CN105122348A - 消声结构 - Google Patents

消声结构 Download PDF

Info

Publication number
CN105122348A
CN105122348A CN201480015138.7A CN201480015138A CN105122348A CN 105122348 A CN105122348 A CN 105122348A CN 201480015138 A CN201480015138 A CN 201480015138A CN 105122348 A CN105122348 A CN 105122348A
Authority
CN
China
Prior art keywords
unit
thin piece
panel
noise elimination
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201480015138.7A
Other languages
English (en)
Other versions
CN105122348B (zh
Inventor
杨志宇
沈平
马冠聪
杨旻
李勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hong Kong University of Science and Technology HKUST
Original Assignee
Hong Kong University of Science and Technology HKUST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hong Kong University of Science and Technology HKUST filed Critical Hong Kong University of Science and Technology HKUST
Publication of CN105122348A publication Critical patent/CN105122348A/zh
Application granted granted Critical
Publication of CN105122348B publication Critical patent/CN105122348B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Abstract

一种消声面板由实质透声的平面刚性框架构成,该刚性框架分成多个单独的大体二维单元。挠性材料薄片固定至刚性框架,以及,多个薄块固定至挠性材料薄片,使得每一个单独单元设置有各自的薄块,以建立共振频率,该共振频率由框架的平面几何特性、挠性材料的挠性、以及薄块限定。单元分成至少两种不同类型的单独单元,构造成使得,由不同类型单独单元的第一类单元发出的声波,与由不同类型单独单元的第二类单元、或不同类型单独单元的聚集体发出的声波,形成消声模式。

Description

消声结构
技术领域
本发明涉及一种新颖的消声结构,特别涉及一种局域共振声学材料(LRSM)。局域共振声学材料能提供针对特定频率范围的屏蔽或声学屏障,并且可以层叠起来作为宽频消声屏障。
背景技术
近年来,发现了一类新型声学材料,其基于构造局域共振的原理。这种材料可以打破声音衰减的质量密度定律,即:为了衰减声音传递至相同程度,固体面板的厚度、或单位面积质量必须与声音频率成反比变化。因此,采用常规消声材料,低频消声可能需要非常厚的固体面板,或者用具有高密度的材料如铅制成的面板。
这类新型材料即局域共振声学材料(LRSMs)的基本原理发表于Science,vol,289,p.1641-1828(2000);以及,在关于实现这类LRSM的不同设计方面,美国专利No.6,576,333、以及美国专利No.7,249,653中也描述了这种材料。目前的设计仍然困窘于下述事实,即质量密度定律的打破仅仅局限于较窄频段。因此,在宽频段范围内都要求消声的应用中,LRSM仍然非常厚重。
阻塞空气传播声音的常规措施通常要求用固体材料阻断空气介质。对于还要求通风的噪声阻断应用而言,这是不利的。
属于Yang等人的美国专利No.7,395,898描述了一种消声面板,其包括:分成多个单独单元的刚性框架、挠性和弹性材料薄片(薄膜)、以及多个配重(薄块)。各配重固定于挠性材料薄片,使得各单元设置有各自的配重,以及,通过适当选择配重的质量,可以控制消声的频率。在这种消声结构中,分布于平坦面板上的薄膜配重单元都是大致相同的。在如美国专利No.7,395,898中所描述的一类系统中,薄膜通常为橡胶或其它弹性体,而配重块所具有质量在0.1~10克之间。
属于Sheng等人的美国专利No.8,579,073描述了一种声音能量吸收超材料,其包括:附着有弹性薄膜的至少一个围起来的平直框架,并且具有一个或多个刚性板附着于薄膜。刚性板具有非对称形状,在附着至上述弹性薄膜处具有大致直线边缘,因而,刚性板建立具有预定质量的单元。该结构的振动拥有多个共振模态,其共振频率可调节。
在构造的共振超材料中,分布于平坦面板上的薄膜-配重单位单元所在的结构均是相同的。对于给定的薄膜材料,例如橡胶,配重具有限定的质量。这导致工作频率在特定范围内,该范围由质量、被移置质量的力矩以及Hooke定律确定。
发明内容
消声面板具有一个实质透声的平直刚性框架,其分成多个单独的大体二维单元。挠性材料薄片固定于刚性框架,并且将多个薄块固定至挠性材料薄片,使得多个单元的每个单独单元设置有各自的薄块。挠性材料加薄块的布置方式产生一种共振频率,该共振频率由各自单独单元的平面几何特性、挠性材料的挠性、以及其上的各自薄块限定。多个单元分成至少两种不同类型的单独单元,分布在消声面板上。不同类型的单独单元构造成,使得由不同类型单独单元的第一类单元所发出的声波,与由不同类型单独单元的第二类单元、或者与不同类型单独单元的聚集体所发出的声波,建立消声模式。
附图说明
图1图示质量块相对于弹簧的横向运动。
图2图示刚性框架,包括若干局域共振声学材料(LRSM)单元,其中用粗线示出单个单元。
图3图示单个单元的俯视图和分解图。
图4图示局域共振声学材料(LRSM)面板的俯视图的示意图。
图5图示三个单独LRSM面板的透射谱、以及由三个LRSM面板叠加起来所构成面板的透射谱。
图6图示两个单独LRSM面板的透射谱、以及由两个LRSM面板叠加起来所构成面板的透射谱。
图7图示用于比较的固体面板的透射谱。
图8图示高吸收和低透射面板。
图9示意性图示获得图5至图8实验结果所使用的测量设备;
图10图示第二吸收面板与LSRM面板组合;
图11A至图11E图示样品单位单元的性质图表以及样品单位单元的照片;图11A图示单元的吸收性能;图11B图示图11A中所示样品在172Hz下得到的振幅随位置的变化;图11C图示图11A中所示样品在340Hz下得到的振幅随位置的变化;图11D图示图11A中所示样品在710Hz下得到的振幅随位置的变化;图11E是图11A至图11D中所示样品单位单元的照片。
图12图示杨氏模量值。
图13图示关于样品的吸收系数与薄膜位移的关系。
图14为图示弹性势能密度(左列)、应变张量示踪(中列)、以及xy平面内位移w(右列)的计算分布的一系列图。
图15A和图15B示出双层样品的吸收系数以及双层样品的照片。图15A图示关于双层样品所测得的吸收系数;图15B是该结构的照片。
图16A和图16B图示出吸收峰随质量平方根倒数的变化趋势,16A图示172Hz下吸收峰随质量平方根倒数的变化趋势,图16B图示813Hz下吸收峰随质量方根倒数的变化趋势。
图17A和图17B图示吸收图,示出单层薄膜(图17A)的透射以及五层薄膜(图17A)的透射;
图18图示45°倾斜入射的实验设置的图像;
图19A至图19E图示关于不同入射角度0°(图19A)、15°(图19B)°、30°(图19C)、45°(图19D)、以及60°(图19E)所测得的吸收系数;
图20A和图20B图示使用保鲜膜和铝箔作为薄膜的两种实验的透射谱;
图21A和图21B图示关于采用丙烯腈丁二烯苯乙烯(ABS)膜的结构的数字仿真透射谱;图21A图示采用丙烯腈丁二烯苯乙烯(ABS)膜的结构的数字仿真结果,其中ABS膜半径为50毫米、厚度为0.1毫米、铅薄块半径为8毫米、厚度为1.1毫米;图21B图示采用丙烯腈丁二烯苯乙烯(ABS)膜的结构的数字仿真结果,其中ABS膜半径为100毫米、厚度为0.5毫米、ABS薄块半径为40毫米、厚度为2.25毫米;
图22图示关于铝膜的数字仿真透射谱,采用的铝膜半径为50毫米、厚度为0.1毫米、薄块半径为20毫米、厚度为0.1毫米;
图23A和图23B图示工作频率在超声频段中的结构的数字仿真结果;
图24A至图24E是设置多种类型单元的布置方式的示意图,图24A图示两种单元的交替布置,图24B图示交替布置使得相同类型的最邻近单元比相反类型的最邻近单元间隔更远的结构,图24C图示每一行中相邻布置相同类型单元的结构,图24D图示一种类型的单元被不同类型单元围住的布置,图24E图示交替布置在一种类型的单元之间提供相邻关系,在另一类型的单元之间不提供相邻关系,并且由行提供隔离的布置方式;
图25是对应图24A中所示具有交替布置方式的单元的图像;
图26图示使用五个单元的模式的消声面板中透射系数随频率的变化、以及反射系数随频率的变化;
图27图示使用了一个A类单元和四个B类单元模式的消声面板中透射系数随频率的变化;
图28A和图28B示意性图示带隔音用褶皱薄膜的消声结构,每个单元使用了一个薄块,图28A是侧视图,而图28B是俯视图或平面图;以及
图29A和图29B示意性图示带隔音用褶皱薄膜的消声结构图,其中将多个薄块附着于褶皱或波纹薄膜,图29A是侧视图,而图29B是俯视图或平面图。
具体实施方式
概述
术语“超材料”(metamaterials)是指能与入射波耦合的人造共振结构。在开放系统中,与辐射波耦合的共振是一种另外的选择,其能有效减小耗散。尽管声学超材料的出现已经扩展了材料可能特性的范围,但还没有特定共振结构针对低频声音的有效吸收以及亚波长吸收。相比之下,已经提出了设计用于吸收的多种电磁超材料,以及,通过使用超材料来引导入射波进入耗散核心(lossycore),实现了“光学黑洞”。
已经发现,通过使用装有或附加有设计形状刚性薄块的挠性和弹性薄膜或薄片,所得到的声学超材料在170Hz附近可以吸收86%的声波,在低频共振模式和高频共振模式下,用两层该结构可以吸收99%的声波。薄块各具有预定的重量或质量。在本文中使用时,“薄块”、“配重”和“重块”交替使用。因此,在这些频率处,取样是“暗声的”。共振模式和频率的有限元仿真与实验很好地相符。特别地,共振模式的位移激光多普勒测量结果显示,薄块边界附近的斜率是不连续的,说明了显著增强的曲率能量集中在这些较小区域中,这些较小区域最低限度地与辐射模式耦合,从而,类似于空腔系统,导致强烈吸收,即使该系统几何结构是开放的。
在此使用时,术语“薄膜”或“薄片”包括材料的薄片,作为非限制性示例,该材料可以是挠性和弹性薄膜或片材。
根据本发明,消声面板由刚性框架、挠性材料薄片、以及多个薄块形成。刚性框架分成多个单独单元。挠性材料可以是任何合适的柔软材料诸如弹性材料如橡胶,或者如尼龙材料。按照本发明的一个方面,挠性材料应当具有小于约1毫米的厚度。
在一种结构中,挠性材料应当不透气,并且不具有穿孔或孔洞,否则,消声效果将大打折扣。在一种可选结构中,面板构造成具有开口,并且不是气密的,允许空气相当自由地流过面板。在这样一种布置方式中,隔音面板包括适当大小的孔或开口,空气能充分自由地从中流过,以提供或促进空气流通。
刚性框架,也称为格栅,可以由诸如铝或塑料等材料制成。格栅的功能是用于支撑,故材料选择不是非常严格,只要它足是够刚性的,以及,适宜为轻质材料。
通常,格栅内单元的间距为0.5~1.5厘米之间。某些情况下,特别是如果挠性薄片较薄,格栅的尺寸对被阻断的频率有影响,尤其是格栅尺寸越小,被阻断频率越高。尽管如此,如果挠性薄片较厚,则格栅尺寸的影响就不太明显。
一个薄块的通常尺寸为5毫米左右,质量为0.2~2克之间。一块面板上的所有薄块通常具有相同质量,以及,选择薄块的质量,以在期望频率实现消声,以及,如果所有其它参数保持相同,被阻断频率将与薄块质量的平方根成反比。薄块的尺寸对被阻断频率影响不大,但可能影响入射声波与共振结构之间的耦合。对于薄块可以使用相对“平坦”形状,因此,螺丝与螺母的组合相当有效。另一可能选择是,薄块可以由两个磁体部件(诸如磁体片)形成,在部件由其相互吸引保持就位的情况下,可以于薄膜的每一面固定一个部件,就能将其固定至薄膜而不用穿透薄膜。
单个面板可以仅仅衰减相对窄的频段,然而,若干面板可以叠加组合,以形成复合结构。尤其是,如果各面板形成有不同薄块,并因此可以衰减不同范围的频率,那么,复合结构就可以具有相对较大的衰减带宽。
本披露的技术还扩展到一种消声结构,其包括叠置在一起的多个面板,其中每个面板包括分成单独单元的刚性框架、软材料薄片、以及多个薄块。各薄块固定至软材料薄片,使得每个单元设置有各自的薄块。本技术还扩展到一种消声结构,其中包括分成单独单元的刚性框架、软材料薄片、以及多个薄块。各薄块固定至软材料薄片,使得每个单元设置有各自的薄块。
如上所述的单独消声面板通常反射声音。如果想要减小声音反射,那么如上所述的面板可以与已知的吸声面板相组合。
在另一结构中,本披露的技术涉及一种新型局域共振声学材料(LRSM)设计。基本上,局域振荡器可以视为由两个部件组成:1)质量为m的振子,以及2)振子弹簧K。在许多情况下,不增大m,因为增大m将会增大面板的总重。因此,一个可能的选择是减小K。较低的K通常与软材料相关联,这将使消声面板难以在结构上进行支撑。根据本披露技术的一方面,通过几何设计而不是主要依赖于使用软弹性材料来实现较低的K。
当声波入射到弹性面板上时,它们激发面板振动。振动的面板作为声源,在面板的另一面产生声波。最终结果是声波通过面板透射,对于噪声阻断面板而言,我们想要将其尽可能地减小到最小值。通过设置两类单元,所产生的声波可以相互抵消。可以使用至少两类单元。作为非限制性示例,设置了两类单元。将弹性薄膜或薄片安装至一类单元(A类单元),其上安装小薄块,而其它单元(B类单元)具有不同薄块安装于其上,或是完全空的。可选地,阻音板包括大小相当的孔或开口,空气可以自由充分地流通,用于提供或者促进空气流通。
各类单元均附有弹性薄膜。在两类单元的情况下,将弹性薄膜附着至A类单元和B类单元。附着于一组单元(例如,A类单元)上的薄块不同于第二组或后继组单元(例如,A类单元与B类单元组合,或者,A类单元与B类单元、C类单元、D类单元等组合)上的薄块。可选择地,单元的几何形状和/或大小可以不同。薄膜的材料、以及所施加的预应力也可以不同。薄块的形状和/或大小、或者薄膜上的点缀也可以不同。
对于两类面板,各类单元(例如,A类单元和B类单元)按重复样式交替排列,但对具体样式没有限制。
一类单元(例如,A类单元)发出声波,其与其它类型单元(例如,B类单元)发出的声波异相。于是,当在空气中的波长远大于单元尺寸时,这些声波彼此相抵消,导致最小透射。在本发明情况下,单元尺寸约为1.0厘米,而波长为100厘米量级。然而,其它单元尺寸也在本发明考虑的范围之内。下面示出一些实验结果,作为支持单元具有上述尺寸的证据。入射声波的频率接近一类单元的共振频率,但明显不同于其它种类单元的共振频率。结果,两类单元振动上具有相异相位,二次发出的声波得以明显衰减。
与生产分布于平坦面板上的薄膜-薄块单元全都相同的消声结构不同,也可以设置多种类型的单元。在这种结构中,两类或多类(A类、B类、C类、D类等)单元交替分布在平坦面板上。在一些特定频率范围,一类单元(A类单元)的振动相位与其它类(B类、C类、D类等)单元的相位相反。因此,由A类单元发出的声波,经由波干涉,抵消由B类、C类、D类等单元发出的声波,使得入射到面板上的声波得以有效阻断,导致无源效应(passiveeffect)。极端情况下,一类单元可以是完全空的。无源效应类似于在在电子有源降噪(ANR)中实现的效果,但使用了不同的共振频率。取代如电子ANR那样按异相关系直接驱动声音,而是通过使用具有的共振频率明显与其它不同的两类或多类单元,实现异相关系。
这里的基本原理是,在透射最小的频率处,相邻单元的同相和异相运动的抵消。这能导致薄膜另一侧面上净余、平均空气运动的全部抵消,因而,视为聚集源时,在透射最小处几乎没有净余透射能量。
与实现薄膜反射体的早期LRSM结构相比,本发明结构提供了对框架荷载较小的优点。也就是,在实际大面积应用中,需要使用一种框架,其用作装配单独薄膜面板成为消声墙的目的。在这种情况下,如果各薄膜面板是相同的,那么,在全部的反射频率下,对框架的荷载可能非常大,从而导致框架变形、以及低频声音的泄漏。在本发明的结构中,由于A类单元和B类单元可以异相,可以使它们对框架的净余负荷最小化,因而,可最小化低频声音的泄漏。
阻断空气载声的常规措施通常要求用固体材料阻隔空气介质。使用本发明的面板,可以具有带着相当大的孔的声音阻隔面板,空气可以自由流过孔,使得它们在还要求空气流通的噪音阻隔应用中成为可行的途径。
在一种特殊结构中,选择增强薄膜挠性的薄膜结构。通过选择薄膜的合适厚度以及弹性如杨氏模量和泊松比,薄块的质量和尺寸,以及单元尺寸,可以覆盖从次声(1Hz以下)至超声(1MHz以上)范围的工作频率。
作为一种非限制性示例,声音阻隔面板包括二维阵列单元的格栅。各单元包括以其边界固定于单元壁的薄膜、以及固定在薄膜中心的薄块。在许多系统中,诸如美国专利No.7,395,898中所描述的,薄膜通常为橡胶或其它弹性体,以及,薄块的质量在0.1~10克之间,而工作频率是在1500Hz以下的低频段。与之对比,本披露的薄膜所用材料可以包括多种固体材料,以及,通过适当选择薄膜材料、厚度和横向尺寸、以及中央薄块的质量和尺寸,可以形成从1Hz以下到1MHz以上工作频率的声音衰减结构。
薄膜上的质量块位移
考虑通常的质量块-弹簧几何模型,其中质量块位移x等于弹簧位移,因而,由Kx给出弹簧回复力。考虑下述情况,其中质量块位移在弹簧横向,如图1中所示。在这种情况下,质量块位移x将导致弹簧伸长为其中1是弹簧的长度。因此,回复力为kx(x/2l)。由于x一般非常小,有效弹簧常数明显减小为k′=k(x/2l)。局域振子共振频率为 f = 1 2 π K ′ m .
这意味着,有效弹簧系数越小,会使共振频率越低。因此,有可能在设计中使用较轻质量块m,而仍能实现相同的效果。
上述讨论适用于弹簧直径或其它弹性杆直径远小于其长度1的极端情形。当直径与长度1相当时,回复力正比于横向位移x,而力常数K’与位移x无关。对于中级范围直径,K’从与位移x无关逐渐变化至与x成线性相关,也就是,位移的x无关区域逐渐收缩为零。在二维结构中,这对应于弹性薄膜上的质量块具有的厚度范围从远小于横向尺寸到与之相当。有效弹性系数K’取决于薄膜的实际尺寸、以及弹性薄膜上的张力。所有这些参数可以进行调节,以获得期望的K’来匹配给定的质量块,以便实现所要求的共振频率。例如,为了达到更高的共振频率,可以使用更轻的薄块,或者通过将两层或更多薄膜叠加在一起来增大薄膜的K’,其效果与使用单层但更厚的薄膜相同。当固定于刚性格栅时,通过改变薄膜中的张力,也可以调节共振频率。例如,如果增大薄膜的张力,则共振频率也将增大。
图2图示刚性格栅的示例,其分成9个相同单元,为了清楚起见,突出了中央单元。格栅可以由任何合适材料形成,只要其为刚性的,并且适宜是轻质的。示例的合适材料包括铝或塑料。通常,单元是正方形的,边长在0.5~1.5厘米之间。
图3图示单个单元的俯视图和单元300的分解图。如上所述,局域共振声学材料(LRSM)面板由刚性框架301、固定于其上的软材料诸如橡胶薄片303形成。随后,在各单元300中,可以将小薄块305固定至橡胶薄片303中心。
框架可以具有较小厚度。按这种方式,当共振频率范围内的声波入射在面板上时,引起薄块在橡胶薄片横向的较小位移。橡胶薄片在这种情况下作用如弱弹簧那样施加回复力。因为单个面板可以非常薄,多个声音面板可以叠加从而作为宽频消声面板,在宽频范围内共同地使质量密度定律失效。
如图4中所示,根据本披露技术实施例的LRSM面板包括多个单独单元,各单元由三个主要部分形成,也就是,格栅框架301、挠性薄片诸如弹性体(例如,橡胶)薄片302、以及薄块303。硬质格栅提供一种刚性框架,薄块(其作为局域振子)可以固定于其上。格栅自身对声波几乎完全透射。固定至格栅(用胶水或其它任何机械方式)的橡胶薄片作为弹簧-质量块局域共振系统中的弹簧。螺丝和螺母组合可以在各格栅单元的中心固定至橡胶薄片,以作为薄块。
挠性薄片可以是覆盖多个单元的单张薄片,或者,各单元可以形成有附着至框架的单独挠性薄片。多个挠性薄片也可以彼此叠加使用,例如,两个较薄的薄片可以用来取代一个较厚的薄片。可以使挠性薄片中的张力变化,以影响系统的共振频率。
系统的共振频率(固有频率)由质量块的质量m和橡胶薄片的有效弹性常数K(其等于橡胶弹性乘以由单元尺寸和橡胶薄片厚度限定的几何因数)确定,成以下简单关系:
f = 1 2 π K ′ m
如果K保持不变,则共振频率(透射极小所在的频率)正比于
1 m
该关系可以用来估计获得期望透射极小频率(dipfrequency)所需的质量。
出于实验的目的,采用下述参数,构建了根据图4设计制成的4个LRSM面板样品,产生了图5至图8所示的结果,图中示出LRSM面板的透射谱。
样品1
面板样品1包括一个格栅叠加至另一个上的两个格栅,并且将格栅用绳系在一起。各单元是边长为1.5厘米的正方形,各格栅的高度是0.75厘米。设置两张橡胶薄片(各为0.8毫米厚),一张薄片保持在两个格栅之间,另一薄片固定于面板的表面上。两张薄片固定于格栅,没有施加预张力。在薄片的中心,薄块附着至各橡胶薄片,薄块采用不锈钢螺丝和螺母组合的形式。在样品1中,各螺丝/螺母组合的重量为0.48克。
样品2
除了各螺丝/螺母组合的重量为0.76克之外,面板样品2与样品1相同。
样品3
除了各螺丝/螺母组合的重量为0.27克之外,面板样品3与样品1相同。
样品4
除了各螺丝/螺母组合的重量为0.136克、以及螺丝/螺母组合由(E.I.DuPontdeNemours为聚四氟乙烯聚合物注册的商标)制成之外,面板样品4与样品1相同。
图5示出样品1至样品3以及由样品1、2、3叠加形成组合面板所形成面板的振幅透射谱(下附公式(4)中的t)。对它们单独进行测量时,每个示例都能看到单个透射谷底(transmissiondip)。样品1在180Hz处示出透射谷底,样品2在155Hz处示出透射谷底,而样品3在230Hz处示出透射谷底。随着增大螺丝/螺母的质量,透射谷底移向更低频率,符合预计的关系。叠加三个样品时形成组合面板所测得的透射曲线,示出它们一起形成了宽频的低透射声音屏障。在120至250Hz之间,透射低于1%,意味着透射衰减超过40dB。在整个120至500Hz区间内,透射低于3%,意味着透射衰减超过35dB。
对于越高频率的消声,使用质量越轻的薄块,如样品4中那样。图6示出单独测得的样品1和样品4的透射谱、以及两个样品叠加在一起时的透射谱。再一次地,叠加的样品呈现出宽频透射衰减(从约120Hz至400Hz),这用单个面板各自自身都无法达到。
为了将这些结果与传统的传声衰减技术相比较,有可能使用通过固体面板(其具有质量密度ρ和厚度d)传声(在空气中)的所谓质量密度定律:tα(fdρ)-1。在约500Hz处,样品媲美于重量比样品要大一个数量级的固体面板,更不用说在更低频率处了。
图7示出4厘米厚、面质量密度为33lb/ft2的固体面板样品的透射谱。面板由“橡胶土”砖块形成。透射的一般趋势是,低频透射较大,与质量密度定律相符。波动是由于非完全刚性的面板的内部振动。
上述局域共振(LRSM)面板全都呈现接近90%的反射率,以及,可以添加低反射面板,来减小反射或增大吸收。图8示出叠加面板的吸收(左轴)(=1-r2-t2),这里r是反射系数,而t是透射系数(右轴),在120Hz至1500Hz范围内吸收平均为66%。在这种情况下,低反射面板是金属穿孔板(穿孔直径为1毫米至0.2毫米,密度为每平方厘米约有10个孔)与其后面一层玻璃纤维的组合。全频段上透射幅值均在3%以下,而在120~1500Hz范围内,平均值为1.21%或38dB。组合面板的面密度为4.5lb/ft2(22kg/M2)。面板比一般瓷砖轻。面板总厚度小于3厘米。
与先前设计相比,这种新设计具有下述优点:(1)消声面板可以很薄;(2)消声面板可以很轻(低密度);(3)本面板可以叠加在一起形成宽频局域共振材料(LRSM)材料,其能在宽频范围内打破质量密度定律,尤其是对于500Hz以下的频率,可以有效地打破质量密度定律;以及(4)本面板易于制造,成本低。
该局域共振材料(LRSM)本质上是反射材料。局域共振材料(LRSM)自身吸收应该很低。因此,在还要求低反射的应用中,局域共振材料(LRSM)可以与其它吸声材料组合,尤其是,组合的LRSM-吸收面板可以在120~1000Hz的频率范围内作为低透射、低反射声板。通常,在1000Hz以上的频率处,声音易于被衰减,并且无需任何特殊的布置。因此,本质上本发明消声板在非常宽的频率范围内都可以解决室内以及户外应用中的消声问题。
对于室内应用,例如,在使用带有石膏板的木框制成墙壁的木框房屋中,可以将LRSM面板插在石膏板之间,通过给现有墙壁增加35dB以上的传输损耗,来实现房间之间的良好隔声。对于户外应用,本面板也可以作为混凝土或其它抗风化框架内的嵌入物,并且阻隔环境噪音,尤其是在低频范围内。
非对称形状的刚性板
通过使用具有非对称形状的固体薄块形成超材料,可以具有一个优点。应当注意到,这里所描述的薄膜类超材料与之前的结构大为不同。之前的结构基于在两个本振频率之间发生的反共振频率的不同机制,在该频率处使本结构与声波解耦(并且,其也符合发散动态质量密度),从而,提升其强反射特性。没有耦合,在反共振频率处自然几乎没有吸收。但即使在耦合较强的本征共振频率处,测得的吸收仍然很低,这是因为与辐射模态的强耦合,导致了高透射。与之相反,对于暗声超材料而言,高能量密度区域与辐射模态最小耦合,从而,达到如开放腔中那样的近乎全吸收。
在这种布置方式中,反共振并不起到显著作用。反共振对隔音十分重要,但在吸声中并不重要。
在一种结构中,局域共振材料设计以机械方式构造为一种局域振子阵列。各局域振子可以视为由两部分构成:质量m的振子、以及振子弹簧K。为了避免面板总重量的增大,选择较低的K;然而,较低的K通常与软质材料相关,这又难以进行结构支撑。出于此原因,通过几何方式来实现较低K。
图9示意性图示用来获得图5至图8的结果的测量装置。图10图示局域共振材料(LRSM)面板与第二吸收面板的组合。
实施例
图11A图示图11B中所示单元的吸收特性。在图11A中,曲线111表示测得样品5的吸收系数。在172、340、813Hz处有三个吸收峰,在沿图形底部的横坐标处用箭头标出。172、340、710Hz处的箭头表示由有限元仿真得出的吸收峰频率的位置。813Hz峰是从显现在曲线111“D”处的实验结果得到的观察峰位置。710Hz处的箭头表示由数值计算得到的理论峰位置。理想情况下两个值710Hz与813Hz本应相同,因而,该差异表示,由于对样品的物理特性进行建模,理论计算不是样品5的完全准确预测。
图11A的单元包括长方形弹性薄膜,长31毫米、宽15毫米、厚0.2毫米。弹性薄膜用相对刚性的格栅固定,饰有或者固定有两个半圆形铁薄块,半径6毫米,厚1毫米。铁薄块有意制成为使其不对称,以引入“拍动”运动,如下所示。这导致相对刚性格栅可以视为数十厘米至数十米级的封闭平坦框架。此外,铁薄块以用其它具有不对称形状的刚性或半刚性板取代。具有这种布置方式的样品称之为样品5,图11A中样品5示于xy平面,两个薄块沿y轴分开。声波沿z方向入射。该样品单元用来理解相关机理,并且与理论预测进行比较。
图11B、图11C、图11D示出穿过本结构的振动模态的剖面图。剖面图分别在图11A中图形部位B、C、D处沿中心线取得。图11B、图11C、图11D中的剖面图是沿单位单元x轴的w。剖面中的平直段(7.5毫米≤|x|≤13.5毫米)表示薄块所在的位置,薄块可以视为刚性。图11B、图11C、图11D中的剖面图示出的圆圈1131、1132、1133链表示由激光测振仪测得的振动模态。此外,图中还示出了实曲线1141、1142、1143,其为有限元仿真结果。图11E中示出样品5的照片。
图11A中示出关于样品5测得的作为频率函数的吸收率,其中可以看出,在172、340、813Hz附近有三个吸收峰。也许最惊奇的是172Hz处的吸收峰,此处耗散了超过70%的入射声波能量,对于这样一种200微米薄膜而言,在如此之低频率(空气中相应波长为2米)下,这是一个非常高的数值。图11A说明这种现象直接源于薄膜共振的分布(profiles)。
图11A中位于172、340、710Hz处的箭头表示计算出的吸收峰频率。橡胶薄膜的杨氏模量和泊松比分别为:1.9×106Pa和0.48。
实验中,薄膜由硅橡胶Silastic3133制成。测量该薄膜的杨氏模量和泊松比。
图12图示杨氏模量值。圆圈1221、1222、1223表示根据实验数据得到的几个频率处的杨氏模量E。虚线表示平均值1.9×106Pa,其为相关频率范围内的均值。
在“ASTME-756夹合梁”结构上进行测量,根据钢基梁(没有薄膜)特性和组装夹合梁检品(薄膜夹在梁心)特性之间的测量差异,得到薄膜的动态机械性能。在测量中,可以得到几个离散频率处薄膜的剪切模量(μ)数据。薄膜的泊松比(v)发现为0.48左右。因此,根据不同弹性参数之间的关系,E=2μ(1+v),(0.1)。
在这些离散频率处得到杨氏模量(E),示为图12中的圆圈1221、1222、1223。对于样品材料,在相关频率范围内,测得的E在1.2×106Pa至2.6×106Pa之间变化。为了简化模型,将杨氏模量选择为与频率无关的定值E=1.9×106Pa(示为图12中的虚线)。
杨氏模量的虚部表示为Im(E)=ω.chi.0,其中值χ0=7.96×102Pa·s通过拟合吸收而得到。在仿真中发现了许多本征模态。这些模态之中,选择左右对称之模态,因为不对称模态无法耦合至法向入射平面波。得到的吸收峰频率分别位于172、340、710Hz(图11A中用箭头标出)。它们与观察到的吸收峰频率非常吻合。
图11A的插图示出关于三个吸收峰频率在单元内沿x轴的z方向位移w的截面分布图。圆圈表示由激光测振仪测得的实验数据,而实线是有限元仿真结果。两者非常吻合。该分布的最显著特征是,尽管在薄片边界处(其位置由曲率为零的曲线的直段表示)z方向位移w是连续的,但在正交于边界的方向上,w的一阶空间导数有明显不连续。对于低频共振,这种不连续是由相对于y轴对称的两个半圆形薄块的“拍动”运动所致,而712Hz共振是由薄膜中心区域的较大振动所致,此时两个薄块相当于锚的作用。
拍动运动导致薄块的运动不仅仅沿z轴平动(定义为垂直于薄膜平面方向)。经受拍动运动的薄块在不同部分(相对其平衡位置)具有不同位移。物理上而言,薄块的拍动运动可以视为沿z轴的平动和绕平行于x轴的某个轴转动的叠加。
这些模式的特征还决定了以何种方式可以控制它们的共振频率:对于拍动模式,频率示为随薄块质量的平方根倒数大致减小,而薄膜振动模式,频率可以通过改变两个半圆形薄块之间的间距来使其增大或减小,如图12中所示。中间频率模式也是一种拍动模式,但各翼的两端呈反相(inoppositephase)。薄块的非对称形状可以加强这种拍动模式。
另一类单元标示为样品6,长159毫米、宽15毫米,并且包括8个相同的薄块,对称方式装成或固定为两列,每列4个薄块,相邻薄块之间间距15毫米,两列彼此相对,中央间隔32毫米。样品6用来在多个频率下获得低频段声音的近乎全吸收。
图13图示关于样品6的吸收率与薄膜位移之间的关系,示出通过在薄膜后面放置铝反射体来进一步调整薄膜阻抗的结果。根据所期望的声学效应,可以将铝反射体放置在薄膜后面不同的近场距离处。圆圈1321至1325代表薄膜与铝反射体之间的距离以7毫米步长从7毫米改变至42毫米时,在172Hz频率下实验所测得的吸收系数和薄膜位移振幅。水平虚线1341代表移除铝反射体后的吸收率水平,也就是当薄膜与铝反射体之间的距离趋于无穷大时。
在图13中,对于具有0.3Pa压力调制幅度的入射波,在172Hz处的吸收绘制为所测得薄膜最大法向位移(normaldisplacement)的函数。圆圈1321-1325各标示薄膜与反射体之间的间距,各以7毫米步长从7毫米变化至42毫米。结果表明,增加一层空气垫可以增加吸收,在42毫米间距时可以达到86%。这个间距大约是波长的2%。进一步移动反射体,将最终减小吸收至没有反射体时的值,如虚线1341所示。
强吸收的解释为:考虑到固态弹性薄膜中的弯曲波(或扭曲波)满足双调和方程:
▿ 4 w - ( ρ h / D ) ω 2 w = 0
其中,为抗弯强度,而h为薄膜厚度。
对应的单位面积弹性曲率能量由下式给出:
Ω = 1 2 D [ ( ∂ 2 w ∂ x 2 ) 2 + ( ∂ 2 w ∂ y 2 ) 2 + 2 v ∂ 2 w ∂ x 2 ∂ 2 w ∂ y 2 + 2 ( 1 - v ) + ( ∂ 2 w ∂ x ∂ y ) 2 ]
由于Ω是w的二阶空间导数,当w的一阶导数在边界不连续时,易于推断,面积能量密度Ω应当在周边区域内具有非常大的值(在薄壳的极限情况下发散)。此外,由于二阶导数是二次的,总势能的积分值也必须非常大。在较小h的极限情况下,系统的振动模式可以视为壳模型的弱形式解,在这个意义上,尽管在薄块的周边不满足双协调方程(因为高阶导数不存在),现在除了具有测量值为零的这组点之外,解仍然是相应拉格朗日量的极小值。
图14是系列图,示出计算得到的xy平面内的弹性势能密度分布(左列)、应变张量示踪ε=εxxyyzz(中列)、以及位移w(右列)。这种行为是薄块运动的结果,薄块的运动并不仅仅是沿z轴的平动。薄块经受拍动,因此,在不同部分相对其平衡位置具有不同的位移。物理上而言,薄块的拍动可以视为沿z轴的平动和绕平行于x轴的某个轴的转动的叠加。从上到下的三行分别是三个吸收峰频率---190Hz、346Hz、712Hz。左列和中列的颜色条表示讨论中的物理量的相对大小,数值显示为幅值以10为底的对数。右列颜色条呈线性比例。由于这些模式都是关于x轴对称的,为了清楚起见,只绘制出了左半部分。直虚线代表镜像平面。
如图14中所示,易于验证之前预测的Ω在边界区域内的值很大,其中,图中曲线是根据COMSOL仿真得到的弹性势能密度U(左列,根据以10为底的对数坐标分配颜色)、以及分别在三个吸收峰频率190、346、712Hz(从上到下)附近xy的平面内(薄膜的中心面)位移w的分布(右列)。边界区域中的能量密度比其它区域的大4个数量级。在单位单元的上缘和下缘(薄膜被夹住的部位)处,也有高能量密度区域。在仿真中,边界区域内积分的能量密度U占整个系统总弹性能量的98%(190Hz)、87%(346Hz)、82%(712Hz)。由于局部耗散正比于能量密度与耗散系数的乘积,非常大的能量密度的乘法效应意味着整个系统能量的大量吸收。这个事实也反映在三个吸收峰频率附近的应变分布中,如图14的中列所示。可以发现边界区域中应变的量级为10-3~10-4,比薄膜的其它部分中的应变大了至少1~2个量级。
在常规开放系统中,如被吸收那样,高能量密度同样容易经由透射波和反射波而被辐射。应当注意到,在当前情况下,弹性能集中所在的小体积可以视为“开放腔”,其中由法向限制补充薄膜平面中的横向限制,这是由于对于薄膜的平均法向位移而言,薄块与薄膜之间的相对运动贡献很小。因此,根据空气中波的色散关系k||·2+k 2=ko 2=(2πλ)2,其中下标||和⊥代表波矢量平行(垂直)于薄膜平面的分量,可以看出,因为k|| 2>>k0 2,薄块与薄膜之间的相对运动(其尺度上必须小于样品尺寸d<<λ)只能与衰减波耦合。只有薄膜的平均法向位移(类似于活塞运动)具有k//分量,使其在0时为最大,并因此能辐射。但高能量密度区域,由于它们的横向尺寸太小,对于法向位移的平均分量贡献很小。
根据弹性波的Poynting′s定理,薄膜内的耗散能可以通过下式计算:
Q=2ω20/E)∫UdV
吸收定义为Q/(P·S),其中,P=p2/(ρc)代表入射声波的Poynting向量,p为压强振幅,S为薄膜面积。用之前给出的参数值,计算三个共振频率(按增大频率的次序)处的吸收,分别为60%、29%、43%。应当注意到,计算值再现了三个吸收峰的相对模式,尽管它们比实验值小约10~20%。这个差异归因于样品并非完美对称,藉此,法向入射平面波可能激发多个非对称的振动本征函数。连同这些模式的宽度一起,它们能有效地有助于背景吸收的程度,这一效果在仿真中没有考虑。
应当注意到,本薄膜型超材料与早先方法不同,早先方法基于一种反共振的不同机制,在两个本征频率之间的频率发生反共振,在该频率下,使结构与声波(其也与发散的动态质量密度一致)解耦,从而,提升其强反射特性。没有耦合作用的话,在该反共振频率下自然不会有吸收。但即使在耦合较强的共振本征频率下,由于与导致较高透射的辐射模式的产生强耦合,因此测得的吸收仍然很低。与之相反,对于暗声超材料,高能量密度区域与辐射模式耦合最小,从而,导致了如在开放腔中那样的近乎全吸收效果。
图15A示出了关于两层样品6所测得的吸收系数。图15B中示出阵列的照片。在测量中,通过在第二层后面28毫米放置铝反射体,调节本系统的阻抗。第一层与第二层之间的距离也是28毫米。可以看到,在164、376、511、645、827、960Hz附近有许多吸收峰。吸收峰在164Hz和645Hz处看到是99%。通过使用COMSOL,还计算出关于单层样品6的吸收峰频率。它们分别位于170、321、546、771、872、969Hz附近。如图13中的箭头所示。可以看到,与实验结果良好吻合,无需调节任何参数。
曲线表示关于两层样品6实验方式测得的吸收系数。铝反射体放置在第二层后面28毫米处。第一层与第二层之间的距离也是28毫米。参见图15A,吸收峰分别位于在164、376、511、645、827、960Hz附近。箭头表示由有限元仿真预测的吸收峰频率的位置。可以看到两者良好吻合。
图16A和图16B示出了在频率172Hz(图16A)和813Hz(图16B)下随质量平方根倒数变化的吸收峰。在图16A中,可以看出,172Hz的吸收峰随各薄块质量M的平方根倒数移向更高频率。在图16B中,看到813Hz吸收峰随两个薄块之间距离L的倒数而变化。这两个图中,圆圈代表实验数据,而三角代表仿真结果。
本征态频率
与在反共振频率下呈现近乎全反射的之前薄膜型超材料做对比,下文描述这种超材料的机理以及它们测得的吸收性能。
图17A和图17B分别图示有关一层薄膜(图17A)和五层薄膜(图17B)的吸收。(A)一层薄膜式超材料反射体的透射振幅(两图中上面的虚线)、反射振幅(点划线)和吸收振幅(实线)。
在两个相邻共振(本征态)频率之间的频率处能发生声音的强反射。与之相反,在共振本征态频率处,本征态的激发能导致透射峰,在反共振频率处,两个邻近本征态频率的异相混合(out-of-phasehybridization)会导致薄膜结构与辐射模式的近乎全解耦。这结果也与动态质量密度的发散共振(divergentresonance-like)行为一致。从而,在反共振频率处声波会近乎全反射。由于在反共振频率下使本结构与声波完全解耦,吸收自然非常低,如图17A中频率450Hz左右所示。但即使在共振本征频率处,应当注意到,这类超材料的吸收系数仍然较低,在相对高频1025Hz下,也只达到45%,这明显低于用暗声超材料达到的效果。这是因为薄膜的活塞运动所导致辐射模式的相对强的耦合,会导致较高的透射(260Hz达到0.88,1025Hz达到0.63)。
即使对于5层样品2,平均吸收系数仅有0.22,最大值不超过0.45,如图17B中所示。应当注意到,出于明确的增强吸收的目的,除了多层薄膜之外,还将此样品夹在两块带孔的软板之间。但即使在这些努力之下,与暗声超材料相比,这种面板的吸收性能还是很低。
已经证明,在薄块周围非常大的曲率能量密度和其限制效应相结合的组合效应,对于亚波长低频声波的吸收特别有效。由于薄膜系统在全反射低频率声音中也示出是有效的,它们一起可以构成一种具有广阔潜在应用前景的低频声波处理系统。尤其是,降低飞机和轮船中的客舱噪音、调节音乐厅的音质、以及减轻高速公路和铁路沿线的环境噪音等是一些有前景的示例。
实验设备
在一种改进的阻抗管装置中进行图11A至图11D中所示的吸收系数测量,该装置包括以样品夹在其间的两个Bruel&Kjaertype-4206阻抗管。前管在一端具有扬声器,以产生平面波。两个传感器安装在前管中,以探测入射波和反射波,从而得到反射振幅和相位。后管(终端是无回声的海绵)中的第三个传感器探测透射波,以得到透射振幅和相位。无回声海绵长25厘米,足以保证第三传感器后面透射波的完全吸收。来自三个传感器的信号足以解算透射波和反射波的振幅及其相位。吸收系数通过公式A=1-R2-T2得到,其中,R和T分别是测得的反射系数和透射系数。通过使用已知耗散系数的材料进行校准,以保证准确。
图11B至图11D中示出了z方向位移的横截面分布,使用激光测振仪(型号:No.GraphtecAT500-05)在3个吸收峰频率附近在单位单元内沿x轴扫描样品5得到这些分布。
理论和仿真
示于图11A至图11D中、以及图16A和图16B中的数字仿真结果是使用有限元分析及解算软件包“COMSOLMULTIPHYSICS”得到的。在仿真中,固定矩形薄膜的边缘。计算中,使用薄膜里的初始应力σx initial=σy initial=2.2×105Pa,作为可调参数来拟合数据。橡胶薄膜的质量密度、杨氏模量和泊松比分别为980kg/m3、1.9×106Pa、和0.48。铁薄片的质量密度,杨氏模量和泊松比分别为7870kg/m3、2×1011Pa、0.30。使用了关于空气的标准量,也就是,ρ=1.29kg/m3,大气压强为1atm,空气中声速为c=340m/s。仿真中,在入射和出射空气平面处,使用辐射边界条件。
斜入射波的吸收
暗声超材料尤其样品6可以呈现许多共振本征模态。在法向入射时,只有左右对称的那些本征模态可以与入射波耦合。尽管样品中的瑕疵可能导致与非对称模态的耦合,使得观测到的背景吸收比仿真结果更高,使用斜入射波来有意探测在样品6中激发更多模态的结果将会很有意义。
图18是45°斜入射波的实验设置的影像。为了测试吸收,该设置可以调节用于不同的入射角度,如图19A至图19E中所示。图19示出关于不同入射角度0°(图19A)、15°(图19B)、30°(图19C)、45°(图19D)、60°(图19E)测得的吸收系数。
对于四个倾斜入射角度---15°、30°、45°、60°,用样品6进行非法向入射测量。用于倾斜入射的实验设置示于图19F中。关于不同角度测得的吸收系数示于图19A至图19E中。在60°以下的情况下,结果表明了性质上的相似性,在该角度,650~950Hz和1000~1200Hz的频率范围呈现出吸收的明显增大。这是由于大的非法向入射角度可以激发更多的共振模态,这些共振模态在法向入射的条件下都被左右对称解耦。
因此,在斜入射波的情况下,本发明声学超材料实际上如有限带宽的近乎全吸收那样执行。
如上所述,本系统中有许多本征模态,由于其左右对称,使其与法向入射波解耦。为了探索打破这种对称性之后的结果,还在斜入射波的情况下完成了对样品6的测量。测量结果表明了60°以下情况下性质上的相似性,在该角度,650~950Hz和1000~1200Hz的频率范围呈现出吸收的明显增大。因此,暗声超材料的总体性能在较宽范围的入射角度情况下没有劣化,甚至在某些频率范围内还有所改善。
具有中心薄块的固体薄膜的性能
图20A和图20B图示两个实验的透射谱,使用塑料保鲜膜(图20A)和铝箔(图20B)作为薄膜。图中示出了薄膜的透射振幅(左轴)和相位(右轴)作为频率的函数。透射振幅(左轴)和相位(右轴)与图上箭头所指的曲线相关。两种薄膜都是家庭厨房中包裹食物经常使用的材料,厚度约为0.1毫米。
在两个透射最大的共振频率之间的反共振频率下,两个谱都呈现出典型的透射最小。关于出现透射最小的反共振原理在含有非橡胶的固体制成的薄膜的结构中也适用。另外,固体材料薄片的厚度可以构造为相当恒定,或者,可以构造为使得厚度在单元中变化。
图21和图22示出了两种结构的数字仿真透射谱,示于图21A和图21B中的结构采用了丙烯腈丁二烯苯乙烯(ABS)薄膜,而示于图22中的结构采用了铝制薄膜。图21A示出了该结构采用ABS薄膜的数字仿真,ABS薄膜半径为50毫米,厚度为0.1毫米,铅薄块半径为8毫米,厚度为1.1毫米。图21B示出采用了ABS薄膜结构的数字仿真,其ABS薄膜半径为100毫米,厚度为0.5毫米,ABS薄块半径为40毫米,厚度为2.25毫米。实线表示透射强度,虚线表示透射相位。可以看出,它们与图20中的实验结果相符。
图22示出铝制薄膜的数字仿真透射谱,薄膜半径为50毫米,厚度为0.1毫米。薄片半径为20mm,厚度为0.1mm。
图23A和图23B示出结构工作频率在超声范围的数字仿真结果。图23A图示结构采用铝薄膜的数字仿真结果,铝薄膜半径为0.5毫米、厚度为0.1毫米,铅薄块半径为0.15毫米、厚度为0.1毫米。图23B图示结构采用硅薄膜的数字仿真结果,硅薄膜半径为0.5毫米、厚度为0.1毫米,硅薄块半径为0.2毫米、厚度为0.3毫米。
可以看出,这些结构能够具有超声范围的工作频率。显而,通过调整设计参数,该结构可以覆盖较宽频率范围。
多个交替单元类型
图24A至图24E示意性图示结构中设置有多个类型单位单元,其中,两种不同类型(A类和B类)单元采用不同方式相邻并交替排列。按各图示出的这样一种排列形式,两类或多类单元交替方式或根据预定样式分布在平坦面板上。在一些特定频率范围内,一类单元(A类单元)的振动与另一类单元(B类单元)的振动相位相反。因此,通过波的干涉作用,由A类单元发出的声波与B类单元发出的声波相抵消,使得入射在面板上的声波被有效阻隔,导致与电子主动降噪(ANR)类似的无源效果(passiveeffect)。将这种情形推广至合理极限,一类单元可以是完全空的。如图24B至图24E中所示,这可以按照A类单元和B类单元的不同比例加以构造。
图24A图示一种交替排列形式,其中一类单元(A类)相邻于第二类单元(B类)。这也可以按照A类单元和B类单元的不同比例加以构造。
图24B图示一种排列形式,其中同类(例如A类和A类、或B类和B类)的最邻近单元比相反类(例如,A类和B类、或B类和A类)的最邻近单元之间的间隔远。
图24C图示一种排列形式,其中同类单元相邻布置成一行。
图24D图示一种排列形式,其中一类(例如A类)单元被不同类(例如,B类)单元围住,但是该不同类单元与其它同类(本实施例中B类)单元相邻。
图24E图示一种排列形式,其中该交替排列在一类单元之间提供相邻关系,在另一类单元之间不提供相邻关系,而是被行所分隔。
图25是具有对应于图24A中所示具有交替排列方式的单元的图像。
当声波入射到弹性面板上时,它们激发面板的振动。振动的面板作为声源,在面板的另一面产生声波。结果就是声波能够透过面板,对于隔音板而言这是我们想要最大程度减少的透射。在这种结构中,A类单元发出的声波与B类单元发射的声波异相。本结构导致异相关系,这是通过使用两类或更多类单元实现的,这些类型单元具有彼此明显不同的共振频率。于是,当空气中的波长远大于单元尺寸时,这些声波相互抵消,导致最小透射。在一种非限制性示例中,单元尺寸为大约1.0厘米,而波长为100厘米量级。
本排列方式基于一个原理,相邻单元间同相和异相运动的抵消是处于透射最小的频率。这可以导致薄膜另一面上净余的平均空气运动的完全抵消,因而,视为聚集声源时,在透射达到最小时没有净透射能量。
考虑到框架上的荷载,与具有单一类型单元的薄膜反射体相比,多种类型单元的使用更具优势。也就是,在实际大面积应用中,总是需要使用框架,以达到将单独薄膜面板组装到消音墙中的目的。在这种情况下,如果每个薄膜面板是相同的,在全反射频率下,对框架的荷载可能非常大,从而,导致框架变形、以及低频声音的泄漏。通过使用多种类型单元,由于不同的单元(例如,A类单元和B类单元)可以异相,它们对框架的净荷载可能非常小,因而,可以使低频声音泄漏最小。
图26和图27图示不同模式的单元的频率响应。在图26中,使用5个单元的模式,以插图示出,并且,与图24A和图25的模式对应。四个填充单元包括薄膜加薄块(A类单元),以及空心单元(B类单元)是空的。在图26中,350Hz处达到低谷的点划线2601是用硬金属片阻塞B类单元时四个A类单元的透射振幅。带有大致对称外观的虚线2602是四个A类单元被阻塞时通过中间处的空的B类单元的透射。粗实线2603是所有单元都激活时的透射的情况,其在325Hz处的低谷比只有空单元的低谷要低,是其1/10。图26中靠近上部的点线2604表示声波反射。右边插入的小图是动态有效质量密度。
在图27中,使用与图24E模式对应的5单元模式,以插图示出。两个填充单元由薄膜加薄块构成(A类单元),而一行空心单元只有薄膜(B类单元)。透射模式2701在300Hz处示出低谷,作为带有第一低谷的曲线,是关于一个A类单元和四个B类单元。透射模式2702在360Hz处示有低谷,作为带有第二低谷的曲线,是关于两个A类单元和三个B类单元。透射模式2703在400Hz处示有低谷,作为带有第三低谷的曲线,是关于三个A类单元和两个B类单元。透射模式2704在470Hz处示有低谷,作为带有第四低谷的曲线,是关于四个A类单元和一个B类单元。
薄块位于中心的固体薄膜
可以实现范围很宽的工作频率,作为非限制性示例,例如,从低于1Hz到1MHz以上。薄膜的材料包括任何固体,以及,通过适当选择薄膜材料、厚度、横向尺寸,以及中心薄块的质量和尺寸,可以实现具有期望工作频率的消声结构。
当中心薄块相对于二维阵列平面垂直放置时,消声面板影响声音的透射和吸收。位移的结果是,使薄膜变形,并且由变形的薄膜对薄块施加回复力。随后薄块和薄膜简谐振动。
在薄膜加薄块振动系统的共振频率下,有许多本征模态,这些本征模态取决于薄块的质量、薄膜平行于二维阵列平面的横向尺寸、及其厚度。在两个本征频率之间的某频率(我们称之为反共振频率)下,薄膜加薄块的平均位移为0。对远场声辐射而言,本系统就好似一堵硬墙,入射声波的透射达到最小。由于胡克定律对任何固体通常都成立,原则上,任何固体材料的薄膜主要性能都应该与例如美国专利No.7,395,898中的橡胶薄膜类似。
中心薄块被移置时,薄膜给其提供回复力。通过选择合适的薄膜厚度和弹性如杨氏模量和泊松比、薄块的质量和尺寸、以及单元尺寸,可以覆盖从次声(低于1Hz)到超声(高于1MHz)范围内的工作频率。这种共振归因于中心薄块被移置时,存在由薄膜施加的回复力。如果薄膜一般紧,而不是太松,但又不必如美国专利No.7,395,898中的薄膜需要预拉伸,即可实现这一点。这个要在薄膜不起皱、或者起皱比较小而功能未失的情况下才起作用。在那种情况下,褶皱通常皆是因不完备的制造过程所导致的实质性瑕疵。只要整体上是完好的,跨越单元的薄膜厚度上可以有变化。
通过一些制备技术,可以实现本结构。一技术涉及不用焊接的方式冲穿塑料片或金属片,通过一步成型,通过烧结,或者结构较小时通过光刻法,都可以形成薄片。
褶皱或波纹图案的薄膜
在消声板所使用的典型超材中,支撑薄块运动的薄膜通常保持紧绷并且没有褶皱。可选择地,将褶皱或波纹刻意引入到固体薄膜中。在这样的布置中,选择用于固体薄膜的材料通常是足够刚性的或者是足够硬的,以便薄膜处于松弛形式时也能维持褶皱图样。
薄块根据平面或表面对齐布置在平坦薄膜上,非平面在薄块远离平面或表面对齐的位移方向提供挠性。
相比于没有褶皱的薄膜,当垂直于薄膜平面移位时,有褶皱的薄膜具有小得多的回复力。尽管要求较大的力将扭曲伸展为平坦形式,但只需较小的力来扭曲带有波纹的相同材料的薄膜。部分地,这是因为带波纹形式的扭曲涉及更多的扭转运动,导致围绕任何给定段的更大的力矩,同时,导致薄膜的更小的拉伸、延长或线性扭转。褶皱的薄膜提供一种调节薄膜有效弹性的可选途径,使其和附着于其上的薄块一起形成期望的共振结构。与相同材料制成的平坦薄膜相比,随着褶皱或波纹的引入,可以使本结构的工作频率更为降低。这就允许褶皱的薄膜可以部分地依靠自身的形状来提供一些挠性和弹性。
图28A和图28B是一种消声结构的示意图,其带有褶皱薄膜用于隔声,每个单元使用单个薄块。图28A是侧视图,而图28B是俯视图或平面图。图中示出刚性框架2801、薄膜2803,其带有波纹段2804和平坦段2805、2806。预定质量的薄块2810附着并悬挂在薄膜2803的平坦段2806上,并且被波纹段2804环绕。
在一种非限制性示例中,褶皱或波纹部分以同心圆形式示出,如在外周固定至刚性框架2801的圆形薄膜2803的中间部分周围内的波纹段2804。薄膜的中心部2806和最外周部分2805保持平坦。可选择地,褶皱图案也可以是其它几何形状,诸如正方形或多边形,这取决于硬质框架的形状。
图29A和图29B是一种消声结构的示意图,采用了褶皱薄膜用于隔音,其中将多个薄块附着至褶皱或波纹薄膜。图29A是侧视图,图29B是俯视图或平面图。图中示出刚性框架2901、薄膜2903,薄膜2903带有波纹段2911~2915和平坦段2921~2926。薄块2931~2934附着并悬挂在薄膜2903的平坦段2922~2925上,以波纹段2911~2915将薄块2931~2934悬挂在薄膜2903上。薄块2931~2934可以具有大致相同的预定质量或多种不同的预定质量。
图29A和图29B的布置方式,在以其外边界固定于刚性框架2901的薄膜2903的一些部分中,在段2911~2915中使用成平行线形式的褶皱或波纹。
结论
应当理解,为了解释本发明的主题实质,本文描述并举例说明了部件的细节、材料、步骤、以及布置方式,本领域的技术人员对此可以根据本发明的原理做出许多其它的改变,所有这些改变都在由所附权利要求限定的本发明的保护范围内。

Claims (27)

1.一种消声面板,包括:
实质透音的平面刚性框架,其分成多个单独的大体二维单元;
固定于所述刚性框架的挠性材料薄片,以及固定于所述挠性材料薄片的多个薄块,使得所述多个单元的每一个单独单元设置有各自的薄块,从而建立共振频率,所述共振频率由所述各单独单元的平面几何特性、所述挠性材料的挠性、以及其上的所述各自薄块限定;以及
所述多个单元分成至少两种不同类型的单独单元,其按交替方式或根据预定图案分布在所述消声面板上,所述不同类型的单独单元构造成,使得由所述不同类型单独单元的第一类单元发出的声波,与由所述不同类型单独单元的第二类单元、或者与所述不同类型单独单元的聚集体发出的声波,形成消声模式。
2.根据权利要求1所述的消声面板,进一步包括,所述不同类型的单独单元,其具有的结构包括所述各自单独单元的平面几何特性、所述挠性材料的挠性、以及其上的所述各自薄块,使得在由至少两种所述不同类型的单独单元发出的声波之间建立异相关系。
3.根据权利要求1所述的消声面板,其中,至少多个所述单元包含空气能够自由且充分地从中穿过的大小相当的气孔或开口,以提供或促进空气流通。
4.根据权利要求1所述的消声面板,进一步包括,各单元构造成所述至少两种不同类型的单独单元作为以预定的交替排列方式布置的A类单元和B类单元。
5.根据权利要求4所述的消声面板,其中:
所述A类单元各包括固定在所述单元框架上的弹性材料薄片,以及附着于所述薄片的至少一个薄块;以及
所述B类单元各包括固定在所述单元框架上的弹性材料薄片,以及附着于所述薄片的至少一个薄块,所述薄块具有的重量与附着于所述A类单元的薄块的重量不同,或者,所述弹性材料薄片没有附着薄块。
6.根据权利要求4所述的消声面板,其中,所述薄块具有的质量在0.1克至10克的范围内。
7.根据权利要求4所述的消声面板,其中,所述薄片包括多层所述挠性材料。
8.根据权利要求4所述的消声面板,其中:
所述挠性材料薄片包括不可渗透的挠性材料。
9.一种消声面板,包括:
多个叠置在一起的面板,其中,所述多个面板的每一个面板包括分成多个单独单元的刚性框架;
挠性材料薄片;
固定于所述挠性材料薄片的多个薄块,使得所述多个单独单元的每一个单元具有附着于该单元的至少一个所述薄块,藉此,所述单元具有共振频率,所述共振频率由每个所述单独单元的平面几何特性、所述挠性材料的挠性、以及其上的所述各自薄块限定;以及
所述多个单元分成至少两种不同类型的单独单元,按交替排列方式或者根据预定图案分布在所述面板上,所述不同类型的单独单元构造为,使得由所述不同类型单独单元的第一类单元发出的声波,与由所述不同的单独单元的第二类单元、或者与所述不同类型单独单元的聚集体发出的声波,形成消声模式。
10.根据权利要求9所述的消声面板,进一步包括,所述不同类型的单独单元具有的包括所述各自单独单元的平面几何特性、所述挠性材料的挠性、以及其上的所述各自薄块的结构,使得在由至少两种所述不同类型的单独单元发出的声波之间建立异相关系。
11.一种消声面板,包括:
实质透音的平面刚性框架,其分成多个单独的、实质上二维的单元;
固定于所述刚性框架的挠性固体材料薄片,以及固定于所述挠性材料薄片的多个薄块,使得每一个单元设置有各自薄块,从而建立共振频率,所述共振频率由所述各自单独单元的平面几何特性、所述固体材料的弹性模量、以及其上的所述各自薄块限定;以及
选择薄膜以对所述单元的至少一个子集合提供共振特性,具有选择标准包括如下至少之一:所述薄膜的厚度、所述薄膜的弹性、所述薄膜的杨氏模量和泊松比,所述薄块的质量和尺寸,以及所述单元的尺寸,所述共振特性提供从次声(低于1Hz)到超声(1MHz以上)范围内的工作频率选择。
12.根据权利要求11所述的消声面板,进一步包括:
所述多个单元分成至少两种不同类型的所述单独单元,按交替排列方式或根据预定图案分布在所述面板上,所述不同类型的单独单元构造成,使得由所述不同类型单独单元的第一类单元发出的声波,与由所述不同类型单独单元的第二类单元、或者与所述不同类型单独单元的聚集体发出的声波,形成消声模式。
13.根据权利要求11所述的消声面板,其中,所述固体材料薄片的厚度在所述单元各处变化。
14.根据权利要求11所述的消声面板,进一步包括多层所述固体材料。
15.根据权利要求11所述的消声面板,进一步包括:
多个叠置在一起的面板,其中,每一个所述面板包括分成多个单独单元的刚性框架、固体材料薄片、以及多个薄块,每一个薄块固定至所述固体材料薄片,以使每个单元具有各自的薄块;
所述消声结构的工作频率由所述单独单元的平面几何特性、所述固体材料的挠性、以及其上各自的薄块限定。
16.根据权利要求15所述的消声面板,进一步包括:
每一个所述面板形成有薄块,薄块具有的重量与面板中其它面板的不同。
17.一种消声面板,包括:
实质透音的平面刚性框架,其分成多个单独的实质二维单元;
固定于所述刚性框架的挠性材料薄片,以及固定于所述挠性材料薄片的多个薄块,使得每一个单元设置有各自的薄块,从而,建立共振频率,所述共振频率由所述各自单独单元的平面几何特性、所述挠性材料的挠性、以及其上的各自薄块限定;以及
所述挠性材料具有褶皱或波纹,以允许用减小的材料弹性使其扭曲,从而,允许所述挠性材料扭曲超过由相同类型平面材料所能提供的扭曲,同时在支撑所述多个薄块中保持机械强度。
18.根据权利要求17所述的消声面板,其中,与使用相同材料的平坦薄膜实现的共振频率相比,所述薄片上的褶皱或波纹使所述单元的共振频率降低。
19.根据权利要求17所述的消声面板,其中,所述固体材料薄片的厚度在所述单元各处变化。
20.根据权利要求17所述的消声面板,进一步包括多层所述固体材料。
21.根据权利要求17中所述的消声面板,进一步包括:
多个叠置在一起的面板,其中,每一个所述面板包括分成多个单独单元的刚性框架、固体材料薄片、以及多个薄块,每一个薄块固定至所述固体材料薄片,以使每个单元具有各自的薄块;
所述消声结构的工作频率由所述单独单元的平面几何特性、所述固体材料的挠性、以及其上的各自薄块限定。
22.根据权利要求21所述的消声面板,进一步包括:
每一个所述面板形成有薄块,该薄块具有的重量与所述面板中的其它面板不同。
23.根据权利要求17所述的消声面板,进一步包括:
彼此面对的相邻框架,其间的距离与所述框架的尺寸成预定的关系。
24.根据权利要求17所述的消声面板,进一步包括:
所述单元包括刚性板,其中,所述刚性板具有一种提供可调节功能的拍动模式,藉此,符合板质量平方根倒数的近似关系使所述频率减小。
25.根据权利要求17所述的消声面板,进一步包括:
所述单元包括刚性板,其中,所述刚性板具有一种提供可调节功能的拍动模式,藉此,所述拍动模式提供一种基于可调节共振频率的可调节功能,通过改变非对称板之间的间距,所述薄膜的厚度、弹性如杨氏模量和泊松比,以及所述膜的褶皱图案,所述板的质量,以及所述单元尺寸,能调节所述共振频率。
26.根据权利要求17所述的消声面板,进一步包括各单位单元中的多个板。
27.根据权利要求17所述的消声面板,进一步包括:
所述单元形成有结构单元,所述结构单元包括经受振动的质量块,以及,所述振动具有共振频率,通过改变所述结构单元的横向尺寸、所述薄膜弹性、以及褶皱图案、以及所述板的材料类型和尺寸,使所述共振频率增大或减小,从而,允许选择所述共振频率作为耗散核心。
CN201480015138.7A 2013-03-12 2014-03-12 消声结构 Active CN105122348B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201361851653P 2013-03-12 2013-03-12
US61/851,653 2013-03-12
US201361871992P 2013-08-30 2013-08-30
US61/871,992 2013-08-30
US201461964635P 2014-01-10 2014-01-10
US61/964,635 2014-01-10
PCT/CN2014/000252 WO2014139323A1 (en) 2013-03-12 2014-03-12 Sound attenuating structures

Publications (2)

Publication Number Publication Date
CN105122348A true CN105122348A (zh) 2015-12-02
CN105122348B CN105122348B (zh) 2019-10-22

Family

ID=51535866

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201480015138.7A Active CN105122348B (zh) 2013-03-12 2014-03-12 消声结构

Country Status (4)

Country Link
US (1) US9466283B2 (zh)
CN (1) CN105122348B (zh)
HK (1) HK1212499A1 (zh)
WO (1) WO2014139323A1 (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551478A (zh) * 2016-01-29 2016-05-04 北京市劳动保护科学研究所 一种磁力负刚度多频吸声装置及方法
CN105845121A (zh) * 2016-04-19 2016-08-10 黄礼范 隔声通流且强化传热的声学超材料单元、复合结构及制备
CN105882022A (zh) * 2016-04-12 2016-08-24 西南交通大学 一种低频减振超材料复合阻尼板
CN106098051A (zh) * 2016-07-14 2016-11-09 西安交通大学 一种改进型赫姆霍兹消声器及其制作方法
CN106678271A (zh) * 2016-12-08 2017-05-17 西北工业大学 一种局域共振低频带隙抑振周期结构
CN107170437A (zh) * 2017-04-17 2017-09-15 西安交通大学 一种薄膜薄板型声学超材料隔声装置
WO2018014190A1 (zh) * 2016-07-19 2018-01-25 黄礼范 含通孔的声学超材料挡片的消声器及其制备和装配方法
CN107633838A (zh) * 2016-07-19 2018-01-26 黄礼范 含通孔的声学超材料挡片的消声器及其制备和装配方法
WO2018192484A1 (zh) * 2017-04-18 2018-10-25 黄礼范 一种声学材料结构及其与声辐射结构的组装方法
CN108847211A (zh) * 2018-05-18 2018-11-20 上海超颖声学科技有限公司 一种声学结构及其设计方法
CN108981130A (zh) * 2017-05-31 2018-12-11 青岛海尔智能技术研发有限公司 一种空调的降噪装置的设计方法
CN109328379A (zh) * 2016-06-17 2019-02-12 奥斯维斯股份公司 用于主动补偿室内背景噪声的平面元件及其抗噪模块
CN109543325A (zh) * 2018-11-30 2019-03-29 湖南固尔邦幕墙装饰股份有限公司 一种门窗用铝合金型材力热集成优化设计方法
CN109594434A (zh) * 2018-11-22 2019-04-09 同济大学 一种珍珠层结构钢轨阻尼器
CN109754777A (zh) * 2018-12-28 2019-05-14 西安交通大学 一种多元胞协同耦合声学超材料结构设计方法
CN112581928A (zh) * 2020-12-15 2021-03-30 哈尔滨工程大学 一种降噪用的声学黑洞周期夹芯梁结构
CN112733397A (zh) * 2020-12-28 2021-04-30 桂林电子科技大学 针对三种方形螺旋结构电磁超材料单元的设计方法
CN112837667A (zh) * 2021-01-11 2021-05-25 东南大学 一种梯度薄膜型周期复合结构
CN113685645A (zh) * 2021-09-22 2021-11-23 南京航空航天大学 基于局域共振机理声学超材料的管道噪声控制装置及方法
CN114033822A (zh) * 2021-10-19 2022-02-11 西安交通大学 一种多单元协同耦合低频宽带吸振装置

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2973538B1 (en) * 2013-03-13 2019-05-22 BAE SYSTEMS plc A metamaterial
US11021870B1 (en) * 2013-03-14 2021-06-01 Hrl Laboratories, Llc Sound blocking enclosures with antiresonant membranes
CN105393300B (zh) * 2013-07-18 2019-12-13 香港科技大学 杂化共振引起的声学吸收和杂化共振超表面的声电能转换
US9645120B2 (en) * 2014-09-04 2017-05-09 Grant Nash Method and apparatus for reducing noise transmission through a window
US10247707B1 (en) * 2014-11-14 2019-04-02 Oceanit Laboratories, Inc. Cement compositions comprising locally resonant acoustic metamaterials
JP6114325B2 (ja) * 2015-02-27 2017-04-12 富士フイルム株式会社 防音構造、および防音構造の作製方法
JP6043407B2 (ja) * 2015-02-27 2016-12-14 富士フイルム株式会社 防音構造、及び防音構造の製造方法
WO2016173502A1 (en) * 2015-04-28 2016-11-03 The Hong Kong University Of Science And Technology Degenerate resonators using elastic metamaterials with independent monopole and dipole resonant structures
NL2016500A (en) 2015-05-06 2016-11-10 Asml Netherlands Bv Lithographic apparatus.
US10458501B2 (en) * 2016-03-02 2019-10-29 Ohio State Innovation Foundation Designs and manufacturing methods for lightweight hyperdamping materials providing large attenuation of broadband-frequency structure-borne sound
KR101825480B1 (ko) * 2016-04-29 2018-03-23 서울대학교산학협력단 음향 파라미터 제어형 메타 원자 및 이를 포함하는 메타 물질
US20180016012A1 (en) 2016-07-12 2018-01-18 B/E Aerospace, Inc. System, Methods, and Apparatus for Air Flow Handling in an Aircraft Monument
US9624662B1 (en) * 2016-08-11 2017-04-18 David R. Hall Noise-cancelling wall
WO2018101124A1 (ja) * 2016-11-29 2018-06-07 富士フイルム株式会社 防音構造
US10573291B2 (en) 2016-12-09 2020-02-25 The Research Foundation For The State University Of New York Acoustic metamaterial
EP4366327A2 (en) * 2017-02-09 2024-05-08 The University of Sussex Acoustic wave manipulation
CN107492369B (zh) * 2017-09-21 2021-04-20 北京天润康隆科技股份有限公司 一种微孔岩板系列消声器
US10726824B2 (en) * 2017-09-29 2020-07-28 The Boeing Company Composite sound absorption panel assembly
CN108417195B (zh) * 2018-06-13 2023-11-10 山东理工大学 一种基于共振腔的中低频吸声超材料结构
US11282490B2 (en) * 2018-09-15 2022-03-22 Baker Hughes, A Ge Company, Llc Dark acoustic metamaterial cell for hyperabsorption
US11227573B2 (en) 2018-10-26 2022-01-18 Toyota Motor Engineering & Manufacturing North America, Inc. Acoustic panel with acoustic unit layer
US11231234B2 (en) 2018-10-26 2022-01-25 Toyota Motor Engineering & Manufacturing North America, Inc. Acoustic panel with vapor chambers
US11195504B1 (en) * 2018-11-30 2021-12-07 National Technology & Engineering Solutions Of Sandia, Llc Additively manufactured locally resonant interpenetrating lattice structure
KR102575186B1 (ko) * 2018-12-07 2023-09-05 현대자동차 주식회사 음향메타 구조의 진동 저감 장치
WO2020264146A1 (en) * 2019-06-25 2020-12-30 Arizona Board Of Regents On Behalf Of Arizona State University Mechanical metamaterials as an energy shield
US11662048B2 (en) 2020-03-30 2023-05-30 Toyota Motor Engineering & Manufacturing North America, Inc. Compact duct sound absorber
US11688379B2 (en) 2020-08-17 2023-06-27 Toyota Motor Engineering & Manufacturing North America, Inc. Plate bending wave absorber
US11964384B2 (en) 2020-09-30 2024-04-23 Arizona Board Of Regents On Behalf Of Arizona State University Curved origami-based metamaterials for in situ stiffness manipulation
CN112259066A (zh) * 2020-10-23 2021-01-22 西安交通大学 一种n阶声学超材料低频隔声结构
CN112962361B (zh) * 2021-02-24 2022-06-17 深圳大学 动力吸振装置
KR20220129275A (ko) * 2021-03-16 2022-09-23 현대자동차주식회사 진동 저감 장치
CN113658573B (zh) * 2021-08-24 2023-07-14 东北大学 一种螺旋形二维声学黑洞隔振降噪结构
CN113808562B (zh) * 2021-09-29 2024-06-04 哈尔滨工程大学 一种兼具高承载、低宽频抑振性能的三维手性声学超材料
KR102656298B1 (ko) * 2021-10-08 2024-04-12 주식회사 제이제이엔에스 유체 주입식 차음판 및 이를 포함하는 차음 구조체
US11727909B1 (en) * 2022-03-30 2023-08-15 Acoustic Metamaterials LLC Meta material porous/poro-elastic sound absorbers
US20230377546A1 (en) * 2022-05-19 2023-11-23 Toyota Motor Engineering & Manufacturing North America, Inc. Flexural wave absorption system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576333B2 (en) * 1998-04-03 2003-06-10 The Hong Kong University Of Science & Technology Composite materials with negative elastic constants
JP2005017636A (ja) * 2003-06-25 2005-01-20 Toyota Motor Corp 吸音構造体
US7249653B2 (en) * 2001-09-28 2007-07-31 Rsm Technologies Limited Acoustic attenuation materials
US7314114B2 (en) * 2004-02-11 2008-01-01 Acoustics First Corporation Flat panel diffuser
CN101151417A (zh) * 2005-03-30 2008-03-26 松下电器产业株式会社 吸音结构体
US7395898B2 (en) * 2004-03-05 2008-07-08 Rsm Technologies Limited Sound attenuating structures
CN201425079Y (zh) * 2009-04-10 2010-03-17 晋城市正海环保科技有限公司 消声板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5027920A (en) * 1989-11-06 1991-07-02 Rpg Diffusor Systems, Inc. Cinder block modular diffusor
US5817992A (en) * 1997-03-05 1998-10-06 Rpg Diffusor Systems, Inc. Planar binary amplitude diffusor
US6112852A (en) * 1999-09-22 2000-09-05 Rpg Diffusor Systems, Inc. Acoustical treatments with diffusive and absorptive properties and process of design
JP2002135888A (ja) * 2000-10-23 2002-05-10 Pioneer Electronic Corp スピーカ用振動板
CN103137118B (zh) 2011-11-30 2016-07-06 香港科技大学 声能吸收超材料
KR101422113B1 (ko) * 2013-04-26 2014-07-22 목포해양대학교 산학협력단 통기통로 또는 통수통로 둘레에 중첩된 차음용 공진챔버를 갖는 통기형 또는 통수형 방음벽
US8869933B1 (en) * 2013-07-29 2014-10-28 The Boeing Company Acoustic barrier support structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6576333B2 (en) * 1998-04-03 2003-06-10 The Hong Kong University Of Science & Technology Composite materials with negative elastic constants
US7249653B2 (en) * 2001-09-28 2007-07-31 Rsm Technologies Limited Acoustic attenuation materials
JP2005017636A (ja) * 2003-06-25 2005-01-20 Toyota Motor Corp 吸音構造体
US7314114B2 (en) * 2004-02-11 2008-01-01 Acoustics First Corporation Flat panel diffuser
US7395898B2 (en) * 2004-03-05 2008-07-08 Rsm Technologies Limited Sound attenuating structures
CN101151417A (zh) * 2005-03-30 2008-03-26 松下电器产业株式会社 吸音结构体
CN201425079Y (zh) * 2009-04-10 2010-03-17 晋城市正海环保科技有限公司 消声板

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551478A (zh) * 2016-01-29 2016-05-04 北京市劳动保护科学研究所 一种磁力负刚度多频吸声装置及方法
CN105882022A (zh) * 2016-04-12 2016-08-24 西南交通大学 一种低频减振超材料复合阻尼板
CN105845121A (zh) * 2016-04-19 2016-08-10 黄礼范 隔声通流且强化传热的声学超材料单元、复合结构及制备
CN105845121B (zh) * 2016-04-19 2019-12-03 黄礼范 隔声通流且强化传热的声学超材料单元、复合结构及制备
CN109328379A (zh) * 2016-06-17 2019-02-12 奥斯维斯股份公司 用于主动补偿室内背景噪声的平面元件及其抗噪模块
CN106098051A (zh) * 2016-07-14 2016-11-09 西安交通大学 一种改进型赫姆霍兹消声器及其制作方法
WO2018014190A1 (zh) * 2016-07-19 2018-01-25 黄礼范 含通孔的声学超材料挡片的消声器及其制备和装配方法
CN107633838A (zh) * 2016-07-19 2018-01-26 黄礼范 含通孔的声学超材料挡片的消声器及其制备和装配方法
CN106678271A (zh) * 2016-12-08 2017-05-17 西北工业大学 一种局域共振低频带隙抑振周期结构
CN107170437B (zh) * 2017-04-17 2020-10-27 西安交通大学 一种薄膜薄板型声学超材料隔声装置
CN107170437A (zh) * 2017-04-17 2017-09-15 西安交通大学 一种薄膜薄板型声学超材料隔声装置
WO2018192484A1 (zh) * 2017-04-18 2018-10-25 黄礼范 一种声学材料结构及其与声辐射结构的组装方法
CN108731838A (zh) * 2017-04-18 2018-11-02 黄礼范 一种声学材料结构及其与声辐射结构的组装方法
CN108981130B (zh) * 2017-05-31 2020-12-04 青岛海尔智能技术研发有限公司 一种空调的降噪装置的设计方法
CN108981130A (zh) * 2017-05-31 2018-12-11 青岛海尔智能技术研发有限公司 一种空调的降噪装置的设计方法
CN108847211B (zh) * 2018-05-18 2020-09-11 上海超颖声学科技有限公司 一种声学结构及其设计方法
CN108847211A (zh) * 2018-05-18 2018-11-20 上海超颖声学科技有限公司 一种声学结构及其设计方法
CN109594434A (zh) * 2018-11-22 2019-04-09 同济大学 一种珍珠层结构钢轨阻尼器
CN109543325A (zh) * 2018-11-30 2019-03-29 湖南固尔邦幕墙装饰股份有限公司 一种门窗用铝合金型材力热集成优化设计方法
CN109754777A (zh) * 2018-12-28 2019-05-14 西安交通大学 一种多元胞协同耦合声学超材料结构设计方法
CN112581928A (zh) * 2020-12-15 2021-03-30 哈尔滨工程大学 一种降噪用的声学黑洞周期夹芯梁结构
CN112581928B (zh) * 2020-12-15 2022-09-02 哈尔滨工程大学 一种降噪用的声学黑洞周期夹芯梁结构
CN112733397A (zh) * 2020-12-28 2021-04-30 桂林电子科技大学 针对三种方形螺旋结构电磁超材料单元的设计方法
CN112837667A (zh) * 2021-01-11 2021-05-25 东南大学 一种梯度薄膜型周期复合结构
CN113685645A (zh) * 2021-09-22 2021-11-23 南京航空航天大学 基于局域共振机理声学超材料的管道噪声控制装置及方法
CN114033822A (zh) * 2021-10-19 2022-02-11 西安交通大学 一种多单元协同耦合低频宽带吸振装置

Also Published As

Publication number Publication date
CN105122348B (zh) 2019-10-22
US9466283B2 (en) 2016-10-11
US20160027427A1 (en) 2016-01-28
WO2014139323A1 (en) 2014-09-18
HK1212499A1 (zh) 2016-06-10

Similar Documents

Publication Publication Date Title
CN105122348A (zh) 消声结构
CN105637580B (zh) 声波与振动能量吸收超材料
US8579073B2 (en) Acoustic energy absorption metamaterials
US8960365B2 (en) Acoustic and vibrational energy absorption metamaterials
US7395898B2 (en) Sound attenuating structures
US9390702B2 (en) Acoustic metamaterial architectured composite layers, methods of manufacturing the same, and methods for noise control using the same
US20210237394A1 (en) Acoustic material structure and method for assembling same and acoustic radiation structure
WO2017041283A1 (zh) 声学超材料基本结构单元及其复合结构和装配方法
US8869933B1 (en) Acoustic barrier support structure
US8857563B1 (en) Hybrid acoustic barrier and absorber
US8752667B2 (en) High bandwidth antiresonant membrane
Doutres et al. Transfer matrix modeling and experimental validation of cellular porous material with resonant inclusions
Langfeldt et al. Improved sound transmission loss of glass wool with acoustic metamaterials
US10482865B2 (en) Vibration damped sound shield
Aloufi et al. Vibro-acoustic model of an active aircraft cabin window
KR20210001934U (ko) 방음 패널
Dimino et al. Vibro-acoustic design of an aircraft-type active window, Part 1: dynamic modelling and experimental validation
Wang et al. A novel membrane-cavity-grating (MCG) meta-structure for enhancing low-frequency sound absorption
Wang et al. Reduction of aircraft engine noise by covering surface acoustic metamaterials on sidewalls
Fuller et al. Poro-elastic acoustic meta materials
Sahu et al. Active control of sound transmission through a double panel partition using volume velocity and a weighted sum of spatial gradient control metrics
US20220415297A1 (en) Sound insulation device
Naify et al. Noise Reduction of honeycomb sandwich panels with acoustic mesh caps.
Au-Yeung et al. Damped Noise Shields
Au-Yeung Applications of Multiple Resonators for Noise Reduction and Mechanical Vibration Damping

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1212499

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant