 2} ofAROValue of, wherein1Or Δ2May be a value One of (0. ltoreq. l < M)2) Is an index of a type 2DL subframe, M1Is the number of type 1DL subframes associated with the same first UL subframe used for HARQ-ACK transmission, M2Is the number of type 2DL subframes,andis a PUCCH resource offset associated with PDSCH on type 1DL subframes and type 2DL subframes, respectively, for PUCCH resource mapping, c is selected from {0, 1, 2, 3} such that Nc≤nCCE,j<Nc+1NCFI,cIs the Control Format Indicator (CFI) value carried on the Physical Control Format Indicator Channel (PCFICH) in the detected type 2 subframe c.
Figure 14 is a block diagram of a computer system specifically programmed to function as one or more different types of UEs, cell stations (including small cell stations and macro stations). The system may be used to implement one or more methods according to the described examples. In the embodiment illustrated in FIG. 14, hardware and an operating environment are provided to enable the computer system to perform one or more of the methods and functions described herein. In some embodiments, the system may be a small cell station, a macro cell station, a smartphone, a tablet, or other network device that may provide access and wireless network capabilities for one or more devices. These devices do not necessarily have all of the components included in fig. 14.
Fig. 14 illustrates a functional block diagram of a cell station 1400 according to some embodiments. Cell station 1400 may be adapted to function as a small cell station, a macro cell station, or a user equipment (e.g., a wireless cellular telephone, tablet, or other computer). Cell station 1400 may include physical layer circuitry 1402 to transmit signals to or receive signals from an eNB using one or more antennas 1401. Cell station 1400 may also include processing circuitry 1404, and processing circuitry 1404 may include a channel estimator, and the like. Cell station 1400 can also include a memory 1406. The processing circuitry may be configured to determine several different feedback values for transmission to the eNB, discussed below. The processing circuit may also include a Medium Access Control (MAC) layer.
In some embodiments, cell station 1400 may include one or more of the following: a keyboard, a display, a non-volatile memory port, multiple antennas, a graphics processor, an application processor, a speaker, and other mobile device elements. The display may be an LCD screen, including a touch screen.
One or more antennas 1401 utilized by cell station 1400 may include one or more directional or omnidirectional antennas, including, for example, dipole antennas, monopole antennas, patch antennas, loop antennas, microstrip antennas or other types of antennas suitable for transmission of RF signals. In some embodiments, a single antenna (rather than two or more antennas) with multiple apertures may be used. In these embodiments, each aperture may be considered a separate antenna. In some multiple-input multiple-output (MIMO) embodiments, the antennas may be effectively separated to take advantage of spatial diversity and different channel characteristics that may result between each antenna and the antennas of the transmitting station. In some MIMO embodiments, the antennas may be separated by up to 1/10 wavelengths or more.
Although cell station 1400 is shown with several separate functional elements, one or more of the functional elements may be combined and may be implemented by combinations of software-configured elements (e.g., processing elements including Digital Signal Processors (DSPs)) and/or other hardware elements. For example, some elements may comprise one or more microprocessors, DSPs, Application Specific Integrated Circuits (ASICs), Radio Frequency Integrated Circuits (RFICs), and combinations of various hardware and logic circuitry for performing at least the functions described herein. In some embodiments, the functional elements of system 100 may refer to one or more processes running on one or more processing elements.
Embodiments may be implemented in one or a combination of hardware, firmware, and software. Embodiments may also be implemented as instructions stored on a computer-readable storage device, which may be read and executed by at least one processor to perform the operations described herein. The computer-readable storage device may include any non-transitory mechanism for storing information in a form readable by a machine (e.g., a computer). For example, a computer-readable storage medium may include Read Only Memory (ROM), Random Access Memory (RAM), magnetic disk storage media, optical storage media, flash memory devices, and other storage devices and media. In some embodiments, one or more processors of cell station 1400 may be configured by instructions to perform the operations described herein.
In some embodiments, cell station 1400 may be configured to receive OFDM communication signals over a multicarrier communication channel in accordance with an OFDMA communication technique. The OFDM signal may include a plurality of orthogonal subcarriers. In some broadband multicarrier embodiments, an evolved node b (enb) may be part of a Broadband Wireless Access (BWA) network communication network, such as a Worldwide Interoperability for Microwave Access (WiMAX) communication network or a third generation partnership project (3GPP) Universal Terrestrial Radio Access Network (UTRAN) Long Term Evolution (LTE) communication network, although the scope of the invention is not limited in these respects. In these wideband multicarrier embodiments, cell station 1400 and the eNB may be configured to communicate in accordance with Orthogonal Frequency Division Multiplexing Access (OFDMA) techniques. The UTRAN LTE standard includes the third generation partnership project (3GPP) standard for UTRAN-LTE release 8 (2008/3) and release 10 (2010/12), including its various variants and evolutions.
In some LTE embodiments, the basic unit of radio resources is a Physical Resource Block (PRB). A PRB may include 12 subcarriers in the frequency domain and N consecutive 0.5ms symbols in the time domain, depending on the cyclic prefix length configured by higher layer parameters. In these embodiments, the PRB may include a plurality of Resource Elements (REs). REs are uniquely defined by an index pair (k, l) in a slot, where k is an index in the frequency domain and l is an index in the time domain.
The eNB may transmit two types of reference signals including demodulation reference signals (DM-RS), Common Reference Signals (CRS), and/or channel state information reference signals (CSI-RS). The DM-RS may be used by the UE for data demodulation. The reference signal may be transmitted in a predetermined PRB.
In some embodiments, the OFDMA technique may be a Frequency Domain Duplexing (FDD) technique using different uplink and downlink spectra or a Time Domain Duplexing (TDD) technique using the same spectrum for uplink and downlink.
In some other embodiments, cell station 1400 and the eNB may be configured to transmit signals transmitted using one or more other modulation techniques, such as spread spectrum modulation (e.g., direct sequence code division multiple access (DS-CDMA) and/or frequency hopping code division multiple access (FH-CDMA)), Time Division Multiplexing (TDM) modulation, and/or Frequency Division Multiplexing (FDM) modulation, although the scope of the embodiments is not limited in this respect.
In some embodiments, cell station 1400 may be part of a portable communication device, such as a Personal Digital Assistant (PDA), a laptop or portable computer with wireless communication capability, a netbook, a wireless telephone, a wireless headset, a pager, an instant messaging device, a digital camera, an access point, a television, a medical device (e.g., a heart rate monitor, a blood pressure monitor, etc.), or other device that may receive and/or transmit information wirelessly.
In some embodiments, a cell station may be configured to use one of 8 "transmission modes" for PDSCH reception: mode 1: single antenna port, port 0; mode 2: transmit diversity; mode 3: a large delay CDD; mode 4: closed-loop spatial multiplexing; mode 5: MU-MIMO; mode 6: closed-loop spatial multiplexing, single-layer; mode 7: single antenna port, cell site specific RS (port 5); mode 8: (New in version 9): single or dual layer transmission (port 7 and/or port 8) with cell station specific RS. The CSI-RS is used by the cell station for channel estimation (i.e., CQI measurement). In some embodiments, the CSI-RS is periodically transmitted at a particular antenna port (up to eight transmit antenna ports) at different subcarrier frequencies (assigned to the cell station) for estimating the MIMO channel. In some embodiments, when non-codebook based precoding is applied, a cell-station specific demodulation reference signal (DM-RS) may be precoded in the same manner as the data.
Example (c):
1. an apparatus, comprising:
a transceiver to receive a Physical Downlink Shared Channel (PDSCH) transmission from a base station; and
a processing circuit configured to:
classifying a Downlink (DL) subframe type of a set of DL subframes associated with a first Uplink (UL) subframe for transmitting a hybrid automatic report request acknowledgement (HARQ-ACK); and
performing Physical Uplink Control Channel (PUCCH) resource mapping based on the classified DL subframe type for acknowledgement transmissions associated with reception of PDSCH transmissions.
2. The apparatus of example 1, wherein the DL subframe type comprises:
a type 1DL subframe constructed from DL subframes associated with a first Uplink (UL) subframe for transmitting HARQ-ACK according to a Time Division Duplex (TDD) UL/DL configuration indicated in a system information block type 1(SIB1) message;
a type 2DL subframe, the type 2DL subframe being constructed by:
firstly, according to DL reference UL/DL configuration configured by a higher layer, identifying DL subframes associated with a first UL subframe for transmitting HARQ-ACK; and is
Subframes that overlap between type 1DL subframes and type 2DL subframes are also removed out of type 2DL subframes if they overlap.
3. The apparatus of any of examples 1-2, wherein the processing circuitry is further to perform PUCCH resource mapping for PDSCH transmissions indicated via a Physical Downlink Control Channel (PDCCH) on type 1DL subframes based on the following formula:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>j</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
whereinIs a PUCCH resource offset associated with a legacy PDCCH, configured by higher layers for typePUCCH resource mapping of 1DL subframe, c is selected from {0, 1, 2, 3} such that Nc≤nCCE,j<Nc+1 Refers to the configuration of the downlink bandwidth,refers to the size of the resource block expressed as the number of subcarriers in the frequency domain, nCCE,jIs the number of the first Control Channel Element (CCE) used for the transmission of the corresponding PDCCH in type 1DL subframe j, j (j is more than or equal to 0 and less than M1) Is the index of the type 1DL subframe, M1Is the number of type 1DL subframes.
4. The apparatus of example 3, wherein the processing circuitry is further to perform PUCCH resource mapping for PDSCH transmissions indicated via the PDCCH on type 1DL subframes based on the following formula:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>j</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </math>
wherein j (j is more than or equal to 0 and is less than M1) Is the index of type 1DL subframe, ΔAROA finger HARQ-ACK resource offset value; the HARQ-ACK resource offset value is selected from predetermined values based on a 2-bit HARQ-ACK resource offset field in a Downlink Control Information (DCI) format depending on the number of type 1DL subframes associated with the first UL subframe for HARQ-ACK transmission.
5. The apparatus of example 4, wherein, depending on the number of type 1DL subframes associated with the first UL subframe for HARQ-ACK transmission, the processing circuitry is further to determine the HARQ-ACK offset Δ for the type 1DL subframe based on a 2-bit HARQ-ACK resource offset field in the DCI format of the corresponding PDCCHARO
If the number of type 1DL subframes is 1, then Δ is selected from {0, -1, -2, 2}AROA value of, and
from {0, Δ if the number of type 1DL subframes is greater than 11-1,Δ2-2, 2} ofAROValue of, wherein1Or Δ2May be {0, - (M)1-j-1)·Nc-j·Nc+1,-M1(Nc-Nc-1),-j(Nc+1-Nc),-(Nc+1-Nc),-M1·NcJ (0. ltoreq. j < M)1) Is the index of the type 1DL subframe, M1Is the number of type 1DL subframes, c is selected from {0, 1, 2, 3} such that Nc≤nCCE,j<Nc+1
6. The apparatus of any of examples 1-5, wherein the processing circuitry is further to perform PUCCH resource mapping for PDSCH transmissions indicated via a Physical Downlink Control Channel (PDCCH) on type 2DL subframes based on higher layer signaling or based on the following formula:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>-</mo> <mi>l</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
Or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>l</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>C</mi> <mi>F</mi> <mi>I</mi> <mo>,</mo> <mi>c</mi> </mrow> </msub> </munderover> <msub> <mi>N</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
Wherein,is a PUCCH resource offset associated with PDSCH on type 2DL subframes for PUCCH resource mapping, c is selected {0, 1, 2, 3} such that N isc≤nCCE,j<Nc+1 Refers to the configuration of the downlink bandwidth,refers to the size of the resource block, n, in the frequency domain expressed as the number of subcarriersCCE,lIs the number of the first Channel Control Element (CCE) used for the transmission of the corresponding PDCCH in type 2DL subframe l (0 ≦ l < M)2) Is an index of a type 2DL subframe, M2Is the number of type 2DL subframes, NCFI,cIs the Control Format Indicator (CFI) value carried on the Physical Control Format Indicator Channel (PCFICH) in the detected type 2 subframe c.
7. The apparatus of example 6, wherein the PUCCH resource is offsetThe wave higher layer signal is configured in a user equipment specific manner or a cell specific manner, or is determined based on the following formula:
<math> <mrow> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mn>4</mn> </msub> </mrow> </math>
wherein M is1Is the number of type 1DL subframes associated with the first UL subframe for HARQ-ACK transmission, N4Refers to PUCCH resources reserved for type 1DL subframes and calculated according to:
8. the apparatus of example 6, wherein the processing circuitry is further to perform PUCCH resource mapping for PDSCH transmissions via PDCCH on type 2DL subframes based on the following formula:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>-</mo> <mi>l</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </math>
or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </math>
Or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>l</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>C</mi> <mi>F</mi> <mi>I</mi> <mo>,</mo> <mi>c</mi> </mrow> </msub> </munderover> <msub> <mi>N</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </math>
Wherein l (0 is more than or equal to l and less than M2) Is the index of type 2DL subframe, ΔAROReferring to a HARQ-ACK resource offset value, the HARQ-ACK resource offset value is selected based on a 2-bit HARQ-ACK resource offset field in a Downlink Control Information (DCI) format depending on the number of type 2DL subframes associated with a first UL subframe for HARQ-ACK transmission.
9. The apparatus of example 8, wherein, depending on the number of type 2DL subframes associated with the first UL subframe for HARQ-ACK transmission, the processing circuitry is further to determine the HARQ-ACK offset for the type 2DL subframe based on a 2-bit HARQ-ACK resource offset field in the DCI format of the corresponding PDCCH:
if the number of type 2DL subframes is 1, then Δ is selected from {0, -1, -2, 2}AROA value of, and
from {0, Δ if the number of type 2DL subframes is greater than 11-1,Δ2-2, 2} ofAROValue of, wherein1Or Δ2Can be And l (0. ltoreq. l < M)2) Is an index of a type 2DL subframe, M1Is the number of type 1DL subframes associated with the same first UL subframe used for HARQ-ACK transmission, M2Is the number of type 2DL subframes,andis a PUCCH resource offset associated with PDSCH on type 1DL subframes and on type 2DL subframes, respectively, for PUCCH resource mapping, c is selected from {0, 1, 2, 3} such that Nc≤nCCE,j<Nc+1NCFI,cIs the Control Format Indicator (CFI) value carried on the Physical Control Format Indicator Channel (PCFICH) in the detected type 2 subframe c.
10. The apparatus of any of examples 1-9, wherein the processing circuitry is further to perform PUCCH resource mapping for PDSCH transmissions indicated via an Enhanced Physical Downlink Control Channel (EPDCCH) or an EPDCCH indicating a downlink semi-persistent scheduling (SPS) release in a type 1 or type 2 subframe, the user equipment should use if the EPDCCH Physical Resource Block (PRB) set q is configured for distributed transmission:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>n</mi> <mrow> <mi>E</mi> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mn>1</mn> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>N</mi> <mrow> <mi>E</mi> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>n</mi> <mo>-</mo> <msub> <mi>k</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>e</mi> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
if the EPDCCH-PRB set q is configured for localized transmission, then
Wherein n isECCE,qIs used for sub-frame n-kiOf a first ECCE of a transmission of a corresponding Downlink Control Information (DCI) allocation in a medium EPDCCH-PRB set qNumbering (i.e. the lowest ECCE index used to construct the EPDCCH), of the EPDCCH-PRB set qIs configured by a higher layer parameter pucch-ResourceStartOffset-r11, subframe n-kiOf EPDCCH-PRB set q in (1)Given that n' is according to the number used for sub-frame n-kiThe antenna port for transmission of the medium EPDCCH is determined, ΔAROIs the HARQ-ACK resource offset.
11. The apparatus of example 10, wherein the processing circuitry is further to perform PUCCH resource mapping for PDSCH transmissions indicated via the EPDCCH or the EPDCCH indicating a downlink SPS release in a type 1 or type 2 subframe, which the User Equipment (UE) should use:
or
Wherein L isiIndicating the minimum supportable aggregation level in subframe i.
12. A method, comprising:
receiving, via a transceiver, a Physical Downlink Shared Channel (PDSCH) transmission from a base station;
classifying, via processing circuitry, a Downlink (DL) subframe type of a set of DL subframes associated with a first Uplink (UL) subframe for transmitting a hybrid automatic report request acknowledgement (HARQ-ACK); and
performing Physical Uplink Control Channel (PUCCH) resource mapping based on the classified DL subframe type for acknowledgement transmissions associated with reception of PDSCH transmissions.
13. The method of example 12, wherein the DL subframe type comprises:
a type 1DL subframe constructed from DL subframes associated with a first Uplink (UL) subframe for transmitting HARQ-ACK according to a Time Division Duplex (TDD) UL/DL configuration indicated in a system information block type 1(SIB1) message;
a type 2DL subframe, the type 2DL subframe being constructed by:
first identifying a DL subframe associated with a first UL subframe for transmitting HARQ-ACK in accordance with a DL reference UL/DL configuration of a higher layer configuration; and is
Subframes that overlap between type 1DL subframes and type 2DL subframes are also removed out of type 2DL subframes if they overlap.
14. The method of any of examples 12-13, further comprising performing PUCCH resource mapping for PDSCH transmissions indicated via a Physical Downlink Control Channel (PDCCH) on type 1DL subframes based on the following formula:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>j</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
whereinIs the PUCCH resource offset associated with the legacy PDCCH, is configured by higher layers for resource mapping of type 1DL subframe PUCCH, c is selected from {0, 1, 2, 3} such that Nc ≦ nCCE,j<Nc+1 Refers to the configuration of the downlink bandwidth,refers to the size of the resource block expressed as the number of subcarriers in the frequency domain, nCCE,jIs the number of the first Control Channel Element (CCE) used for the transmission of the corresponding PDCCH in the type 1DL subframe j, j (j is more than or equal to 0 and less than M1) Is the index of the type 1DL subframe, M1Is the number of type 1DL subframes.
15. The method of example 14, further comprising performing PUCCH resource mapping for PDSCH transmissions indicated via PDCCH on type 1DL subframes based on the following formula:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>j</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </math>
wherein j (j is more than or equal to 0 and is less than M1) Is the index of type 1DL subframe, ΔAROA finger HARQ-ACK resource offset value; the HARQ-ACK resource offset value is selected from predetermined values based on a 2-bit HARQ-ACK resource offset field in a Downlink Control Information (DCI) format depending on the number of type 1DL subframes associated with the first UL subframe for HARQ-ACK transmission.
16. The method of example 15, further comprising: determining a HARQ-ACK offset Δ for a type 1DL subframe based on a 2-bit HARQ-ACK resource offset field in a DCI format of a corresponding PDCCH depending on a number of type 1DL subframes associated with a first UL subframe for HARQ-ACK transmissionARO
If the number of type 1DL subframes is 1, then Δ is selected from {0, -1, -2, 2}AROA value of, and
from {0, Δ if the number of type 1DL subframes is greater than 11-1,Δ2-2, 2} ofAROValue of, wherein1Or Δ2May be {0, - (M)1-j-1)·Nc-j·Nc+1,-M1(Nc-Nc-1),-j(Nc+1-Nc),-(Nc+1-Nc),-M1·NcJ (0. ltoreq. j < M)1) Is the index of the type 1DL subframe, M1Is the number of type 1DL subframes, c is selected from {0, 1, 2, 3} such that
17. The method of any of examples 12-16, further comprising performing PUCCH resource mapping for PDSCH transmissions indicated via a Physical Downlink Control Channel (PDCCH) on type 2DL subframes based on higher layer signaling or based on the following formula:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>-</mo> <mi>l</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
Or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>l</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>C</mi> <mi>F</mi> <mi>I</mi> <mo>,</mo> <mi>c</mi> </mrow> </msub> </munderover> <msub> <mi>N</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
Wherein,is a PUCCH resource offset associated with PDSCH on type 2DL subframes for PUCCH resource mapping, c is selected {0, 1, 2, 3} such that N isc≤nCCE,j<Nc+1 Refers to the configuration of the downlink bandwidth,refers to the size of the resource block, n, in the frequency domain expressed as the number of subcarriersCCE,lIs the number of the first Channel Control Element (CCE) used for the transmission of the corresponding PDCCH in type 2DL subframe l (0 ≦ l < M)2) Is an index of a type 2DL subframe, M2Is the number of type 2DL subframes, NCFI,cIs the Control Format Indicator (CFI) value carried on the Physical Control Format Indicator Channel (PCFICH) in the detected type 2 subframe c。
18. The method of example 17, wherein the PUCCH resource offsetThe higher layer signal is configured in a user equipment specific manner or a cell specific manner, or is determined based on the following formula:
N P U C C H ( 2 ) = M 1 | N 4
wherein M is1Is the number of type 1DL subframes associated with the first UL subframe for HARQ-ACK transmission, N4Refers to PUCCH resources reserved for type 1DL subframes and calculated according to:
19. the method of example 17, further comprising performing PUCCH resource mapping for PDSCH transmission via PDCCH on type 2DL subframes based on the following formula:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>-</mo> <mi>l</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>F</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </math>
or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </math>
Or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>l</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>C</mi> <mi>F</mi> <mi>I</mi> <mo>,</mo> <mi>C</mi> </mrow> </msub> </munderover> <msub> <mi>N</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </math>
Wherein l (0 is more than or equal to l and less than M2) Is the index of type 2DL subframe, ΔAROA finger HARQ-ACK resource offset value; dependent on an association with a first UL subframe for HARQ-ACK transmissionA number of type 2DL subframes, a HARQ-ACK resource offset value is selected based on a 2-bit HARQ-ACK resource offset field in a Downlink Control Information (DCI) format.
20. The method of example 19, further comprising: depending on the number of type 2DL subframes associated with the first UL subframe for HARQ-ACK transmission, the HARQ-ACK offset for a type 2DL subframe is determined based on a 2-bit HARQ-ACK resource offset field in the DCI format of the corresponding PDCCH:
if the number of type 2DL subframes is 1, then Δ is selected from {0, -1, -2, 2}AROA value of, and
from {0, Δ if the number of type 2DL subframes is greater than 11-1,Δ2-2, 2} ofAROValue of, wherein1Or Δ2Can be And l (0. ltoreq. l < M)2) Is an index of a type 2DL subframe, M1Is the number of type 1DL subframes associated with the same first UL subframe used for HARQ-ACK transmission, M2Is the number of type 2DL subframes,andis a PUCCH resource offset associated with PDSCH on type 1DL subframes and on type 2DL subframes, respectively, for PUCCH resource mapping, c is selected from {0, 1, 2, 3} such that Nc≤nCCE,j<Nc+1NCFI,cIs the Control Format Indicator (CFI) value carried on the Physical Control Format Indicator Channel (PCFICH) in the detected type 2 subframe c.
21. The method of any of examples 12-20, further comprising: performing PUCCH resource mapping for EPDCCH transmissions indicated via an Enhanced Physical Downlink Control Channel (EPDCCH) or an EPDCCH indicating a downlink semi-persistent scheduling (SPS) release in type 1 or type 2 subframes, if the EPDCCH Physical Resource Block (PRB) set q is configured for distributed transmission, the user equipment should use:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>n</mi> <mrow> <mi>E</mi> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mn>1</mn> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>N</mi> <mrow> <mi>E</mi> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>n</mi> <mo>-</mo> <msub> <mi>k</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>e</mi> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
or if the EPDCCH-PRB set q is configured for localized transmission
Wherein n isECCE,qIs used for sub-frame n-kiThe number of the first ECCE of the transmission allocated by the corresponding Downlink Control Information (DCI) in the EPDCCH-PRB set q (i.e., the lowest ECCE index used to construct the EPDCCH), the EPDCCH-PRB set qIs configured by a higher layer parameter pucch-ResourceStartOffset-r11, subframe n-kiOf EPDCCH-PRB set q in (1)Given that n' is according to the number used for sub-frame n-kiThe antenna port for transmission of the medium EPDCCH is determined, ΔAROIs the HARQ-ACK resource offset.
22. The method of example 21, further comprising performing PUCCH resource mapping for PDSCH transmissions indicated via EPDCCH or EPDCCH indicating downlink SPS release in type 1 or type 2 subframes, which a User Equipment (UE) should use:
or
Wherein L isiIndicating the minimum supportable aggregation level in subframe i.
23. A machine-readable storage device having instructions to cause a machine to:
receiving, via a transceiver, a Physical Downlink Shared Channel (PDSCH) transmission from a base station;
classifying, via processing circuitry, a Downlink (DL) subframe type of a set of DL subframes associated with a first Uplink (UL) subframe for transmitting a hybrid automatic report request acknowledgement (HARQ-ACK); and
performing Physical Uplink Control Channel (PUCCH) resource mapping based on the classified DL subframe type for acknowledgement transmissions associated with reception of PDSCH transmissions.
24. The machine-readable storage device of example 23, wherein the DL subframe type comprises:
a type 1DL subframe constructed from DL subframes associated with a first Uplink (UL) subframe for transmitting HARQ-ACK according to a Time Division Duplex (TDD) UL/DL configuration indicated in a system information block type 1(SIB1) message;
a type 2DL subframe, the type 2DL subframe being constructed by:
firstly, according to DL reference UL/DL configuration configured by a higher layer, identifying DL subframes associated with a first UL subframe for transmitting HARQ-ACK; and is
Subframes that overlap between type 1DL subframes and type 2DL subframes are also removed from the type 2DL subframes if they overlap.
Although some embodiments have been described in detail, other modifications are possible. For example, the logic flows depicted in the figures do not require the particular order shown, or sequential order, to achieve desirable results. Other steps may be provided, or steps may be eliminated, from the described streams, or other components may be added to, or eliminated, from the described systems. Other embodiments may be within the scope of the following claims.

Claims (24)

1. An apparatus, comprising:
a transceiver to receive a Physical Downlink Shared Channel (PDSCH) transmission from a base station; and
a processing circuit configured to:
classifying a Downlink (DL) subframe type of a set of DL subframes associated with a first Uplink (UL) subframe for transmitting a hybrid automatic report request acknowledgement (HARQ-ACK); and
performing Physical Uplink Control Channel (PUCCH) resource mapping based on the classified DL subframe type for acknowledgement transmissions associated with reception of PDSCH transmissions.
2. The device of claim 1, wherein the DL subframe type comprises:
a type 1DL subframe, the type 1DL subframe constructed from the following DL subframes: the DL subframe is associated with a first Uplink (UL) subframe for transmitting HARQ-ACK according to a Time Division Duplex (TDD) UL/DL configuration indicated in a System information Block type 1(SIB1) message;
a type 2DL subframe, the type 2DL subframe being constructed by:
first identifying a DL subframe associated with the first UL subframe for transmitting HARQ-ACK according to a DL reference UL/DL configuration of a higher layer configuration; and is
Also removing the overlapped subframes between type 1DL subframes and type 2DL subframes from the type 2DL subframes if the type 1DL subframes and the type 2DL subframes overlap.
3. The device of claim 1, wherein the processing circuitry is further to perform PUCCH resource mapping for PDSCH transmissions indicated via a Physical Downlink Control Channel (PDCCH) on type 1DL subframes based on the following formula:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>j</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
whereinIs a PUCCH resource offset associated with legacy PDCCH, is higher layer configured for PUCCH resource mapping of type 1DL subframe, c is selected from {0, 1, 2, 3} such that Nc≤nCCE,j<Nc+1 Refers to the configuration of the downlink bandwidth,refers to the size of the resource block expressed as the number of subcarriers in the frequency domain, nCCE,jIs the number of the first Control Channel Element (CCE) used for the transmission of the corresponding PDCCH in type 1DL subframe j, j (j is more than or equal to 0 and less than M1) Is the index of the type 1DL subframe, M1Is the number of said type 1DL subframes.
4. The device of claim 3, wherein the processing circuitry is further to perform PUCCH resource mapping for PDSCH transmissions indicated via PDCCH on type 1DL subframes based on the following equation:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>j</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </math>
wherein j (j is more than or equal to 0 and is less than M1) Is the index, Δ, of the type 1DL subframeAROA finger HARQ-ACK resource offset value; the HARQ-ACK resource offset value is selected from predetermined values based on a 2-bit HARQ-ACK resource offset field in a Downlink Control Information (DCI) format depending on a number of type 1DL subframes associated with the first UL subframe for HARQ-ACK transmission.
5. The device of claim 4, wherein the processing circuitry is further to based on a number of type 1DL subframes associated with the first UL subframe for HARQ-ACK transmission, respectivelyTo determine the HARQ-ACK offset delta of a type 1DL subframeARO
If the number of type 1DL subframes is 1, then Δ is selected from {0, -1, -2, 2}AROA value of, and
from {0, Δ if the number of type 1DL subframes is greater than 11-1,Δ2-2, 2} ofAROValue of, wherein1Or Δ2May be {0, - (M)1-j-1)·Nc-j·Nc+1,-M1(Nc-Nc-1),-j(Nc+1-Nc),-(Nc+1-Nc),-M1·NcJ (0. ltoreq. j < M)1) Is the index of the type 1DL subframe, M1Is the number of type 1DL subframes, c is selected from {0, 1, 2, 3} such that Nc≤nCCE,j<Nc+1
6. The device of claim 1, wherein the processing circuitry is further to perform PUCCH resource mapping for PDSCH transmissions indicated via a Physical Downlink Control Channel (PDCCH) on type 2DL subframes based on higher layer signaling or based on the following formula:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>-</mo> <mi>l</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
Or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>l</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>C</mi> <mi>F</mi> <mi>I</mi> <mo>,</mo> <mi>c</mi> </mrow> </msub> </munderover> <msub> <mi>N</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
Wherein,is a PUCCH resource offset associated with PDSCH on type 2DL subframes for PUCCH resource mapping, c is selected {0, 1, 2, 3} such that N isc≤nCCE,j<Nc+1 Refers to the configuration of the downlink bandwidth,refers to the size of the resource block, n, in the frequency domain expressed as the number of subcarriersCCE,lIs the first channel control element (C) used for transmission of the corresponding PDCCH in type 2DL subframe lCE), l (0. ltoreq. l < M)2) Is an index of a type 2DL subframe, M2Is the number of type 2DL subframes, NCFI,cIs the Control Format Indicator (CFI) value carried on the Physical Control Format Indicator Channel (PCFICH) in the detected type 2 subframe c.
7. The device of claim 6, wherein the PUCCH resource offsetThe higher layer signal is configured in a user equipment specific manner or a cell specific manner, or is determined based on the following formula:
<math> <mrow> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mn>4</mn> </msub> </mrow> </math>
wherein M is1Is the number of type 1DL subframes associated with the first UL subframe for HARQ-ACK transmission, N4Refers to PUCCH resources reserved for type 1DL subframes and calculated according to:
8. the device of claim 6, wherein the processing circuitry is further to perform PUCCH resource mapping for PDSCH transmissions via PDCCH on type 2DL subframes based on the following equation:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>-</mo> <mi>l</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>F</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </math>
or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </math>
Or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>l</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>C</mi> <mi>F</mi> <mi>I</mi> <mo>,</mo> <mi>c</mi> </mrow> </msub> </munderover> <msub> <mi>N</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </math>
Wherein l (0 is more than or equal to l and less than M2) Is the index, Δ, of the type 2DL subframeAROA finger HARQ-ACK resource offset value; the HARQ-ACK resource offset value is selected based on a 2-bit HARQ-ACK resource offset field in a Downlink Control Information (DCI) format depending on a number of type 2DL subframes associated with the first UL subframe for HARQ-ACK transmission.
9. The device of claim 8, wherein, depending on a number of type 2DL subframes associated with the first UL subframe for HARQ-ACK transmission, the processing circuitry is further to determine a HARQ-ACK offset for the type 2DL subframe based on a 2-bit HARQ-ACK resource offset field in the DCI format of the corresponding PDCCH:
if the number of type 2DL subframes is 1, then select Δ from {0, -1, -2, 2}AROA value of, and
if the number of type 2DL subframes is greater than 1, then from {0, Δ }1-1,Δ2-2, 2} ofAROValue of, wherein1Or Δ2May be {0, - (M)2-l-1)·Nc-l·Nc+1,-M2(Nc-Nc-1), <math> <mrow> <mo>-</mo> <mi>l</mi> <mrow> <mo>(</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>,</mo> <mo>-</mo> <mrow> <mo>(</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mn>4</mn> </msub> <mo>,</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>C</mi> <mi>F</mi> <mi>I</mi> <mo>,</mo> <mi>c</mi> </mrow> </msub> </munderover> <msub> <mi>N</mi> <mi>m</mi> </msub> <mo>}</mo> </mrow> </math> And l (0. ltoreq. l < M)2) Is the index of the type 2DL subframe, M1Is the number of type 1DL subframes associated with the same first UL subframe used for HARQ-ACK transmission, M2Is the number of type 2DL subframes,andis a PUCCH resource offset associated with PDSCH on type 1DL subframes and on type 2DL subframes, respectively, for PUCCH resource mapping, c is selected from {0, 1, 2, 3} such that Nc≤nCCE,j<Nc+1NCFI,cIs the Control Format Indicator (CFI) value carried on the Physical Control Format Indicator Channel (PCFICH) in the detected type 2 subframe c.
10. The device of claim 1, wherein the processing circuitry is further to perform PUCCH resource mapping for PDSCH transmissions indicated via an Enhanced Physical Downlink Control Channel (EPDCCH) or an EPDCCH indicating a downlink semi-persistent scheduling (SPS) release in a type 1 or type 2 subframe, the user device should use if an EPDCCH Physical Resource Block (PRB) set q is configured for distributed transmission:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>n</mi> <mrow> <mi>E</mi> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mn>1</mn> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>N</mi> <mrow> <mi>E</mi> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>n</mi> <mo>-</mo> <msub> <mi>k</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>e</mi> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
whereas if the EPDCCH-PRB set q is configured for localized transmission, then
Wherein n isECCE,qIs used for sub-frame n-kiThe number of the first ECCE of the transmission allocated by the corresponding Downlink Control Information (DCI) in the EPDCCH-PRB set q (i.e., the lowest ECCE index used to construct the EPDCCH), the EPDCCH-PRB set qConfigured by a higher layer parameter pucch-ResourceStartOffset-r11, subframe n-kiOf EPDCCH-PRB set q in (1)Given that n' is according to the number used for sub-frame n-kiThe antenna port for transmission of the medium EPDCCH is determined, ΔAROIs the HARQ-ACK resource offset.
11. The device of claim 10, wherein the processing circuitry is further to perform PUCCH resource mapping for PDSCH transmissions indicated via EPDCCH or EPDCCH indicating downlink SPS release in type 1 or type 2 subframes that the User Equipment (UE) should use:
or
Wherein L isiIndicating the minimum supportable aggregation level in subframe i.
12. A method, comprising:
receiving, via a transceiver, a Physical Downlink Shared Channel (PDSCH) transmission from a base station;
classifying, via processing circuitry, a Downlink (DL) subframe type of a set of DL subframes associated with a first Uplink (UL) subframe for transmitting a hybrid automatic report request acknowledgement (HARQ-ACK); and
performing Physical Uplink Control Channel (PUCCH) resource mapping based on the classified DL subframe type for acknowledgement transmissions associated with reception of PDSCH transmissions.
13. The method of claim 12, wherein the DL subframe type comprises:
a type 1DL subframe, the type 1DL subframe constructed from the following DL subframes: the DL subframe is associated with a first Uplink (UL) subframe for transmitting HARQ-ACK according to a Time Division Duplex (TDD) UL/DL configuration indicated in a System information Block type 1(SIB1) message;
a type 2DL subframe, the type 2DL subframe being constructed by:
first identifying a DL subframe associated with the first UL subframe for transmitting HARQ-ACK according to a DL reference UL/DL configuration of a higher layer configuration; and is
Also removing the overlapped subframes between type 1DL subframes and type 2DL subframes from the type 2DL subframes if the type 1DL subframes and the type 2DL subframes overlap.
14. The method of claim 12, further comprising performing PUCCH resource mapping for PDSCH transmissions indicated via a Physical Downlink Control Channel (PDCCH) on type 1DL subframes based on the following formula:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>j</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>-</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>j</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
whereinIs a PUCCH resource offset associated with legacy PDCCH, is configured by higher layers for resource mapping of type 1DL subframe PUCCH, c is selected from {0, 1, 2, 3} such that Nc≤nCCE,j<Nc+1 Refers to the configuration of the downlink bandwidth,refers to the size of the resource block expressed as the number of subcarriers in the frequency domain, nCCE,jIs the number of the first Control Channel Element (CCE) used for the transmission of the corresponding PDCCH in type 1DL subframe j, j (j is more than or equal to 0 and less than M1) Is the index of the type 1DL subframe, M1Is the number of said type 1DL subframes.
15. The method of claim 14, further comprising performing PUCCH resource mapping for PDSCH transmissions indicated via PDCCH on type 1DL subframes based on the following formula:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mi>j</mi> </msub> <mo>-</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>j</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </math>
wherein j (j is more than or equal to 0 and is less than M1) Is the index, Δ, of the type 1DL subframeAROA finger HARQ-ACK resource offset value; the HARQ-ACK resource offset value is selected from predetermined values based on a 2-bit HARQ-ACK resource offset field in a Downlink Control Information (DCI) format depending on a number of type 1DL subframes associated with the first UL subframe for HARQ-ACK transmission.
16. The method of claim 15, further comprising: determining a HARQ-ACK offset Δ for a type 1DL subframe based on a 2-bit HARQ-ACK resource offset field in a DCI format of a corresponding PDCCH depending on a number of type 1DL subframes associated with the first UL subframe for HARQ-ACK transmissionARO
If the number of type 1DL subframes is 1, then Δ is selected from {0, -1, -2, 2}AROA value of, and
from {0, Δ if the number of type 1DL subframes is greater than 11-1,Δ2-2, 2} ofAROValue of, wherein1Or Δ2May be {0, - (M)1-j-1)·Nc-j·Nc+1,-M1(Nc-Nc-1),-j(Nc+1-Nc),-(Nc+1-Nc),-M1·NcJ 0 < j < M1Is the index of type 1DL subframe, M1Is the number of type 1DL subframes, c is selected from {0, 1, 2, 3} such that Nc≤nCCE,j<Nc+1
17. The method of claim 12, further comprising performing PUCCH resource mapping for PDSCH transmissions indicated via a Physical Downlink Control Channel (PDCCH) on type 2DL subframes based on higher layer signaling or based on the following formula:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>-</mo> <mi>l</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
Or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>l</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>C</mi> <mi>F</mi> <mi>I</mi> <mo>,</mo> <mi>c</mi> </mrow> </msub> </munderover> <msub> <mi>N</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
Wherein,is a PUCCH resource offset associated with PDSCH on type 2DL subframes for PUCCH resource mapping, c is selected {0, 1, 2, 3} such that N iscnCCE,j<Nc+1 Refers to the configuration of the downlink bandwidth,refers to the size of the resource block, n, in the frequency domain expressed as the number of subcarriersCCF,lIs the number of said first Channel Control Element (CCE) used for the transmission of the corresponding PDCCH in type 2DL subframe l (0 ≦ l < M)2) Is an index of a type 2DL subframe, M2Is the number of type 2DL subframes, NCFI,cIs the Control Format Indicator (CFI) value carried on the Physical Control Format Indicator Channel (PCFICH) in the detected type 2 subframe c.
18. The method of claim 17, in which the PUCCH resource offsetThe higher layer signal is configured in a user equipment specific manner or a cell specific manner, or is determined based on the following formula:
<math> <mrow> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mn>4</mn> </msub> </mrow> </math>
wherein M is1Is the number of type 1DL subframes associated with the first UL subframe for HARQ-ACK transmission, N4Refers to PUCCH resources reserved for type 1DL subframes and calculated according to:
19. the method of claim 17, further comprising performing PUCCH resource mapping for PDSCH transmission via PDCCH on type 2DL subframes based on the following formula:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>-</mo> <mi>l</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </math>
or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <mi>l</mi> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mn>4</mn> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </math>
Or
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>l</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>l</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>C</mi> <mi>F</mi> <mi>I</mi> <mo>,</mo> <mi>c</mi> </mrow> </msub> </munderover> <msub> <mi>N</mi> <mi>m</mi> </msub> <mo>+</mo> <msub> <mi>n</mi> <mrow> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>l</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> </mrow> </math>
Wherein l (0 is more than or equal to l and less than M2) Is the index, Δ, of the type 2DL subframeAROA finger HARQ-ACK resource offset value; the HARQ-ACK resource offset value is selected based on a 2-bit HARQ-ACK resource offset field in a Downlink Control Information (DCI) format depending on a number of type 2DL subframes associated with the first UL subframe for HARQ-ACK transmission.
20. The method of claim 19, further comprising: determining a HARQ-ACK offset for a type 2DL subframe based on a 2-bit HARQ-ACK resource offset field in the DCI format of the corresponding PDCCH depending on a number of type 2DL subframes associated with the first UL subframe for HARQ-ACK transmission:
if the number of type 2DL subframes is 1, then select Δ from {0, -1, -2, 2}AROA value of, and
if the number of type 2DL subframes is greater than 1, then from {0, Δ }1-1,Δ2-2, 2} ofAROValue of, wherein1Or Δ2It may be a combination of 0 s,-(M2-l-1)·Nc-l·Nc+1,-M2(Nc-Nc-1), <math> <mrow> <mo>-</mo> <mi>l</mi> <mrow> <mo>(</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mrow> <mo>(</mo> <msub> <mi>N</mi> <mrow> <mi>c</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mo>-</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <msub> <mi>M</mi> <mn>2</mn> </msub> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mi>c</mi> </msub> <mo>,</mo> <mo>-</mo> <mrow> <mo>(</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </msubsup> <mo>-</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>&CenterDot;</mo> <msub> <mi>N</mi> <mn>4</mn> </msub> <mo>,</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>c</mi> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <msub> <mi>M</mi> <mn>1</mn> </msub> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <munderover> <mo>&Sigma;</mo> <mrow> <mi>m</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>N</mi> <mrow> <mi>C</mi> <mi>F</mi> <mi>I</mi> <mo>,</mo> <mi>c</mi> </mrow> </msub> </munderover> <msub> <mi>N</mi> <mi>m</mi> </msub> <mo>}</mo> </mrow> </math> and l (0. ltoreq. l < M)2) Is the index of the type 2DL subframe, M1Is the number of type 1DL subframes associated with the same first UL subframe used for HARQ-ACK transmission, M2Is the number of type 2DL subframes,andis a PUCCH resource offset associated with PDSCH on type 1DL subframes and on type 2DL subframes, respectively, for PUCCH resource mapping, c is selected from {0, 1, 2, 3} such that Nc≤nCCE,j<Nc+1NCFI,cIs the Control Format Indicator (CFI) value carried on the Physical Control Format Indicator Channel (PCFICH) in the detected type 2 subframe c.
21. The method of claim 12, further comprising: performing PUCCH resource mapping for PDSCH transmissions indicated via an Enhanced Physical Downlink Control Channel (EPDCCH) or an EPDCCH indicating a downlink semi-persistent scheduling (SPS) release in type 1 or type 2 subframes, the user equipment should use if an EPDCCH Physical Resource Block (PRB) set q is configured for distributed transmission:
<math> <mrow> <msubsup> <mi>n</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>i</mi> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> <mo>=</mo> <msub> <mi>n</mi> <mrow> <mi>E</mi> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mo>+</mo> <munderover> <mo>&Sigma;</mo> <mrow> <mi>i</mi> <mn>1</mn> <mo>=</mo> <mn>0</mn> </mrow> <mrow> <mi>i</mi> <mo>-</mo> <mn>1</mn> </mrow> </munderover> <msub> <mi>N</mi> <mrow> <mi>E</mi> <mi>C</mi> <mi>C</mi> <mi>E</mi> <mo>,</mo> <mi>q</mi> <mo>,</mo> <mi>n</mi> <mo>-</mo> <msub> <mi>k</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>&Delta;</mi> <mrow> <mi>A</mi> <mi>R</mi> <mi>O</mi> </mrow> </msub> <mo>+</mo> <msubsup> <mi>N</mi> <mrow> <mi>P</mi> <mi>U</mi> <mi>C</mi> <mi>C</mi> <mi>H</mi> <mo>,</mo> <mi>q</mi> </mrow> <mrow> <mo>(</mo> <mi>e</mi> <mn>1</mn> <mo>)</mo> </mrow> </msubsup> </mrow> </math>
whereas if the EPDCCH-PRB set q is configured for localized transmission, then
WhereinIs used for sub-frame n-kiThe number of the first ECCE of the transmission allocated by the corresponding Downlink Control Information (DCI) in the EPDCCH-PRB set q (i.e., the lowest ECCE index used to construct the EPDCCH), the EPDCCH-PRB set qConfigured by a higher layer parameter pucch-ResourceStartOffset-r11, subframe n-kiOf EPDCCH-PRB set q in (1)Given that n' is according to the number used for sub-frame n-kiThe antenna port for transmission of the medium EPDCCH is determined, ΔAROIs the HARQ-ACK resource offset.
22. The method of claim 21, further comprising performing PUCCH resource mapping for PDSCH transmissions indicated via EPDCCH or EPDCCH indicating downlink SPS release in type 1 or type 2 subframes, which the User Equipment (UE) should use:
or
Wherein L isiIndicating the minimum supportable aggregation level in subframe i.
23. A machine-readable storage device having instructions to cause a machine to:
receiving, via a transceiver, a Physical Downlink Shared Channel (PDSCH) transmission from a base station;
classifying, via processing circuitry, a Downlink (DL) subframe type of a set of DL subframes associated with a first Uplink (UL) subframe for transmitting a hybrid automatic report request acknowledgement (HARQ-ACK); and
performing Physical Uplink Control Channel (PUCCH) resource mapping based on the classified DL subframe type for acknowledgement transmissions associated with reception of PDSCH transmissions.
24. The machine-readable storage device of claim 23, wherein the DL subframe type comprises:
a type 1DL subframe, the type 1DL subframe constructed from the following DL subframes: the DL subframe is associated with a first Uplink (UL) subframe for transmitting HARQ-ACK according to a Time Division Duplex (TDD) UL/DL configuration indicated in a System information Block type 1(SIB1) message;
a type 2DL subframe, the type 2DL subframe being constructed by:
first identifying a DL subframe associated with the first UL subframe for transmitting HARQ-ACK according to a DL reference UL/DL configuration of a higher layer configuration; and is
Also removing the overlapped subframes between type 1DL subframes and type 2DL subframes from the type 2DL subframes if the type 1DL subframes and the type 2DL subframes overlap.
CN201480011167.6A 2013-04-04 2014-04-01 Reconfigure control channel resource impact conflict avoidance Expired - Fee Related CN105122673B (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201361808597P 2013-04-04 2013-04-04
US61/808,597 2013-04-04
US14/141,876 US9445338B2 (en) 2013-04-04 2013-12-27 Reconfiguration control channel resource mapping collision avoidance
US14/141,876 2013-12-27
PCT/US2014/032532 WO2014165517A1 (en) 2013-04-04 2014-04-01 Reconfiguration control channel resource mapping collision avoidance

Publications (2)

Publication Number Publication Date
CN105122673A true CN105122673A (en) 2015-12-02
CN105122673B CN105122673B (en) 2018-08-10

Family

ID=51654390

Family Applications (11)

Application Number Title Priority Date Filing Date
CN201380074047.6A Pending CN105265016A (en) 2013-04-04 2013-12-20 Dual connectivity for terminals supporting one uplink carrier
CN201380073843.8A Active CN105027499B (en) 2013-04-04 2013-12-24 Peer-to-peer (P2P) content distribution over Internet Protocol (IP) multimedia subsystem (IMS)
CN201380074064.XA Active CN105027666B (en) 2013-04-04 2013-12-27 The equipment, system and method for flow routing centered on user equipment (UE)
CN201910593553.5A Active CN110381542B (en) 2013-04-04 2013-12-27 Apparatus, system, and method for User Equipment (UE) -centric traffic routing
CN201380073911.0A Active CN105009684B (en) 2013-04-04 2013-12-27 The devices, systems, and methods of cellular network communication corresponding with non-cellular network
CN201480010332.6A Pending CN105009662A (en) 2013-04-04 2014-03-21 Paging repetition for increased robustness for extended paging cycles
CN201810316235.XA Active CN108683484B (en) 2013-04-04 2014-03-21 Method and device for detecting paging message
CN201480011175.0A Expired - Fee Related CN105103473B (en) 2013-04-04 2014-03-28 Device-to-device communication through network scheduling
CN201480011167.6A Expired - Fee Related CN105122673B (en) 2013-04-04 2014-04-01 Reconfigure control channel resource impact conflict avoidance
CN201480010992.4A Expired - Fee Related CN105027468B (en) 2013-04-04 2014-04-03 For being directed to the enhancement mode node B and method of the RRC of small data transmission connections foundation
CN201480011258.XA Active CN105027469B (en) 2013-04-04 2014-04-03 For the virtual carrier testing mechanism of long term evolution (LTE)

Family Applications Before (8)

Application Number Title Priority Date Filing Date
CN201380074047.6A Pending CN105265016A (en) 2013-04-04 2013-12-20 Dual connectivity for terminals supporting one uplink carrier
CN201380073843.8A Active CN105027499B (en) 2013-04-04 2013-12-24 Peer-to-peer (P2P) content distribution over Internet Protocol (IP) multimedia subsystem (IMS)
CN201380074064.XA Active CN105027666B (en) 2013-04-04 2013-12-27 The equipment, system and method for flow routing centered on user equipment (UE)
CN201910593553.5A Active CN110381542B (en) 2013-04-04 2013-12-27 Apparatus, system, and method for User Equipment (UE) -centric traffic routing
CN201380073911.0A Active CN105009684B (en) 2013-04-04 2013-12-27 The devices, systems, and methods of cellular network communication corresponding with non-cellular network
CN201480010332.6A Pending CN105009662A (en) 2013-04-04 2014-03-21 Paging repetition for increased robustness for extended paging cycles
CN201810316235.XA Active CN108683484B (en) 2013-04-04 2014-03-21 Method and device for detecting paging message
CN201480011175.0A Expired - Fee Related CN105103473B (en) 2013-04-04 2014-03-28 Device-to-device communication through network scheduling

Family Applications After (2)

Application Number Title Priority Date Filing Date
CN201480010992.4A Expired - Fee Related CN105027468B (en) 2013-04-04 2014-04-03 For being directed to the enhancement mode node B and method of the RRC of small data transmission connections foundation
CN201480011258.XA Active CN105027469B (en) 2013-04-04 2014-04-03 For the virtual carrier testing mechanism of long term evolution (LTE)

Country Status (10)

Country Link
US (16) US9160515B2 (en)
EP (11) EP2982154B1 (en)
JP (2) JP6279621B2 (en)
KR (1) KR101784760B1 (en)
CN (11) CN105265016A (en)
ES (1) ES2693462T3 (en)
HK (10) HK1216963A1 (en)
HU (1) HUE040329T2 (en)
TW (8) TWI577200B (en)
WO (13) WO2014163686A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9794876B2 (en) 2013-03-29 2017-10-17 Intel IP Corporation Extended paging discontinuous reception (DRX) cycles in wireless communication networks
WO2017193976A1 (en) * 2016-05-13 2017-11-16 中兴通讯股份有限公司 Resource allocation method and device, and base station
US9930647B2 (en) 2013-04-04 2018-03-27 Intel IP Corporation Enhanced node B and method for RRC connection establishment for small data transfers
CN108463964A (en) * 2016-01-15 2018-08-28 高通股份有限公司 Control channel resource impact through shortening
CN108702752A (en) * 2016-03-31 2018-10-23 索尼公司 Terminal installation, base station apparatus and communication means
CN108886439A (en) * 2016-03-30 2018-11-23 高通股份有限公司 The mixed automatic repeat request timing of transmission time interval for reduction
CN109600847A (en) * 2017-09-30 2019-04-09 北京三星通信技术研究有限公司 Transmitting uplink control information, the method and apparatus that upstream time lead is set
US10587389B2 (en) 2013-01-03 2020-03-10 Apple Inc. Apparatus and method for single-tone device discovery in wireless communication networks
CN111556537A (en) * 2019-02-12 2020-08-18 大唐移动通信设备有限公司 Message transmission method and device
CN111988120A (en) * 2019-05-23 2020-11-24 华为技术有限公司 Communication method and device
CN113196696A (en) * 2018-09-28 2021-07-30 苹果公司 Physical uplink control channel resource determination and multiplexing of multiple hybrid automatic repeat request acknowledgement feedbacks and other uplink control information on physical uplink control channel and physical uplink shared channel

Families Citing this family (209)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200008016A (en) 2011-06-29 2020-01-22 엘지전자 주식회사 Method and apparatus for transmitting control information in wireless communication system
CN102316521B (en) * 2011-09-15 2014-04-16 电信科学技术研究院 Data transmission method, system and device
GB2496908B (en) 2011-11-28 2017-04-26 Ubiquisys Ltd Power management in a cellular system
US9332458B2 (en) 2012-03-25 2016-05-03 Cisco Technology, Inc. System and method for optimizing performance of a communication network
US9019924B2 (en) * 2012-04-04 2015-04-28 Samsung Electronics Co., Ltd. High-order multiple-user multiple-input multiple-output operation for wireless communication systems
US9143309B2 (en) 2012-04-13 2015-09-22 Dominant Technologies, LLC Hopping master in wireless conference
US10568155B2 (en) 2012-04-13 2020-02-18 Dominant Technologies, LLC Communication and data handling in a mesh network using duplex radios
US10136426B2 (en) 2014-12-05 2018-11-20 Dominant Technologies, LLC Wireless conferencing system using narrow-band channels
US10356640B2 (en) 2012-11-01 2019-07-16 Intel Corporation Apparatus, system and method of cellular network communications corresponding to a non-cellular network
US9414392B2 (en) 2012-12-03 2016-08-09 Intel Corporation Apparatus, system and method of user-equipment (UE) centric access network selection
US9167444B2 (en) 2012-12-04 2015-10-20 Cisco Technology, Inc. Method for managing heterogeneous cellular networks
US9854495B2 (en) * 2013-01-11 2017-12-26 Lg Electronics Inc. Radio link failure reporting in a system using multiple cells
WO2014109797A1 (en) 2013-01-14 2014-07-17 Intel IP Corporation Energy-harvesting devices in wireless networks
EP3226595B1 (en) 2013-01-17 2019-11-20 Intel IP Corporation Apparatus, system and method of communicating non-cellular access network information over a cellular network
CN108494531B (en) * 2013-01-31 2021-07-13 Lg 电子株式会社 Method and apparatus for transmitting reception acknowledgement in wireless communication system
US9521637B2 (en) * 2013-02-14 2016-12-13 Blackberry Limited Small cell demodulation reference signal and initial synchronization
CN104105199B (en) * 2013-04-02 2018-05-29 电信科学技术研究院 A kind of method, apparatus and system paged
WO2014172654A1 (en) * 2013-04-19 2014-10-23 Huawei Technologies Co., Ltd. Media quality information signaling in dynamic adaptive video streaming over hypertext transfer protocol
US9955387B1 (en) * 2013-05-16 2018-04-24 Sprint Spectrum L.P. Management of modulation for transmission of data in anticipation of handover
GB2514357A (en) 2013-05-20 2014-11-26 Nec Corp Communications system
EP3454594B1 (en) * 2013-06-11 2020-11-04 Seven Networks, LLC Offloading application traffic to a shared communication channel for signal optimisation in a wireless network for traffic utilizing proprietary and non-proprietary protocols
JP2015012584A (en) * 2013-07-02 2015-01-19 富士通株式会社 Control device, control method, and communication system
GB2518584B (en) 2013-07-09 2019-12-25 Cisco Tech Inc Power setting
GB2516463B (en) * 2013-07-23 2015-12-09 Samsung Electronics Co Ltd Layer 1 and layer 3 filtering of a received signal where a portion of the layer 3 filtering is based on a calculated gradient change
CN110224797B (en) * 2013-08-09 2022-06-07 太阳专利信托公司 Mobile station, method and storage medium for communicating with base station in communication system
US10314092B2 (en) * 2013-08-16 2019-06-04 Lg Electronics Inc. Signal transmission method in device-to-device communication and apparatus therefor
WO2015026111A1 (en) * 2013-08-18 2015-02-26 엘지전자 주식회사 Repeater operation method and apparatus in wireless communication system
US9853720B2 (en) * 2013-08-20 2017-12-26 Lg Electronics Inc. Method and user equipment for simultaneously accessing plurality of cells
KR102207484B1 (en) 2013-08-30 2021-01-26 삼성전자 주식회사 Apparatus and method for providing multiple connections in wlan systems
EP3042524B1 (en) * 2013-09-06 2018-12-26 Telefonaktiebolaget LM Ericsson (publ) Cluster-based resource allocation for vehicle-to-vehicle communication
US9516541B2 (en) * 2013-09-17 2016-12-06 Intel IP Corporation Congestion measurement and reporting for real-time delay-sensitive applications
US10278232B2 (en) * 2013-09-20 2019-04-30 Qualcomm Incorporated Apparatus and method for handling out-of-sync and radio link failure with fractional DPCH calls
JP6412872B2 (en) * 2013-09-27 2018-10-24 京セラ株式会社 User terminal, method and processor
US20150109927A1 (en) * 2013-10-18 2015-04-23 Qualcomm Incorporated Base station to access point interface for data bearer routing
JP6183148B2 (en) * 2013-10-24 2017-08-23 富士通株式会社 COMMUNICATION TERMINAL DEVICE, COMMUNICATION CONTROL SYSTEM, AND COMMUNICATION CONTROL METHOD
CN110087219A (en) 2013-10-31 2019-08-02 日本电气株式会社 Mobile communication system, node and its method
CN103580842A (en) * 2013-11-04 2014-02-12 惠州Tcl移动通信有限公司 Method and system for conducting parallel transmission through multiple types of wireless links
US9661657B2 (en) * 2013-11-27 2017-05-23 Intel Corporation TCP traffic adaptation in wireless systems
US9386275B2 (en) * 2014-01-06 2016-07-05 Intel IP Corporation Interactive video conferencing
JP6388768B2 (en) * 2014-01-14 2018-09-12 株式会社Nttドコモ User terminal, radio base station, and radio communication method
KR102155523B1 (en) * 2014-01-20 2020-09-14 삼성전자 주식회사 Method and apparatus for determining a conncetion configuration and performing a handover in wireless communication system supporting a dual connectivity
EP2897318B1 (en) * 2014-01-21 2017-09-06 Panasonic Intellectual Property Corporation of America TDD uplink/downlink configuration enhancements
KR102206280B1 (en) * 2014-01-24 2021-01-22 삼성전자주식회사 Method and apparatus for setting a handover parameter in mobile communication system
WO2015113263A1 (en) * 2014-01-29 2015-08-06 华为技术有限公司 Service transfer method, user device and access network device
WO2015113280A1 (en) * 2014-01-29 2015-08-06 华为技术有限公司 Data transmission method, device, and system
US9749144B2 (en) * 2014-01-30 2017-08-29 Qualcomm Incorporated MBSFN and RS considerations in bundled transmission design
WO2015117271A1 (en) * 2014-02-08 2015-08-13 华为技术有限公司 Identification interaction method and device
JP6375382B2 (en) * 2014-02-14 2018-08-15 エルジー エレクトロニクス インコーポレイティド HARQ-ACK transmission method and apparatus in wireless communication system
US10034284B2 (en) * 2014-03-10 2018-07-24 Lg Electronics Inc. Method for configuring reference resource of channel state information in wireless communication system and apparatus therefor
JP6321201B2 (en) * 2014-03-12 2018-05-09 エルジー エレクトロニクス インコーポレイティド Method and apparatus for transmitting uplink control channel in wireless communication system supporting changing usage of radio resource
US9408158B2 (en) 2014-03-14 2016-08-02 Sharp Laboratories Of America, Inc. Systems and methods for feedback reporting
WO2015139850A1 (en) 2014-03-21 2015-09-24 Telefonaktiebolaget L M Ericsson (Publ) Mobility robustness optimization in a cellular network
US9877256B2 (en) 2014-03-24 2018-01-23 Intel IP Corporation Systems, devices, and methods for interworking between a universal mobile telecommunications system (UMTS) network and a wireless local area network (WLAN)
US10110365B2 (en) * 2014-03-25 2018-10-23 Lg Electronics Inc. Method and apparatus for transmitting control information in wireless communication system
CN105637827B (en) * 2014-03-25 2019-08-20 华为技术有限公司 Insertion, extracting method and the equipment of pilot frequency sequence
CN104955064B (en) * 2014-03-28 2019-01-11 上海诺基亚贝尔股份有限公司 A kind of method and apparatus handling user equipment end RLC/PDCP entity in doubly-linked welding system
US9337974B2 (en) * 2014-03-28 2016-05-10 Intel IP Corporation User equipment generation and signaling of feedback for supporting adaptive demodulation reference signal transmission
KR20150117155A (en) * 2014-04-09 2015-10-19 한국전자통신연구원 Method and apparatus for soft detecting multiple-input multiple-output communication system
US20150305049A1 (en) * 2014-04-21 2015-10-22 Collision Communications, Inc. Method And System For Improving Efficiency In A Cellular Communications Network
US9729283B2 (en) * 2014-05-08 2017-08-08 Intel IP Corporation Systems, methods and devices for flexible retransmissions
US9467921B2 (en) 2014-05-08 2016-10-11 Intel IP Corporation Systems, devices, and methods for long term evolution and wireless local area interworking
JP6415105B2 (en) * 2014-05-16 2018-10-31 キヤノン株式会社 Communication device, control method, and program
WO2015180181A1 (en) * 2014-05-30 2015-12-03 华为技术有限公司 Data transmission method and base station
US9888513B2 (en) * 2014-06-09 2018-02-06 Nokia Solutions And Networks Oy Inter-eNB carrier aggregation
US10285158B2 (en) * 2014-06-17 2019-05-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for triggering paging profiling
FR3022665B1 (en) * 2014-06-23 2016-07-15 Sigfox METHOD FOR RECOVERING AN AUTHENTICATION CODE REQUIRED BY A CONTROL TERMINAL AND CORRESPONDING SYSTEM
US9788318B2 (en) * 2014-08-18 2017-10-10 Telefonaktiebolaget Lm Ericsson (Publ) Channel capacity on collision based channels
WO2016043565A1 (en) * 2014-09-19 2016-03-24 엘지전자 주식회사 Method for obtaining downlink synchronization, and mtc apparatus
US9516220B2 (en) 2014-10-02 2016-12-06 Intel Corporation Interactive video conferencing
CN105490789B (en) 2014-10-10 2019-08-16 电信科学技术研究院 A kind of data transmission method and device
US9526051B2 (en) * 2014-12-01 2016-12-20 Verizon Patent And Licensing Inc. Enhanced cell global identifier-based handover from an eNodeB to a home eNodeB
US10178587B2 (en) * 2014-12-02 2019-01-08 Wipro Limited System and method for traffic offloading for optimal network performance in a wireless heterogeneous broadband network
US9538571B2 (en) 2014-12-05 2017-01-03 Dominant Technologies, LLC Communication and data handling in a mesh network using duplex radios
US10021346B2 (en) 2014-12-05 2018-07-10 Intel IP Corporation Interactive video conferencing
EP3235220B1 (en) 2014-12-18 2021-04-28 LG Electronics Inc. Method for reconfiguring a pdcp reordering timer in a wireless communication system and device therefor
JP2016122887A (en) * 2014-12-24 2016-07-07 富士通株式会社 Radio base station, radio device, radio communication system and radio communication control method
US20160192219A1 (en) * 2014-12-30 2016-06-30 Electronics And Telecommunications Research Institute Method for assigning radio resource and communication system supporting the same
EP3243346A1 (en) * 2015-01-09 2017-11-15 Telefonaktiebolaget LM Ericsson (publ) Reporting of terminal connection status
EP3245818B1 (en) * 2015-01-16 2019-12-25 Telefonaktiebolaget LM Ericsson (publ) A core network node and a method therein for an extended drx paging cycle
US20180014247A1 (en) * 2015-01-20 2018-01-11 Nokia Solutions And Networks Oy Method and apparatus for implementing inter-radio-access-technologies for services
WO2016127309A1 (en) * 2015-02-10 2016-08-18 Qualcomm Incorporated Dmrs enhancement for higher order mu-mimo
US10057800B2 (en) 2015-02-13 2018-08-21 Mediatek Inc. Apparatuses and methods for user equipment (UE)-initiated connection and resource release
US11558894B2 (en) * 2015-03-02 2023-01-17 Apple Inc. Aperiodic scheduling of uplink grants in a wireless communication system
US10355895B2 (en) 2015-03-11 2019-07-16 Phluido, Inc. Baseband unit with adaptive fronthaul link for a distributed radio access network
US9769694B2 (en) 2015-03-13 2017-09-19 Intel IP Corporation MME overload or underload mitigation by MME VNF apparatus and method
US10433244B2 (en) * 2015-03-31 2019-10-01 Verizon Patent And Licensing Inc. Inter-frequency cell reselection
EP3280200B1 (en) * 2015-04-01 2019-12-11 LG Electronics Inc. Method for performing ranging related operation in wireless communication system
US9918314B2 (en) 2015-04-14 2018-03-13 Cisco Technology, Inc. System and method for providing uplink inter cell interference coordination in a network environment
KR101995150B1 (en) * 2015-04-22 2019-07-02 콘비다 와이어리스, 엘엘씨 Small amounts of data available in 3GPP networks
TWI636694B (en) 2015-05-11 2018-09-21 財團法人工業技術研究院 Traffic steering method and heterogeneous radio access network system applying the same
US10462834B2 (en) 2015-05-15 2019-10-29 Qualcomm Incorporated Offloading through simplified multiflow
US10271276B2 (en) 2015-05-27 2019-04-23 Telefonaktiebolaget L M Ericsson (Publ) Optimized MCS selection for machine type communication
JP2018517361A (en) * 2015-05-29 2018-06-28 華為技術有限公司Huawei Technologies Co.,Ltd. Bearer setup method and apparatus
WO2016195411A1 (en) 2015-06-03 2016-12-08 엘지전자 주식회사 Method for configuring reference signal for v2v communication in wireless communication system, and apparatus therefor
US10548000B2 (en) * 2015-06-11 2020-01-28 Intel IP Corporation Cellular IoT network architecture
US10764610B2 (en) 2015-07-03 2020-09-01 Telefonaktiebolaget Lm Ericsson (Publ) Media user client, a media user agent and respective methods performed thereby for providing media from a media server to the media user client
US10341820B2 (en) * 2015-07-10 2019-07-02 Qualcomm Incorporated Techniques for modular multimedia broadcast and multicast service (MBMS) delivery
CN110198562B (en) * 2015-07-17 2023-05-30 苹果公司 Increasing power after the nth paging attempt
US9860852B2 (en) 2015-07-25 2018-01-02 Cisco Technology, Inc. System and method to facilitate small cell uplink power control in a network environment
US20180227874A1 (en) * 2015-07-30 2018-08-09 Intel IP Corporation Apparatus, system and method of providing wlan measurement information from a cellular node to a location server
US10750392B2 (en) * 2015-08-21 2020-08-18 Apple Inc. Radio resource control in cellular/WLAN aggregation
CN108353346B (en) * 2015-09-04 2021-02-12 瑞典爱立信有限公司 Method, apparatus and storage medium for controlling access to a cellular network
US10142065B2 (en) * 2015-09-14 2018-11-27 Apple Inc. Enhanced UE performance in HetNet poor coverage scenarios
CN106550454A (en) * 2015-09-17 2017-03-29 中兴通讯股份有限公司 A kind of method and apparatus for reducing beep-page message propagation delay time
CN106559196B (en) * 2015-09-25 2019-10-22 华为技术有限公司 A kind of method and device of pilot tone distribution
CN112491521B (en) * 2015-10-20 2022-08-19 华为技术有限公司 Method and device for transmitting data
US9820296B2 (en) 2015-10-20 2017-11-14 Cisco Technology, Inc. System and method for frequency and time domain downlink inter-cell interference coordination
WO2017070635A1 (en) 2015-10-22 2017-04-27 Phluido, Inc. Virtualization and orchestration of a radio access network
JP6633889B2 (en) * 2015-10-29 2020-01-22 Kddi株式会社 Base station device, terminal device, communication method and program
WO2017078802A1 (en) * 2015-11-06 2017-05-11 Intel IP Corporation Synchronization signal design for narrowband internet of things communications
US20170134985A1 (en) * 2015-11-09 2017-05-11 Qualcomm Incorporated Managing user equipment (ue) performance via simultaneous use of multiple interfaces
TWI586156B (en) * 2015-12-04 2017-06-01 鴻海精密工業股份有限公司 Streaming media transmission system, method and data distribution server
US9826408B2 (en) 2015-12-07 2017-11-21 Cisco Technology, Inc. System and method to provide uplink interference coordination in a network environment
US10306615B2 (en) * 2015-12-09 2019-05-28 Mediatek Inc. Control-less data transmission for narrow band internet of things
EP4002746A1 (en) 2016-01-07 2022-05-25 Nokia Solutions and Networks Oy Method and apparatus for allocating acknowledgement resources
US10143002B2 (en) 2016-01-12 2018-11-27 Cisco Technology, Inc. System and method to facilitate centralized radio resource management in a split radio access network environment
US9813970B2 (en) * 2016-01-20 2017-11-07 Cisco Technology, Inc. System and method to provide small cell power control and load balancing for high mobility user equipment in a network environment
EP3402269B1 (en) 2016-01-27 2021-01-13 Huawei Technologies Co., Ltd. Communication method and communication device
JP6699205B2 (en) * 2016-02-02 2020-05-27 ソニー株式会社 Base station device, communication terminal, communication system, program, frame transmission method and data structure
US10285028B2 (en) * 2016-02-05 2019-05-07 Qualcomm Incorporated Adaptive radio link monitoring
US10091697B1 (en) 2016-02-08 2018-10-02 Cisco Technology, Inc. Mitigation of uplink interference within heterogeneous wireless communications networks
GB2547726A (en) * 2016-02-29 2017-08-30 Nec Corp Communication system
US20170246795A1 (en) * 2016-02-29 2017-08-31 Fuji Xerox Co., Ltd. Shaping apparatus
US10477520B2 (en) 2016-03-14 2019-11-12 Qualcomm Incorporated Feedback resource allocation for multiple carriers
CN105847330A (en) * 2016-03-16 2016-08-10 中国联合网络通信集团有限公司 Content distribution method and system
US10172044B2 (en) * 2016-03-24 2019-01-01 Motorola Mobility Llc Method and device for data communication over a peer-to-peer connection in a mobile communication network
KR102270541B1 (en) * 2016-04-01 2021-06-30 삼성전자 주식회사 Method and apparatus for wireless communication in wireless communication system
US10484980B1 (en) 2016-04-14 2019-11-19 Marvell International Ltd. Link layer service platform
EP3424164B1 (en) * 2016-05-12 2019-12-18 Telefonaktiebolaget LM Ericsson (PUBL) Mbms bearer quality evaluation
CN107453852B (en) * 2016-05-31 2020-05-15 电信科学技术研究院 Subframe type notification and determination method and device
WO2018017468A1 (en) 2016-07-18 2018-01-25 Phluido, Inc. Synchronization of radio units in radio access networks
US10091682B2 (en) * 2016-07-25 2018-10-02 Qualcomm Incorporated Uplink airtime fairness through basic service set steering
US10827462B2 (en) * 2016-08-05 2020-11-03 Mitsubishi Electric Corporation Communication system
JP6809027B2 (en) * 2016-08-08 2021-01-06 ソニー株式会社 Communication device and communication method
CN109804687B (en) * 2016-08-10 2023-05-02 株式会社Ntt都科摩 User terminal and wireless communication method
CN113225754A (en) * 2016-08-23 2021-08-06 华为技术有限公司 Method and device for managing terminal mobility mode
WO2018039974A1 (en) 2016-08-31 2018-03-08 华为技术有限公司 Method and apparatus for reporting user equipment capability information
US20180077551A1 (en) * 2016-09-12 2018-03-15 Intel IP Corporation Emergency response for iot and/or m2m devices
US10651996B2 (en) * 2016-09-29 2020-05-12 Qualcomm Incorporated Techniques for dynamic demodulation reference signal patterns for data transmission
CN108023708B (en) * 2016-11-03 2022-09-13 中兴通讯股份有限公司 Information sending method, device, system and related equipment
US20180131490A1 (en) * 2016-11-04 2018-05-10 Qualcomm Incorporated Dynamic reference signal configuration for shortened transmission time interval wireless communications
CN109923913B (en) * 2016-11-04 2022-05-24 瑞典爱立信有限公司 Method and apparatus for managing paging in a wireless communication network
EP3536056B1 (en) * 2016-11-16 2021-02-24 Huawei Technologies Duesseldorf GmbH Radio device and radio cell with multiplexed data sequences with unequal power allocation
TWI686094B (en) * 2016-12-07 2020-02-21 聯發科技股份有限公司 Control-less data transmission
EP3556176B1 (en) 2016-12-19 2023-03-22 Netsia, Inc. Method for programmable virtualization and load balancing of split-channel heterogeneous networks utilizing dual connectivity
EP3563595B1 (en) * 2016-12-30 2023-09-13 Intel Corporation Methods and devices for radio communications
US11224071B2 (en) * 2017-01-06 2022-01-11 Telefonaktiebolaget Lm Ericsson (Publ) On-demand system information delivery for extended coverage
CN108282881B (en) * 2017-01-06 2020-12-15 华为技术有限公司 Resource allocation method and device
CN106657133A (en) * 2017-01-11 2017-05-10 湖南科瑞迪教育发展有限公司 P2P stream media playing system and method
CN108306720B (en) * 2017-01-13 2022-06-21 北京三星通信技术研究有限公司 Method and equipment for transmitting UCI information
US20180213540A1 (en) * 2017-01-25 2018-07-26 Acer Incorporated Method of mapping data packets and related apparatuses using the same
CN108366413B (en) * 2017-01-26 2022-01-14 华为技术有限公司 Terminal, network device and communication method
WO2018142264A1 (en) * 2017-02-01 2018-08-09 Telefonaktiebolaget Lm Ericsson (Publ) Methods and nodes for activation or deactivation of a carrier in a communication network supporting carrier aggregation
US11368905B2 (en) * 2017-02-08 2022-06-21 Htc Corporation Device and method of handling a connection in a wireless communication system
US10225818B2 (en) * 2017-02-22 2019-03-05 Qualcomm Incorporated Paging user equipments on a shared communication medium
CN108574986A (en) * 2017-03-10 2018-09-25 华为技术有限公司 Method, terminal device and the network equipment of notification information
EP3934125A3 (en) * 2017-03-23 2022-03-30 Apple Inc. Advanced radio resource management in next-gen multi-hop relaying cellular network
US10499307B2 (en) 2017-03-27 2019-12-03 Futurewei Technologies, Inc. System and method for dynamic data relaying
CN108811114B (en) * 2017-05-05 2020-12-01 中兴通讯股份有限公司 Transmission method and device for semi-persistent scheduling hybrid automatic repeat request
US10314105B2 (en) * 2017-05-18 2019-06-04 At&T Intellectual Property I, L.P. Command for extended idle mode discontinuous reception
WO2018221960A1 (en) * 2017-05-31 2018-12-06 주식회사 케이티 Method and device for allocating and multiplexing dmrs port in next generation radio network
US10863366B2 (en) * 2017-06-23 2020-12-08 Qualcomm Incorporated Receiver beamforming for serving and neighbor cell measurements
US20190020756A1 (en) * 2017-07-14 2019-01-17 Qualcomm Incorporated Smart call connectivity prediction for enhanced user experience
CN110402558B (en) * 2017-08-10 2022-04-12 Lg电子株式会社 Method and wireless device for performing NPUSCH transmission
US10333740B2 (en) 2017-09-10 2019-06-25 At&T Intellectual Property I, L.P. Facilitating determination of transmission type via demodulation reference signal patterns
WO2019050789A1 (en) 2017-09-11 2019-03-14 Idac Holdings, Inc. Methods, apparatus and systems for radio link monitoring (rlm) in new radio (nr)
US10440584B1 (en) * 2017-09-25 2019-10-08 Amazon Technologies, Inc. Millimeter-wave radio architecture for multi-channel concurrent operation
TWI657678B (en) * 2017-09-29 2019-04-21 中華電信股份有限公司 Heterogeneous network integrating system and splitting scheduling mehotd thereof
US10644765B2 (en) * 2017-10-24 2020-05-05 Intel Corporation Enhanced acknowledgment and power saving for wireless communications
US10805978B2 (en) * 2017-10-25 2020-10-13 Arm Ltd System, method and device for early connection release of user equipment from communications network
CN109803373B (en) * 2017-11-16 2021-01-22 电信科学技术研究院 Position determination method of paging opportunity and communication equipment
WO2019100343A1 (en) * 2017-11-24 2019-05-31 Oppo广东移动通信有限公司 Method for accessing wireless local area network, terminal device, and network device
US12016084B2 (en) 2018-01-04 2024-06-18 Commscope Technologies Llc Management of a split physical layer in a radio area network
US10721712B2 (en) 2018-01-12 2020-07-21 Qualcomm Incorporated Monitoring occasion for paging determination
JP7162064B2 (en) * 2018-01-12 2022-10-27 アイディーエーシー ホールディングス インコーポレイテッド Methods and Procedures for Providing IEEE 802.11 Based Wireless Network Information Service for ETSI MEC
CN110381546B (en) * 2018-04-13 2021-07-16 中国移动通信有限公司研究院 Cell reselection method, terminal and network equipment
CN110581866B (en) * 2018-06-07 2022-09-23 中国电信股份有限公司 File transmission method and IP multimedia subsystem IMS network terminal
EP3808149A4 (en) 2018-06-15 2022-02-23 Nokia Technologies OY Dynamic management of application servers on network edge computing device
EP3836664B1 (en) * 2018-08-06 2023-10-04 Beijing Xiaomi Mobile Software Co., Ltd. Uplink message transmission method and device, and storage medium
CN110830173B (en) * 2018-08-08 2020-09-15 展讯通信(上海)有限公司 Method for indicating time difference between PUCCH and PDSCH, base station and readable medium
CN110912666B (en) * 2018-09-14 2023-12-29 华为技术有限公司 Reference signal and sequence configuration method and device
CN110972177B (en) * 2018-09-28 2022-10-11 华为技术有限公司 Link detection method and device
US10965786B2 (en) 2018-10-31 2021-03-30 At&T Intellectual Property I, L.P. Adaptive fixed point mapping for uplink and downlink fronthaul
WO2020101639A1 (en) * 2018-11-12 2020-05-22 Nokia Technologies Oy Method and apparatus for efficient delivery of source and forward error correction streams in systems supporting mixed unicast multicast transmission
US20220014959A1 (en) * 2018-11-16 2022-01-13 Google Llc Uplink communication in an inactive state in a celluar network
CN111385765B (en) * 2018-12-28 2022-07-22 大唐移动通信设备有限公司 Information transmission method and terminal
CN113785509B (en) * 2019-05-01 2024-07-23 苹果公司 Radio link monitoring beam management in NR for URLLC
US11503479B2 (en) * 2019-05-10 2022-11-15 Parallel Wireless, Inc. Backhaul dynamic link distance
US11206640B2 (en) 2019-05-22 2021-12-21 At&T Intellectual Property I, L.P. Private local network access, authentication, and association for 5G or other next generation network
US10873848B1 (en) * 2019-06-07 2020-12-22 Cisco Technology, Inc. Systems and methods providing a station with a suggestion to transition from Wi-Fi to LTE
EP3758421A1 (en) * 2019-06-26 2020-12-30 Fujitsu Limited A method in a terminal, terminal, base station, and wireless communication system
WO2021074060A1 (en) * 2019-10-18 2021-04-22 Sony Corporation Terminal devices, infrastructure equipment and methods
CN112825572A (en) * 2019-11-20 2021-05-21 联发科技(新加坡)私人有限公司 Bluetooth inquiry/paging method and communication equipment
CN111194061B (en) * 2019-12-26 2020-09-18 北京悦航天翼电子信息技术有限公司 Heterogeneous network high-performance switching method applied to airborne broadband communication
US11483797B2 (en) 2020-02-12 2022-10-25 Charter Communications Operating, Llc Paging notification conflict and management in multiple wireless networks
US11140657B2 (en) * 2020-02-12 2021-10-05 Charter Communications Operating, Llc Repetition of paging notifications in wireless networks
US11019542B1 (en) * 2020-02-13 2021-05-25 At&T Intellectual Property I, L.P. Facilitation of dynamic spectrum aggregation for 5G or other next generation network
WO2021204483A1 (en) * 2020-04-09 2021-10-14 Nokia Technologies Oy Detecting ue ping-ponging between different network nodes
US11877201B2 (en) * 2020-06-12 2024-01-16 Cable Television Laboratories, Inc. Handovers for a user equipment using a mobility status
KR20220017252A (en) * 2020-08-04 2022-02-11 삼성전자주식회사 Apparatus and method for switching communication interface in wireless communication system
CN112566173B (en) * 2020-12-02 2023-02-24 深圳创维数字技术有限公司 Signal measurement method based on Mesh network, wireless access point and storage medium
CN114698010A (en) * 2020-12-28 2022-07-01 上海朗帛通信技术有限公司 Method and arrangement in a communication node used for wireless communication
US11683737B1 (en) * 2021-04-22 2023-06-20 T-Mobile Innovations Llc mmWave to Wi-Fi control signal offloading in the event of fading in the mmWave system
US11412283B1 (en) 2021-04-27 2022-08-09 City University Of Hong Kong System and method for adaptively streaming video
US11490329B1 (en) 2021-04-29 2022-11-01 T-Mobile Usa, Inc. Determining a cell to which to connect user equipment
US11509408B1 (en) * 2021-07-30 2022-11-22 Inntot Technologies Private Limited System and method for large data transmission in digital radio broadcasting
JP7333534B2 (en) * 2022-01-26 2023-08-25 17Live株式会社 Systems and methods for accessing streaming data
JP7316732B1 (en) * 2023-01-30 2023-07-28 一般社団法人日本ケーブルラボ Apparatus and program for transmitting and receiving streams of different distribution methods by spatial multiplexing transmission unit
US20240314598A1 (en) * 2023-03-16 2024-09-19 Apple Inc. Techniques for identifying and utilizing connectivity issue patterns

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110235602A1 (en) * 2010-03-25 2011-09-29 Qualcomm Incorporated Subframe dependent physical uplink control channel (pucch) region design
US20110261729A1 (en) * 2008-03-16 2011-10-27 Joon Kui Ahn Method of performing hybrid automatic repeat request (harq) in wireless communication system
US20120120908A1 (en) * 2009-07-26 2012-05-17 Joon Kui Ahn Method and apparatus for receiving reception acknowledgement in wireless communication system
CN102971978A (en) * 2010-06-18 2013-03-13 诺基亚西门子网络公司 Enhanced physical uplink control channel format resource allocation for time division duplex mode

Family Cites Families (321)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6312054B1 (en) * 1998-10-26 2001-11-06 Texas Recreation Corporation Buoyant pool chair with adjustable angle of recline
US6445917B1 (en) 1999-05-19 2002-09-03 Telefonaktiebolaget Lm Ericsson (Publ) Mobile station measurements with event-based reporting
US6952455B1 (en) * 2000-08-02 2005-10-04 Via Telecom, Co., Ltd. Adaptive antenna method and apparatus
WO2002037754A2 (en) * 2000-11-03 2002-05-10 At & T Corp. Tiered contention multiple access (tcma): a method for priority-based shared channel access
US7567781B2 (en) * 2001-01-05 2009-07-28 Qualcomm, Incorporated Method and apparatus for power level adjustment in a wireless communication system
GB0117071D0 (en) * 2001-07-13 2001-09-05 Koninkl Philips Electronics Nv Hierarchical cellular radio communication system
BR0309326A (en) 2002-04-17 2005-02-01 Thomson Licensing Sa Wireless Local Area Network (WLAN) as a public mobile network for telecom / wlan system interworking
DE10219358A1 (en) * 2002-04-30 2003-11-20 Advanced Micro Devices Inc Automatic gain control in a WLAN receiver with improved settling time
US7212837B1 (en) 2002-05-24 2007-05-01 Airespace, Inc. Method and system for hierarchical processing of protocol information in a wireless LAN
US7965693B2 (en) 2002-05-28 2011-06-21 Zte (Usa) Inc. Interworking mechanism between wireless wide area network and wireless local area network
MXPA04012158A (en) 2002-06-06 2005-04-19 Thomson Licensing Sa Interworking function (iwf) as logical radio network controller (rnc) for hybrid coupling in an interworking between wlan and a mobile communications network.
KR100913869B1 (en) 2002-10-28 2009-08-26 삼성전자주식회사 Terminal and method for creating and changing automatically configuration information in wireless-lan
KR100508650B1 (en) * 2002-11-19 2005-08-18 주식회사 휴림인터랙티브 Method for establishing tcp/ip session using extended session initiation protocol for peer to peer service between communication terminals
US20040165563A1 (en) * 2003-02-24 2004-08-26 Hsu Raymond T. Wireless local access network system detection and selection
US20040192222A1 (en) * 2003-03-26 2004-09-30 Nokia Corporation System and method for semi-simultaneously coupling an antenna to transceivers
EP1467586B1 (en) * 2003-04-09 2010-05-19 Samsung Electronics Co., Ltd. Method for cell reselection in an MBMS mobile communication system
EP1616446B1 (en) 2003-04-11 2007-01-17 Telefonaktiebolaget LM Ericsson (publ) Multi-access call setup
US7356015B2 (en) * 2003-05-02 2008-04-08 Steven Blumenthal Data handoff method between wireless local area network and wireless wide area network
US7089029B2 (en) * 2003-06-09 2006-08-08 Lucent Technologies Inc. Adjusting the transmission power of a forward access channel (FACH), and a corresponding network for mobile telecommunications
US6958982B2 (en) 2003-07-16 2005-10-25 Interdigital Technology Corporation Method and apparatus for storing mobile station physical measurements and MAC performance statistics in a management information base of an access point
KR100735242B1 (en) 2003-12-16 2007-07-03 삼성전자주식회사 Method for providing/notifying interworking information of mobile telecommunication network and wireless local area network and therefor system
CN101015221A (en) 2004-01-05 2007-08-08 摩托罗拉公司 Method and apparatus for associating with a communication system
GB2409952B (en) * 2004-01-12 2008-10-15 Nec Corp Mobile telecommunications
CN102685825B (en) 2004-03-12 2016-01-20 美商内数位科技公司 The method and apparatus for switching wireless technology implemented in WTRU
EP1596617B1 (en) * 2004-05-11 2011-11-23 Tektronix International Sales GmbH Method and apparatus for establishing and performing a test scenario for a real network controller of a mobile communications network
JPWO2005115034A1 (en) 2004-05-21 2008-03-27 三菱電機株式会社 Third generation mobile communication / wireless LAN integration system and third generation mobile communication / wireless LAN integration method
JP4670270B2 (en) 2004-06-28 2011-04-13 ソニー株式会社 Communication system and communication apparatus
EP1790182B1 (en) 2004-09-17 2010-03-03 TELEFONAKTIEBOLAGET LM ERICSSON (publ) 3g/gsm and wlan integration of telephony
US7747213B2 (en) * 2004-09-22 2010-06-29 Samsung Electronics Co., Ltd. Method of reducing configuration information in the signaling of radio bearer information for a plurality of multicast/broadcast services
US7515548B2 (en) * 2004-09-28 2009-04-07 Texas Instruments Incorporated End-point based approach for determining network status in a wireless local area network
WO2006034658A1 (en) 2004-09-30 2006-04-06 Huawei Technologies Co., Ltd. Method and system of realizing communication
KR20060030428A (en) * 2004-10-05 2006-04-10 삼성전자주식회사 Method and system for controlling hard handoff in mobile network
EP1836864A4 (en) * 2004-12-20 2011-12-07 Lg Electronics Inc Multimedia access system
WO2006071056A1 (en) 2004-12-27 2006-07-06 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving a signal in an ffh-ofdm communication system
KR100644398B1 (en) 2005-01-17 2006-11-10 주식회사 케이티프리텔 Method to help for searching APaccess point of mobile station, and combination mobile-station
US20060172736A1 (en) * 2005-02-01 2006-08-03 Intel Corporation Methods and apparatus for operating a wireless electronic device having a plurality of communication platforms
US20070121561A1 (en) * 2005-03-09 2007-05-31 Haim Yashar Wlan mobile phone and wireless network
KR100762647B1 (en) * 2005-03-31 2007-10-01 삼성전자주식회사 Node B and Method for Managing Radio Resource Using the Same
GB2425439B (en) * 2005-04-19 2007-05-09 Motorola Inc Determination of a network identity for a network access point
EP1875763B1 (en) 2005-04-29 2010-11-24 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Internetworking of cellular radio networks and wireless data networks
TW200721861A (en) 2005-09-09 2007-06-01 Nokia Corp Use of measurement pilot for radio measurement in a wireless network
JP4738950B2 (en) * 2005-09-16 2011-08-03 パナソニック株式会社 Wireless communication apparatus and handover method
WO2007038799A2 (en) * 2005-09-30 2007-04-05 Stoke Use of sip messages for location services
US20070110015A1 (en) 2005-10-19 2007-05-17 Telefonaktiebolaget Lm Ericsson (Publ) Select diversity for radio communications
US7821996B2 (en) * 2005-10-27 2010-10-26 Motorola Mobility, Inc. Mobility enhancement for real time service over high speed downlink packet access (HSDPA)
KR100648067B1 (en) 2005-12-10 2006-11-23 한국전자통신연구원 Method for adaptive discontinuous reception based on extended paging indicator for improvement of power effective performance at mobile terminal on wcdma
US8752107B2 (en) 2006-03-07 2014-06-10 Telefonaktiebolaget L M Ericcson (Publ) Time-shifting and chase-play for an IPTV system
EP1833217A1 (en) 2006-03-09 2007-09-12 Matsushita Electric Industrial Co., Ltd. Providing service data of a bidirectional service (IMS, e.g. PoC, conference) by using a downlink multicast service (e.g. MBMS)
DE102006012743A1 (en) * 2006-03-17 2007-09-27 Nec Europe Ltd. Method for operating a mobile node
US20070224988A1 (en) 2006-03-24 2007-09-27 Interdigital Technology Corporation Method and apparatus for performing a handover procedure between a 3gpp lte network and an alternative wireless network
EP1841129A1 (en) * 2006-03-31 2007-10-03 Matsushita Electric Industrial Co., Ltd. Mobile terminal controlled service delivery selection for multicast services
GB0607294D0 (en) 2006-04-11 2006-05-24 Nokia Corp A node
KR100895180B1 (en) 2006-04-14 2009-04-24 삼성전자주식회사 Method for Radio Resource Control Connection Setup and Apparatus for the same
KR101196078B1 (en) * 2006-04-28 2012-11-01 리서치 인 모션 리미티드 Wlan and wwan connection migration methods and apparatus
US20090061877A1 (en) 2006-07-14 2009-03-05 Gallagher Michael D Generic Access to the Iu Interface
JP4676533B2 (en) 2006-07-14 2011-04-27 富士通株式会社 Mobile communication system and base station
CN101115019B (en) * 2006-07-28 2010-05-12 中国科学院声学研究所 Peer-to-peer networking file sharing service network structure
DE102006038592B4 (en) 2006-08-17 2008-07-03 Siemens Ag Method and device for providing a wireless mesh network
CN100486206C (en) 2006-08-22 2009-05-06 中国科学院声学研究所 Signaling control method for P2P network sharing service based on IMS
CN101166299A (en) * 2006-10-17 2008-04-23 华为技术有限公司 Method and device for sending and receiving call message and calling method and system
US20080096560A1 (en) * 2006-10-24 2008-04-24 Nortel Networks Limited System and method for ensuring handoffs across heterogeneous networks
US8046479B2 (en) 2006-11-07 2011-10-25 Telefonaktiebolaget Lm Ericsson (Publ) Media channel management
US9265003B2 (en) * 2006-11-13 2016-02-16 Qualcomm Incorporated Apparatus and methods for reducing power consumption and/or radio frequency interference in a mobile computing device
US7933346B2 (en) * 2006-12-27 2011-04-26 Intel Corporation Base station and method for mitigating interference in a sectorized communication network
KR101248542B1 (en) 2007-01-10 2013-04-03 닛본 덴끼 가부시끼가이샤 Wireless communication terminal device, access point device, wireless communication system, and information service method and information fetching method in the system
EP2122929B1 (en) 2007-01-18 2010-06-02 Nokia Corporation Network oriented control system for self-configuration and self-optimization measurements
US8625498B2 (en) * 2007-01-22 2014-01-07 Wi-Lan, Inc. Tiling allocations for wireless communication
PL3557917T3 (en) 2007-02-06 2020-09-21 Nokia Technologies Oy Method and apparatus for providing efficient discontinuous communication
AU2008226975C1 (en) 2007-03-09 2011-10-06 Interdigital Technology Corporation Method and apparatus for adjusting a reselection timer and cell ranking criteria, and reporting degraded signal measurement of a serving cell
WO2008141087A1 (en) 2007-05-10 2008-11-20 Sonim Technologies, Inc. Method and system for providing full duplex services over multiple simplex media paths and sessions
BRPI0813429B1 (en) 2007-06-19 2020-09-08 Nokia Technologies Oy METHOD OF SWITCHING MEDIA, APPLIANCE AND SYSTEM FLOW RECEPTION
SG182184A1 (en) * 2007-06-19 2012-07-30 Nokia Corp Apparatus, method and computer program product providing idle mode discontinuous reception
KR101367798B1 (en) 2007-06-29 2014-02-28 삼성전자주식회사 Apparatus and method for setting peer to peer communication in broadband wireless communication system
WO2009020789A2 (en) 2007-08-03 2009-02-12 Interdigital Patent Holdings, Inc. Security procedure and apparatus for handover in a 3gpp long term evolution system
US8681736B2 (en) * 2007-09-04 2014-03-25 Telefonaktiebolaget L M Ericsson (Publ) Time-to-trigger handling methods and apparatus
EP2053825B1 (en) 2007-10-25 2015-07-08 Alcatel Lucent Distribution of shared content streams in communications networks
US8494072B2 (en) 2007-11-06 2013-07-23 Qualcomm Incorporated Frequency diverse control mapping of channel elements to resource elements
US9014155B2 (en) * 2007-11-19 2015-04-21 Rajarshi Gupta Access point configuration schemes
EP2091203A1 (en) * 2008-02-12 2009-08-19 Koninklijke KPN N.V. Method and system for transmitting a multimedia stream
EP2255585B1 (en) 2008-03-16 2019-05-08 LG Electronics Inc. Method and apparatus for acquiring resource allocation of control channel
US8498247B2 (en) 2008-03-25 2013-07-30 Qualcomm Incorporated Adaptively reacting to resource utilization messages including channel gain indication
KR101289494B1 (en) * 2008-03-27 2013-08-07 노키아 코포레이션 Apparatus and method for allocation of subframes on a mixed carrier
JP4623118B2 (en) * 2008-03-28 2011-02-02 ソニー株式会社 Gateway device, communication method and program
US8811240B2 (en) * 2008-04-29 2014-08-19 Nokia Corporation Techniques for resource allocation for stations in a FDD wireless network
ATE540501T1 (en) 2008-05-20 2012-01-15 Thomson Licensing SYSTEM AND METHOD FOR DISTRIBUTING A DIRECTORY OF CONTENT TO MULTIPLE RECEIVING DEVICES
US20090290555A1 (en) 2008-05-21 2009-11-26 Comsys Communication & Signal Processing Ltd. Autonomous anonymous association between a mobile station and multiple network elements in a wireless communication system
US8295868B2 (en) * 2008-06-09 2012-10-23 Samsung Electronics Co., Ltd. Downlink control information format for multiple codeword transmission
US8804546B2 (en) * 2008-06-13 2014-08-12 Qualcomm Incorporated Method and apparatus for managing interaction between DRX cycles and paging cycles
JP2010004587A (en) 2008-06-18 2010-01-07 Meidensha Corp Charging device and charging system for logistic transportation vehicle
US8559298B2 (en) 2008-06-30 2013-10-15 Qualcomm Incorporated Method and apparatus for automatic handover optimization
JP5335077B2 (en) * 2008-07-03 2013-11-06 ゼットティーイー コーポレーション Synchronization, scheduling, network management and frequency allocation method for hierarchical radio access system
US8145218B2 (en) * 2008-09-22 2012-03-27 Motorola Solutions, Inc. Method and system for wireless handoffs
JP2012503450A (en) * 2008-09-22 2012-02-02 インターデイジタル パテント ホールディングス インコーポレイテッド Method and apparatus for LTE radio link failure determination in DRX mode
JP5492218B2 (en) * 2008-10-29 2014-05-14 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Sharing cell type information between neighboring base stations
EP2352340B1 (en) * 2008-11-04 2013-05-29 NTT DoCoMo, Inc. Mobile station and mobile communication method
CA2743010C (en) 2008-11-10 2018-04-03 Research In Motion Limited Method and system for supporting sip session policy using existing authorization architecture and protocols
EP2351408A4 (en) * 2008-11-10 2016-08-24 Unwired Planet Internat Ltd Method and arrangement in a telecommunication system
US8971933B2 (en) 2008-11-18 2015-03-03 Qualcomm Incorporated Method and apparatus for determining DRX cycle used for paging
US20100144363A1 (en) * 2008-12-10 2010-06-10 At&T Mobility Ii Llc Load-based adaptive inactivity timers
EP2205029A1 (en) 2009-01-06 2010-07-07 Thomson Licensing A method for scheduling wake/sleep cycles by a central device in a wireless network
CN105025531B (en) 2009-01-09 2018-12-28 交互数字专利控股公司 WTRU and its method of implementation
US8761099B2 (en) 2009-01-16 2014-06-24 Nokia Corporation Apparatus and method of scheduling resources for device-to-device communications
US20120036105A1 (en) 2009-02-17 2012-02-09 Victor Souza Method and Apparatus for Distributing Data in a Peer-To-Peer Network
KR20130088174A (en) 2009-03-12 2013-08-07 인터디지탈 패튼 홀딩스, 인크 Method and apparatus for monitoring for a radio link failure
EP2406984A1 (en) * 2009-03-12 2012-01-18 Interdigital Patent Holdings, Inc. Method and apparatus for performing component carrier-specific reconfiguration
US8620334B2 (en) * 2009-03-13 2013-12-31 Interdigital Patent Holdings, Inc. Method and apparatus for carrier assignment, configuration and switching for multicarrier wireless communications
US9839001B2 (en) * 2009-03-23 2017-12-05 Apple Inc. Methods and apparatus for optimizing paging mechanisms and publication of dynamic paging mechanisms
US20130064120A1 (en) * 2009-03-31 2013-03-14 Nokia Siemens Networks Oy Measurement reporting in communications systems
RU2527730C2 (en) 2009-04-01 2014-09-10 Телефонактиеболагет Л М Эрикссон (Пабл) Security key management in ims-based multimedia broadcast and multicast services (mbms)
US8081949B2 (en) * 2009-04-17 2011-12-20 Qualcomm Incorporated Methods and systems for enhanced sleep request messages for multi-mode operations
EP2424305B1 (en) 2009-04-22 2014-11-26 China Academy of Telecommunications Technology Indicating the type of the local network over a HeNB to a User Equipment
US8842633B2 (en) 2009-05-04 2014-09-23 Blackberry Limited Systems and methods for mobile stations to identify radio access technologies
EP3595393B1 (en) 2009-05-22 2022-10-26 Huawei Technologies Co., Ltd. Multi-slot scheduling methods, apparatuses and non-transitory computer-readable media
JP5558562B2 (en) * 2009-05-28 2014-07-23 テレフオンアクチーボラゲット エル エム エリクソン(パブル) Method and configuration for enforcing policy rules in peer-to-peer communication
US8509343B2 (en) 2009-06-03 2013-08-13 Qualcomm Incorporated Methods and apparatus for amplifying and transmitting signals
US9565011B2 (en) * 2009-06-04 2017-02-07 Qualcomm Incorporated Data transmission with cross-subframe control in a wireless network
US8265039B2 (en) * 2009-06-05 2012-09-11 Qualcomm Incorporated Apparatus and method for improved idle state handoff
WO2010146461A1 (en) 2009-06-16 2010-12-23 Research In Motion Limited Method for accessing a service unavailable through a network cell
WO2010146816A1 (en) 2009-06-17 2010-12-23 パナソニック株式会社 Communication system, mobile terminal, network node, and base station apparatus
US8391141B2 (en) 2009-06-18 2013-03-05 Telefonaktiebolaget L M Ericsson (Publ) Systems and methods for selecting a network access system
JP2011015327A (en) 2009-07-06 2011-01-20 Fujitsu Ltd Communication management apparatus and communication management program
US9236896B2 (en) * 2009-07-09 2016-01-12 Mediatek Inc. Systems and methods for coexistence of a plurality of wireless communications modules
US20110019776A1 (en) 2009-07-24 2011-01-27 Interdigital Patent Holdings, Inc. Method and apparatus for obtaining port index information
CN102656938B (en) 2009-08-14 2016-03-30 黑莓有限公司 The frame structure transmitted for down link coordinate multipoint (COMP) and control signal
EP2468041B1 (en) 2009-08-17 2019-04-10 Nokia Solutions and Networks Oy Method for handing over a user equipment connected to a base station from the base station to a femto access point
US8599768B2 (en) 2009-08-24 2013-12-03 Intel Corporation Distributing group size indications to mobile stations
US8743824B2 (en) * 2009-08-26 2014-06-03 Lg Electronics Inc. Method and apparatus for transmitting/receiving a signal in a wireless communication system that supports multi-user MIMO transmission
WO2011038243A2 (en) * 2009-09-25 2011-03-31 Fong, Mo-Han System and method for multi-carrier network operation
US8879440B2 (en) 2009-09-29 2014-11-04 Qualcomm Incorporated Method and apparatus for ad hoc venue-cast service
CN102598773B (en) * 2009-10-01 2015-11-25 交互数字专利控股公司 For performing the method and apparatus measured between frequency and/or between radio access technologies (RAT) in multi-receiver wireless transmitter/receiver unit (WTRU)
US10448292B2 (en) * 2009-10-22 2019-10-15 Qualcomm Incorporated Determining handover parameter for transmission by access point
CN102056147B (en) * 2009-10-29 2014-12-10 中兴通讯股份有限公司 Method and system for subscribing service in IP (Internet Protocol) multimedia subsystem network
US8254985B2 (en) 2009-11-04 2012-08-28 Research In Motion Limited Methods and apparatus for use in controlling wireless transceiver operation in a mobile communication device
CN101940043B (en) * 2009-11-05 2014-12-03 高通股份有限公司 Method and device for monitoring paging message in CDMA EVDO network and frame synchronization TD-SCDMA network for multi-mode terminal
US9693299B2 (en) 2009-11-30 2017-06-27 Nokia Technology Oy Method and apparatus for power saving operations in wireless network elements
US20110176461A1 (en) * 2009-12-23 2011-07-21 Telefonakatiebolaget Lm Ericsson (Publ) Determining configuration of subframes in a radio communications system
US8559343B2 (en) * 2009-12-23 2013-10-15 Telefonaktiebolaget Lm Ericsson (Publ) Flexible subframes
US9143980B2 (en) * 2010-01-04 2015-09-22 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for optimizing radio resource utilization at group communications
JP2013516929A (en) 2010-01-08 2013-05-13 インターデイジタル パテント ホールディングス インコーポレイテッド Method and apparatus for broadcasting support for selected internet protocol traffic offload
JP5890319B2 (en) * 2010-01-08 2016-03-22 インターデイジタル パテント ホールディングス インコーポレイテッド Managing power consumption at base stations and remote access points
EP2522190B1 (en) 2010-01-08 2018-02-07 Sharp Kabushiki Kaisha Mobile communication method and system for sounding reference signal transmission, and base station, user equipment and integrated circuit therein
KR101617888B1 (en) 2010-01-08 2016-05-04 삼성전자주식회사 Method and apparatus of paging for high power saving reception mode m2m/mtc device communication in a mobile communication system
US9749152B2 (en) 2010-01-15 2017-08-29 Qualcomm Incorporated Apparatus and method for allocating data flows based on indication of selection criteria
US8867362B2 (en) 2010-01-15 2014-10-21 Telefonaktiebolaget Lm Ericsson (Publ) Congestion control for interworking between networks
CN102714527B (en) * 2010-01-22 2015-04-01 Lg电子株式会社 Method and apparatus for providing downlink control information in an mimo wireless communication system
CN102137400B (en) 2010-01-23 2015-04-01 中兴通讯股份有限公司 Safety treatment method and system when re-establishing RRC (radio resource control) connection
KR101622792B1 (en) 2010-02-04 2016-06-01 삼성전자주식회사 Method and apparatus for handover in wireless communication system
CN102149082B (en) 2010-02-05 2014-11-26 中国移动通信集团公司 Method, device and system for indicating terminal dedicated demodulation reference signal
US20110194433A1 (en) * 2010-02-05 2011-08-11 Qualcomm Incorporated Managing dedicated channel resource allocation to user equipment based on radio bearer traffic within a wireless communications system
JP2013520108A (en) 2010-02-12 2013-05-30 インターデイジタル パテント ホールディングス インコーポレイテッド Method and apparatus for improving cell edge user performance and signaling radio link failure conditions via downlink cooperative component carriers
US20110222523A1 (en) * 2010-03-12 2011-09-15 Mediatek Inc Method of multi-radio interworking in heterogeneous wireless communication networks
US20110223953A1 (en) * 2010-03-15 2011-09-15 Lg Electronics Inc. Apparatus for direct communication in a wireless system and method thereof
CN106028273B (en) 2010-03-23 2020-01-14 Iot控股公司 Method for machine type communication and WTRU
WO2011119750A1 (en) 2010-03-23 2011-09-29 Interdigital Patent Holdings, Inc. Method, apparatus and system for enabling resource coordination in cellular networks
EP2369890A1 (en) 2010-03-26 2011-09-28 Panasonic Corporation Connection peak avoidance for machine-type-communication (MTC) devices
KR101915271B1 (en) * 2010-03-26 2018-11-06 삼성전자 주식회사 Method and apparatus of downlink control indication of resource allocation in wireless communication systems
US8848600B2 (en) * 2010-03-29 2014-09-30 Lg Electronics Inc. Method and apparatus for efficiently transmitting control information to support uplink multiple antenna transmission
EP2553857A4 (en) * 2010-03-31 2014-05-28 Samsung Electronics Co Ltd Indexing resources for transmission of acknowledgement signals in multi-cell tdd communication systems
US9609536B2 (en) * 2010-04-13 2017-03-28 Qualcomm Incorporated Measurement of received power and received quality in a wireless communication network
US8712401B2 (en) * 2010-04-16 2014-04-29 Qualcomm Incorporated Radio link monitoring (RLM) and reference signal received power (RSRP) measurement for heterogeneous networks
US9204476B2 (en) * 2010-04-23 2015-12-01 Lg Electronics Inc. Method and apparatus for direct communications in a wireless communication system
KR101722204B1 (en) 2010-04-27 2017-04-03 삼성전자주식회사 Apparatus and method for providing handover support inforamtion in mobile communication system
CN102884818B (en) * 2010-05-06 2016-03-02 诺基亚技术有限公司 Control the apparatus and method of the collection of measurement data in communication system
CN102244895B (en) * 2010-05-13 2015-12-16 中兴通讯股份有限公司 The ambulant shunt method of a kind of enhancing and device
KR101107094B1 (en) 2010-05-18 2012-01-30 웨이브솔루션즈 주식회사 System for remote management of mobile device and control method thereof
ES2375866B1 (en) * 2010-05-21 2013-01-29 Vodafone España, S.A.U NETWORK ELEMENT AND METHOD TO REDUCE THE SIGNALING LOAD IN A NETWORK CONTROLLING ELEMENT OF A CELLULAR TELECOMMUNICATIONS NETWORK.
US9148908B2 (en) 2010-06-04 2015-09-29 Board Of Regents, The University Of Texas System Wireless communication methods, systems, and computer program products
GB201009649D0 (en) 2010-06-09 2010-07-21 Roke Manor Research Mobile device and method
US9497290B2 (en) * 2010-06-14 2016-11-15 Blackberry Limited Media presentation description delta file for HTTP streaming
US8509105B2 (en) 2010-06-23 2013-08-13 Nokia Corporation Method and apparatus for device-to-device network coordination
KR20120009616A (en) * 2010-07-19 2012-02-02 삼성전자주식회사 Display system, display device and control method thereof
KR101694773B1 (en) * 2010-08-05 2017-01-23 삼성전자주식회사 Method and apparatus for connecting wireless network in a digital device
EP2604012B1 (en) * 2010-08-10 2017-10-04 Telefonaktiebolaget LM Ericsson (publ) A method in a media client, a media client, a control entity and a method in a control entity
WO2012019348A1 (en) 2010-08-12 2012-02-16 Nokia Corporation Configuring an uplink and downlink splitting pattern for device-to-device communication under a cellular network
US8619654B2 (en) * 2010-08-13 2013-12-31 Intel Corporation Base station selection method for heterogeneous overlay networks
CN102387495A (en) 2010-08-30 2012-03-21 电信科学技术研究院 Data transmission processing method and equipment for machinery class communication equipment
EP2617145A4 (en) * 2010-09-14 2015-03-11 Nokia Corp Interference measurement and reporting for device-to-device communications in communication system
KR101719165B1 (en) 2010-10-27 2017-03-23 삼성전자주식회사 METHOD AND APPARATUS FOR A TRANSMISSION/RECEPTION OF A WLAN NETWORK SHARING DATA IN A Wi-Fi P2P GROUP
US10637891B2 (en) * 2010-11-02 2020-04-28 Telefonaktiebolaget Lm Ericsson (Publ) Methods and devices for media description delivery
US8743723B2 (en) 2010-11-05 2014-06-03 Interdigital Patent Holdings, Inc. Methods, apparatus and systems for applying almost blank subframe (ABS) patterns
RU2547821C2 (en) 2010-11-05 2015-04-10 Интердиджитал Пэйтент Холдингз, Инк. Relay node interface related layer 2 measurements and relay node handling in network load balancing
US20120113846A1 (en) * 2010-11-10 2012-05-10 Motorola Mobility, Inc. Idle State Interference Mitigation in Wireless Communication Network
EP2638726B1 (en) * 2010-11-11 2014-08-27 Telefonaktiebolaget LM Ericsson (PUBL) Method and network node for configuring almost blank subframe transmission patterns for reducing intercell interference in an heterogeneous cellular radio communication system
WO2012078000A2 (en) 2010-12-09 2012-06-14 엘지전자 주식회사 Access method between a terminal and a base station in a wireless communication system and apparatus thereof
KR101561474B1 (en) 2010-12-23 2015-10-20 한국전자통신연구원 Method of transmitting small amount of up-link data and method of receiving small amount of up-link data
JP5907074B2 (en) * 2010-12-28 2016-04-20 日本電気株式会社 Handover control method, control device, adjustment device, and program
US8537799B2 (en) * 2010-12-31 2013-09-17 Qualcomm Incorporated Coexistence mechanism for collocated WLAN and WWAN communication devices
KR20120083747A (en) 2011-01-18 2012-07-26 삼성전자주식회사 Method and apparatus for transmission in integrating system of broadcasting-communication service and multimedia service
JP5648500B2 (en) * 2011-01-28 2015-01-07 富士通セミコンダクター株式会社 Transmission device, transmission method, reception device, and reception method
KR20120094369A (en) 2011-02-16 2012-08-24 주식회사 팬택 Method and apparatus for rrc connection establishment in mtc
CN103404109B (en) 2011-02-21 2017-04-05 黑莓有限公司 The equity managed in cellular network is shared
EP2684410A4 (en) 2011-03-07 2014-08-20 Intel Corp Grouped machine-to-machine communications
US9191180B2 (en) * 2011-03-21 2015-11-17 Lg Electronics Inc. Method and device for executing HARQ in TDD-based wireless communication system
KR20120111248A (en) * 2011-03-31 2012-10-10 주식회사 팬택 Apparatus and method for controling paing in heterogeneous wireless network system
CN102740459B (en) * 2011-03-31 2014-11-05 中国移动通信集团公司 Method for receiving downlink message and mobile terminal
WO2012134530A1 (en) 2011-04-01 2012-10-04 Intel Corporation Cross-layer optimized adaptive http streaming
US20130089076A1 (en) * 2011-04-01 2013-04-11 Interdigital Patent Holdings, Inc. Local / remote ip traffic access and selective ip traffic offload service continuity
KR101417256B1 (en) 2011-04-05 2014-07-08 엘지전자 주식회사 Method for transmitting data and a user eqipment
CN103460768B (en) * 2011-04-07 2017-06-16 Lg电子株式会社 The method and apparatus that beep-page message is monitored in M2M communication
EP2698009A1 (en) 2011-04-13 2014-02-19 Interdigital Patent Holdings, Inc. Method and apparatus for small cell discovery in heterogeneous networks
KR101500894B1 (en) * 2011-04-20 2015-03-09 엘지전자 주식회사 Method and apparatus for detecting an access point in a radio access system
KR101796271B1 (en) * 2011-04-27 2017-11-10 주식회사 팬택 Apparatus And Method For Reporting Radio Link Failure
WO2012148443A1 (en) 2011-04-29 2012-11-01 Intel Corporation System and method of rank adaptation in mimo communication system
US8942151B2 (en) 2011-04-29 2015-01-27 Blackberry Limited Receiving messages in connection with LTE wakeup
US9042315B2 (en) * 2011-05-03 2015-05-26 Mediatek Inc. SCELL radio link monitoring and radio link failure handling
US20120284785A1 (en) 2011-05-05 2012-11-08 Motorola Mobility, Inc. Method for facilitating access to a first access nework of a wireless communication system, wireless communication device, and wireless communication system
US20120294163A1 (en) * 2011-05-19 2012-11-22 Renesas Mobile Corporation Apparatus and Method for Direct Device-to-Device Communication in a Mobile Communication System
GB2491226A (en) 2011-05-27 2012-11-28 Vodafone Ip Licensing Ltd Single band query of frequency bands supported by a multi-band WLAN access point
TW201720194A (en) 2011-06-01 2017-06-01 內數位專利控股公司 Content delivery network interconnection (CDNI) mechanism
US8805374B2 (en) * 2011-06-07 2014-08-12 Intel Corporation Multi-radio handover manager system and algorithms for heterogeneous wireless networking
US9137804B2 (en) * 2011-06-21 2015-09-15 Mediatek Inc. Systems and methods for different TDD configurations in carrier aggregation
US9160779B2 (en) 2011-06-30 2015-10-13 Qualcomm Incorporated Dynamic adaptive streaming proxy for unicast or broadcast/multicast services
US20130007186A1 (en) * 2011-06-30 2013-01-03 Interdigital Patent Holdings, Inc. Controlling content caching and retrieval
KR101234758B1 (en) 2011-07-05 2013-02-19 서울대학교산학협력단 Method and Apparatus for Reservation of Data Channel in Wireless Access System
EP2950589B1 (en) 2011-07-07 2018-02-07 HTC Corporation Method of handling access network discovery and selection function and related communication device
TWI459777B (en) * 2011-07-11 2014-11-01 Mediatek Inc Method and machine type communication device of enhanced paging
KR101896001B1 (en) 2011-07-12 2018-09-06 한국전자통신연구원 Method of mobility management for mobile terminal in a heterogeneous network environment
US8918096B2 (en) 2011-07-15 2014-12-23 Nokia Corporation Method and apparatus providing multi-level proximity indication and small cell discovery
WO2013013286A1 (en) * 2011-07-22 2013-01-31 Research In Motion Limited Using non-ims connections in ims sessions
CN102905324B (en) 2011-07-25 2016-06-08 华为技术有限公司 The method and apparatus of cell change
KR101542413B1 (en) * 2011-07-25 2015-08-07 엘지전자 주식회사 Method and apparatus for monitoring a wireless link in a wireless communication system
GB2493349A (en) * 2011-07-29 2013-02-06 Intellectual Ventures Holding 81 Llc Mobile communications network with simplified handover
CN102917444B (en) 2011-08-01 2016-08-17 华为技术有限公司 The method and device of discontinuous reception under idle condition
US9258344B2 (en) 2011-08-01 2016-02-09 Intel Corporation Multi-hop single sign-on (SSO) for identity provider (IdP) roaming/proxy
WO2013020709A1 (en) 2011-08-10 2013-02-14 Telefonaktiebolaget L M Ericsson (Publ) Media stream handling
WO2013022470A1 (en) 2011-08-11 2013-02-14 Intel Corporation Methods for switching between a mbms download and an http-based delivery of dash formatted content over an ims network
US8923274B2 (en) * 2011-08-15 2014-12-30 Blackberry Limited Notifying a UL/DL configuration in LTE TDD systems
WO2013028026A2 (en) * 2011-08-24 2013-02-28 Lg Electronics Inc. Method and apparatus for transmitting uplink data associated with mtc device trigger function
WO2013029672A1 (en) 2011-08-31 2013-03-07 Telefonaktiebolaget L M Ericsson (Publ) Andsf policy controlled access network discovery information
US9161273B2 (en) * 2011-09-06 2015-10-13 Intel Corporation Small cells implementing multiple air interfaces
JP5944004B2 (en) * 2011-10-03 2016-07-05 インテル・コーポレーション Device-to-device communication (D2D communication) mechanism
EP2764632B1 (en) * 2011-10-04 2019-03-27 Nokia Solutions and Networks Oy Improved pucch multiplexing scheme
US9294926B2 (en) 2011-10-07 2016-03-22 Interdigital Patent Holdings, Inc. Method and apparatus for integrating different radio access technologies using carrier aggregation
GB2495550A (en) 2011-10-14 2013-04-17 Ubiquisys Ltd An access point that can be used to establish connections with UE devices using both cellular and wifi air interfaces
US9161331B2 (en) 2011-11-04 2015-10-13 Futurwei Technologies, Inc. Positioning enhancement systems and methods
EP3319347B1 (en) * 2011-11-04 2023-08-23 Apple Inc. Small data techniques and configurations in a wireless communication network
CN102340826B (en) * 2011-11-17 2016-05-25 电信科学技术研究院 A kind of method and apparatus of transfer of data
US9559866B2 (en) 2011-12-21 2017-01-31 Cisco Technology, Inc. Systems and methods for load balancing in cellular networks and wireless local area networks
US9398473B2 (en) 2011-12-21 2016-07-19 Cisco Technology, Inc. System and method for load based optimization in communication networks
US8787305B2 (en) * 2011-12-29 2014-07-22 Motorola Solutions, Inc. Method and apparatus for scheduling peer-to-peer communication links
EP2805463A1 (en) * 2012-01-17 2014-11-26 Telefonaktiebolaget L M Ericsson (publ) Method for sending respectively receiving a media stream
CN104054282B (en) * 2012-01-18 2018-02-09 Lg电子株式会社 Device is to device communication means and its device
CN102595405A (en) 2012-01-21 2012-07-18 华为技术有限公司 Authentication method, system and equipment for network access
US9213605B2 (en) 2012-01-23 2015-12-15 Intel Corporation IP multimedia subsystem and method for MBMS file repair using HTTP servers
US8953478B2 (en) * 2012-01-27 2015-02-10 Intel Corporation Evolved node B and method for coherent coordinated multipoint transmission with per CSI-RS feedback
JP6192014B2 (en) * 2012-02-03 2017-09-06 国立大学法人佐賀大学 Biological implant
US9215638B2 (en) * 2012-02-24 2015-12-15 Qualcomm Incorporated Method and system for regulating frequent cell reselections by idle-mode mobile devices
US8774041B2 (en) * 2012-03-02 2014-07-08 Qualcomm Incorporated Proximity-based wireless handshaking for connection establishment
US9065600B2 (en) * 2012-03-14 2015-06-23 Nokia Technologies Oy Aggregation for a new carrier type
US10098028B2 (en) 2012-03-16 2018-10-09 Qualcomm Incorporated System and method of offloading traffic to a wireless local area network
CN104350795B (en) * 2012-04-05 2019-02-01 奥普蒂斯蜂窝技术有限责任公司 Paging information is transferred to the method and related device of terminal installation from mobile network
US9648588B2 (en) * 2012-04-06 2017-05-09 Samsung Electronics Co., Ltd. Method and apparatus for transmitting/receiving channels in mobile communication system supporting massive MIMO
US9078109B2 (en) 2012-04-09 2015-07-07 Intel Corporation Frame structure design for new carrier type (NCT)
CN103379427B (en) * 2012-04-13 2016-06-15 华为技术有限公司 A kind of localization method, equipment and system
US9143984B2 (en) * 2012-04-13 2015-09-22 Intel Corporation Mapping of enhanced physical downlink control channels in a wireless communication network
US9060289B2 (en) * 2012-04-23 2015-06-16 Wildfire.Exchange, Inc. Interference management and network performance optimization in small cells
US9002281B2 (en) * 2012-04-30 2015-04-07 Intel Corporation Apparatus and method to enable device-to-device (D2D) communication in cellular networks
WO2013165206A1 (en) * 2012-05-03 2013-11-07 엘지전자 주식회사 Data transmission method and data transmission device
EP3735007B1 (en) * 2012-05-09 2024-09-25 InterDigital Patent Holdings, Inc. Handling mtc long drx cycle/sleep lengths
US9130688B2 (en) * 2012-05-11 2015-09-08 Intel Corporation User equipment and methods for handover enhancement using reference signal received quality (RSRQ)
US9100852B2 (en) 2012-05-15 2015-08-04 Futurewei Technologies, Inc. System and method for network detection and selection
US9100941B2 (en) * 2012-05-24 2015-08-04 Nokia Solutions And Networks Oy Using unique preambles for D2D communications in LTE
US9185620B2 (en) * 2012-05-30 2015-11-10 Intel Corporation Adaptive UL-DL configurations in a TDD heterogeneous network
US8988999B2 (en) 2012-05-30 2015-03-24 Intel Corporation Method, system and apparatus of wireless local area network (WLAN) communication in conjunction with cellular communication
US9071976B2 (en) * 2012-05-31 2015-06-30 Intel Mobile Communications GmbH Communication network device, communication device, method for managing communication resource allocation and method for communication resource allocation
US9066355B2 (en) * 2012-06-12 2015-06-23 Gallery I.P. Telephony Ltd. Central wireless network selection and monitoring for mobile client terminals
US8737276B2 (en) * 2012-06-27 2014-05-27 Qualcomm Incorporated Method and apparatus using modified subframes
US9203563B2 (en) * 2012-07-02 2015-12-01 Intel Corporation Devices and methods for radio communication network guided traffic offload
US10791451B2 (en) 2012-07-27 2020-09-29 Sharp Kabushiki Kaisha Proximity service discovery using a licensed frequency spectrum
EP2880838A1 (en) * 2012-07-30 2015-06-10 Intel Mobile Communications GmbH Communication devices, servers, methods for controlling a communication device, and methods for controlling a server
KR20140017883A (en) 2012-08-01 2014-02-12 삼성전자주식회사 Method and apparatus for cell reselection of user equipment between lte inter frequency or inter radio access technology in a mobile communication system
FI4040710T3 (en) * 2012-08-02 2023-12-13 Blackberry Ltd Uplink control channel resource allocation for an enhanced downlink control channel of a mobile communication system
US10051633B2 (en) * 2012-08-03 2018-08-14 Hmd Global Oy Method and apparatus for carrier aggregation
US8971182B2 (en) * 2012-08-07 2015-03-03 Lg Electronics Inc. Method for data traffic offloading and apparatus using the same
CN104782185A (en) * 2012-09-13 2015-07-15 Lg电子株式会社 Operating method for acquiring system information in wireless communication system, and apparatus for supporting same
US9516512B2 (en) * 2012-09-25 2016-12-06 Lg Electronics Inc. Method and apparatus for supporting a control plane and a user plane in a wireless communication system
US8923880B2 (en) * 2012-09-28 2014-12-30 Intel Corporation Selective joinder of user equipment with wireless cell
EP3883170B1 (en) * 2012-09-28 2022-11-30 BlackBerry Limited Methods and apparatus for enabling enhancements to flexible subframes in lte heterogeneous networks
EP2910071A4 (en) * 2012-10-17 2016-09-28 Broadcom Corp Low power communication in connected mode
US9320049B2 (en) 2012-10-22 2016-04-19 Qualcomm Incorporated User admission for co-existence wireless systems
US10356640B2 (en) 2012-11-01 2019-07-16 Intel Corporation Apparatus, system and method of cellular network communications corresponding to a non-cellular network
JP6105257B2 (en) * 2012-11-02 2017-03-29 株式会社Nttドコモ Wireless communication system, user terminal, and wireless communication method
US9521664B2 (en) * 2012-11-02 2016-12-13 Qualcomm Incorporated EPDCCH resource and quasi-co-location management in LTE
US20140133294A1 (en) 2012-11-09 2014-05-15 Qualcomm Incorporated Methods and Systems for Broadcasting Load Information to Enable a User Equipment (UE) to Select Different Network Access
US20140133395A1 (en) * 2012-11-09 2014-05-15 Samsung Electronics Co. Ltd Methods and apparatus for identification of small cells
US9264985B2 (en) 2012-11-14 2016-02-16 Qualcomm Incorporated Apparatus and methods of controlling call establishment
US20140302853A1 (en) * 2012-11-30 2014-10-09 Telefonaktiebolaget L M Ericsson (Publ) Network node, user equipment, methods therein, computer programs and computer-readable storage mediums to expand or shrink a coverage area of a cell
US9414392B2 (en) 2012-12-03 2016-08-09 Intel Corporation Apparatus, system and method of user-equipment (UE) centric access network selection
US9179407B2 (en) 2012-12-10 2015-11-03 Broadcom Corporation Selective notification of DRX parameter
WO2014098384A1 (en) * 2012-12-17 2014-06-26 엘지전자 주식회사 Method and terminal for applying changed system information
US9036578B2 (en) * 2012-12-19 2015-05-19 Blackberry Limited Method and apparatus for control channel configuration in a heterogeneous network architecture
US9655012B2 (en) 2012-12-21 2017-05-16 Qualcomm Incorporated Deriving a WLAN security context from a WWAN security context
EP2938142B1 (en) * 2012-12-21 2018-11-07 LG Electronics Inc. Method and apparatus for device-to-device communication in wireless communication system
US9185697B2 (en) * 2012-12-27 2015-11-10 Google Technology Holdings LLC Method and apparatus for device-to-device communication
US9647818B2 (en) 2013-01-03 2017-05-09 Intel IP Corporation Apparatus and method for single-tone device discovery in wireless communication networks
JP6174714B2 (en) * 2013-01-16 2017-08-02 エルジー エレクトロニクス インコーポレイティド Inter-terminal communication execution method and apparatus therefor
EP3226595B1 (en) 2013-01-17 2019-11-20 Intel IP Corporation Apparatus, system and method of communicating non-cellular access network information over a cellular network
US9723536B2 (en) * 2013-01-17 2017-08-01 Avago Technologies General Ip (Singapore) Pte. Ltd. Wireless communication system utilizing broadcast-based blind offloading
US9462515B2 (en) * 2013-01-17 2016-10-04 Broadcom Corporation Wireless communication system utilizing enhanced air-interface
EP2959726B1 (en) * 2013-02-22 2019-07-10 Intel IP Corporation Systems and methods for access network selection and traffic routing
RU2615164C2 (en) * 2013-02-26 2017-04-04 ЭлДжи ЭЛЕКТРОНИКС ИНК. Method and device for detection signal transmitting for communication from device to device in wireless communication system
US9060321B2 (en) * 2013-02-26 2015-06-16 Samsung Electronics Co., Ltd. Methods and apparatus for demodulation reference signals and synchronization signals in extension carrier of LTE advanced
US20140254398A1 (en) * 2013-03-05 2014-09-11 Nokia Corporation Methods And Apparatus for Internetworking
RU2612408C1 (en) * 2013-03-11 2017-03-09 ЭлДжи ЭЛЕКТРОНИКС ИНК. Method of receiving synchronization information for direct communication between user equipment and corresponding device
WO2014142576A1 (en) * 2013-03-14 2014-09-18 엘지전자 주식회사 Method for receiving signal by using device-to-device communication in wireless communication system
US10275128B2 (en) * 2013-03-15 2019-04-30 Activevideo Networks, Inc. Multiple-mode system and method for providing user selectable video content
US9480081B2 (en) * 2013-03-15 2016-10-25 Huawei Technologies Co., Ltd. System and method for interference cancellation using terminal cooperation
US20140286255A1 (en) * 2013-03-25 2014-09-25 Samsung Electronics Co., Ltd. Uplink demodulation reference signals in advanced wireless communication systems
JP5947240B2 (en) * 2013-03-28 2016-07-06 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America Transmitting apparatus and transmitting method
US9197385B2 (en) * 2013-03-28 2015-11-24 Sharp Laboratories Of America, Inc. Systems and methods for demodulation reference signal selection
WO2014158235A1 (en) 2013-03-29 2014-10-02 Intel IP Corporation User equipment and method for distributed channel access for d2d communications
WO2014158264A1 (en) 2013-03-29 2014-10-02 Intel IP Corporation Quality-aware rate adaptation techniques for dash streaming
ES2667804T3 (en) 2013-03-29 2018-05-14 Intel IP Corporation Control of WLAN selection guidelines in roaming scenarios
CN106060912B (en) 2013-03-29 2020-02-07 英特尔Ip公司 Extended paging Discontinuous Reception (DRX) cycle in a wireless communication network
EP2802185B1 (en) * 2013-04-01 2019-11-13 Innovative Sonic Corporation Method and Apparatus for Adding Serving Cells in a Wireless Communication System
US9160515B2 (en) 2013-04-04 2015-10-13 Intel IP Corporation User equipment and methods for handover enhancement using scaled time-to-trigger and time-of-stay
EP3018921B1 (en) * 2013-07-01 2018-04-04 LG Electronics Inc. Method for direct device-to-device communication of terminal in idle mode using similar random access procedures, and device therefor
US9258747B2 (en) * 2013-09-17 2016-02-09 Intel IP Corporation User equipment and methods for fast handover failure recovery in 3GPP LTE network
US20150109997A1 (en) * 2013-10-21 2015-04-23 Alexander Sirotkin Apparatus, system and method of interfacing between a cellular manager and a wlan access device
US9609566B2 (en) * 2014-06-03 2017-03-28 Intel Corporation Radio resource control (RRC) protocol for integrated WLAN/3GPP radio access technologies
WO2016143560A1 (en) 2015-03-06 2016-09-15 京セラ株式会社 Radio terminal and base station

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110261729A1 (en) * 2008-03-16 2011-10-27 Joon Kui Ahn Method of performing hybrid automatic repeat request (harq) in wireless communication system
US20120120908A1 (en) * 2009-07-26 2012-05-17 Joon Kui Ahn Method and apparatus for receiving reception acknowledgement in wireless communication system
US20110235602A1 (en) * 2010-03-25 2011-09-29 Qualcomm Incorporated Subframe dependent physical uplink control channel (pucch) region design
CN102971978A (en) * 2010-06-18 2013-03-13 诺基亚西门子网络公司 Enhanced physical uplink control channel format resource allocation for time division duplex mode

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10587389B2 (en) 2013-01-03 2020-03-10 Apple Inc. Apparatus and method for single-tone device discovery in wireless communication networks
US9794876B2 (en) 2013-03-29 2017-10-17 Intel IP Corporation Extended paging discontinuous reception (DRX) cycles in wireless communication networks
US9930647B2 (en) 2013-04-04 2018-03-27 Intel IP Corporation Enhanced node B and method for RRC connection establishment for small data transfers
CN108463964B (en) * 2016-01-15 2021-06-01 高通股份有限公司 Shortened control channel resource mapping
CN108463964A (en) * 2016-01-15 2018-08-28 高通股份有限公司 Control channel resource impact through shortening
US10979181B2 (en) 2016-03-30 2021-04-13 Qualcomm Incorporated Hybrid automatic repeat request timing for reduced transmission time intervals
CN108886439A (en) * 2016-03-30 2018-11-23 高通股份有限公司 The mixed automatic repeat request timing of transmission time interval for reduction
CN108886439B (en) * 2016-03-30 2021-04-09 高通股份有限公司 Method and apparatus for hybrid automatic repeat request timing for reduced transmission time intervals
CN108702752A (en) * 2016-03-31 2018-10-23 索尼公司 Terminal installation, base station apparatus and communication means
CN108702752B (en) * 2016-03-31 2023-04-18 索尼公司 Terminal device, base station device, and communication method
US10554367B2 (en) 2016-05-13 2020-02-04 Zte Corporation Narrowband uplink resource configuration
WO2017193976A1 (en) * 2016-05-13 2017-11-16 中兴通讯股份有限公司 Resource allocation method and device, and base station
CN109600847A (en) * 2017-09-30 2019-04-09 北京三星通信技术研究有限公司 Transmitting uplink control information, the method and apparatus that upstream time lead is set
CN113196696A (en) * 2018-09-28 2021-07-30 苹果公司 Physical uplink control channel resource determination and multiplexing of multiple hybrid automatic repeat request acknowledgement feedbacks and other uplink control information on physical uplink control channel and physical uplink shared channel
CN111556537A (en) * 2019-02-12 2020-08-18 大唐移动通信设备有限公司 Message transmission method and device
CN111556537B (en) * 2019-02-12 2021-06-11 大唐移动通信设备有限公司 Message transmission method and device
CN111988120A (en) * 2019-05-23 2020-11-24 华为技术有限公司 Communication method and device
CN111988120B (en) * 2019-05-23 2022-02-25 华为技术有限公司 Communication method and device

Also Published As

Publication number Publication date
WO2014165517A1 (en) 2014-10-09
TW201505403A (en) 2015-02-01
US20140301354A1 (en) 2014-10-09
ES2693462T3 (en) 2018-12-11
JP2016517648A (en) 2016-06-16
CN110381542B (en) 2023-08-01
CN105027499B (en) 2021-05-28
EP2982158A4 (en) 2017-02-01
EP2982154A1 (en) 2016-02-10
HK1217070A1 (en) 2016-12-16
US20160192410A1 (en) 2016-06-30
EP2982056A1 (en) 2016-02-10
TWI577200B (en) 2017-04-01
EP2982058A1 (en) 2016-02-10
WO2014165411A1 (en) 2014-10-09
TWI535307B (en) 2016-05-21
EP2982219A4 (en) 2016-12-21
EP2982158A1 (en) 2016-02-10
EP2982154A4 (en) 2016-11-23
TW201445961A (en) 2014-12-01
TW201507534A (en) 2015-02-16
US20160029234A1 (en) 2016-01-28
WO2014165603A1 (en) 2014-10-09
US9674757B2 (en) 2017-06-06
CN108683484B (en) 2021-08-17
US20170064696A1 (en) 2017-03-02
CN108683484A (en) 2018-10-19
TWI532403B (en) 2016-05-01
US9763235B2 (en) 2017-09-12
JP6279621B2 (en) 2018-02-14
CN105265016A (en) 2016-01-20
CN105027468A (en) 2015-11-04
US20160050706A1 (en) 2016-02-18
WO2014165690A1 (en) 2014-10-09
HK1217580A1 (en) 2017-01-13
US20140302887A1 (en) 2014-10-09
US20140301288A1 (en) 2014-10-09
CN105009662A (en) 2015-10-28
EP2982216A1 (en) 2016-02-10
CN105027469A (en) 2015-11-04
US9930647B2 (en) 2018-03-27
TW201507387A (en) 2015-02-16
WO2014165657A1 (en) 2014-10-09
US20160029344A1 (en) 2016-01-28
CN105027468B (en) 2018-06-22
WO2014163696A1 (en) 2014-10-09
EP2982158B1 (en) 2020-08-12
EP2982219A1 (en) 2016-02-10
US9191178B2 (en) 2015-11-17
US9258104B2 (en) 2016-02-09
EP2982197A1 (en) 2016-02-10
WO2014163686A1 (en) 2014-10-09
TW201507501A (en) 2015-02-16
EP2982059A1 (en) 2016-02-10
CN110381542A (en) 2019-10-25
CN105027666B (en) 2019-08-13
US20140301290A1 (en) 2014-10-09
EP2982078A1 (en) 2016-02-10
HK1216962A1 (en) 2016-12-09
EP2982055A4 (en) 2016-12-14
US20160066243A1 (en) 2016-03-03
HK1217064A1 (en) 2016-12-16
US9160515B2 (en) 2015-10-13
US9445338B2 (en) 2016-09-13
US20160014667A1 (en) 2016-01-14
EP2982216A4 (en) 2016-10-19
EP2982055A1 (en) 2016-02-10
US20160020890A1 (en) 2016-01-21
EP2982154B1 (en) 2018-08-15
HK1216963A1 (en) 2016-12-09
TWI575898B (en) 2017-03-21
TW201446056A (en) 2014-12-01
WO2014163691A1 (en) 2014-10-09
TW201446043A (en) 2014-12-01
JP2018082489A (en) 2018-05-24
US20160044099A1 (en) 2016-02-11
HUE040329T2 (en) 2019-03-28
US20160021593A1 (en) 2016-01-21
EP2982197B1 (en) 2022-07-13
EP2982059A4 (en) 2016-11-30
KR20150119889A (en) 2015-10-26
US9807743B2 (en) 2017-10-31
US10271314B2 (en) 2019-04-23
TWI513349B (en) 2015-12-11
HK1216952A1 (en) 2016-12-09
EP2982078A4 (en) 2017-05-24
WO2014163697A1 (en) 2014-10-09
CN105027666A (en) 2015-11-04
CN105027499A (en) 2015-11-04
CN105009684B (en) 2019-03-12
CN105103473B (en) 2018-04-20
CN105009684A (en) 2015-10-28
TWI552556B (en) 2016-10-01
HK1217579A1 (en) 2017-01-13
HK1258362A1 (en) 2019-11-08
EP2982058A4 (en) 2016-11-09
EP2982178A4 (en) 2016-12-14
WO2014163693A1 (en) 2014-10-09
WO2014163690A1 (en) 2014-10-09
US20160044704A1 (en) 2016-02-11
KR101784760B1 (en) 2017-11-06
CN105103473A (en) 2015-11-25
JP6487076B2 (en) 2019-03-20
TWI544771B (en) 2016-08-01
US10051611B2 (en) 2018-08-14
TW201507499A (en) 2015-02-16
EP2982178A1 (en) 2016-02-10
HK1216953A1 (en) 2016-12-09
US11388700B2 (en) 2022-07-12
WO2014165338A1 (en) 2014-10-09
TWI531267B (en) 2016-04-21
WO2014165656A1 (en) 2014-10-09
EP2982056A4 (en) 2017-03-01
HK1220068A1 (en) 2017-04-21
CN105027469B (en) 2019-06-14
US20140302851A1 (en) 2014-10-09
CN105122673B (en) 2018-08-10
EP2982197A4 (en) 2017-06-14

Similar Documents

Publication Publication Date Title
CN105122673B (en) Reconfigure control channel resource impact conflict avoidance
US10856321B2 (en) Method and wireless device for receiving PDSCH
US11240790B2 (en) Method and apparatus for transmitting control and data information in wireless cellular communication system
JP7402310B2 (en) Rate matching for non-coherent joint transmission with dynamic spectrum sharing
US20200169373A1 (en) Method and apparatus for transmitting uplink control information (uci) in wireless communication system
US9807747B2 (en) Method of handling downlink control information and related communication device
WO2018054381A1 (en) Feedback information transmission method and device
US20130242890A1 (en) PHYSICAL UPLINK CONTROL CHANNEL (PUCCH) RESOURCE MAPPING USING AN ENHANCED PHYSICAL DOWNLINK CONTROL CHANNEL (ePDCCH)
WO2016118240A1 (en) Devices and methods for harq-ack feedback scheme on pusch in wireless communication systems
CN108235418B (en) Method and apparatus for monitoring downlink control channel in wireless communication system
US9807746B2 (en) Method of handling hybrid automatic repeat request feedback and related communication device
US10383142B2 (en) Device and method of handling channel status information reports for transmission time intervals
JP2013530559A (en) Aperiodic channel state information request in wireless communication
CN108886772B (en) Carrier determination for a device
US20220070913A1 (en) Terminal, radio base station, radio communication system, and radio communication method
EP2953288B1 (en) Method of handling on-off state of a cell
CN114930934A (en) Method for providing pre-indication of sidelink transmission and apparatus for performing the method
US20150098370A1 (en) Method of Handling HARQ Resource for FDD Carrier and Related Communication Device
CN112534890A (en) Spectral efficiency determination for power control of uplink control information transmission on uplink data channel
CN111357366A (en) Example Uplink Control Information (UCI) layer mapping
US9706547B2 (en) Method of handling communication operations and related communication device
US9590770B2 (en) Method of handling hybrid automatic repeat request feedback and related communication device
CN111480380B (en) Method and apparatus for transmitting and receiving control information and data information in a wireless communication system
EP3425977A1 (en) User terminal, radio base station and radio communication method
EP2637345B1 (en) Method of handling control channel and related communication device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1217580

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180810

Termination date: 20190401

CF01 Termination of patent right due to non-payment of annual fee
REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1217580

Country of ref document: HK