CN105122025A - 光纤传感器组件 - Google Patents

光纤传感器组件 Download PDF

Info

Publication number
CN105122025A
CN105122025A CN201280078114.7A CN201280078114A CN105122025A CN 105122025 A CN105122025 A CN 105122025A CN 201280078114 A CN201280078114 A CN 201280078114A CN 105122025 A CN105122025 A CN 105122025A
Authority
CN
China
Prior art keywords
optical sensor
fibre optical
groove
bearing
race ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201280078114.7A
Other languages
English (en)
Inventor
R.赫迪
D.兰
H.杨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SKF AB
Original Assignee
SKF AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SKF AB filed Critical SKF AB
Publication of CN105122025A publication Critical patent/CN105122025A/zh
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/522Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to load on the bearing, e.g. bearings with load sensors or means to protect the bearing against overload
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/04Assembling rolling-contact bearings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35309Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer
    • G01D5/35316Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using multiple waves interferometer using a Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0009Force sensors associated with a bearing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/083Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]
    • G01M11/085Testing mechanical properties by using an optical fiber in contact with the device under test [DUT] the optical fiber being on or near the surface of the DUT
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D11/00Component parts of measuring arrangements not specially adapted for a specific variable
    • G01D11/02Bearings or suspensions for moving parts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/36Mechanical coupling means
    • G02B6/3628Mechanical coupling means for mounting fibres to supporting carriers
    • G02B6/3632Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means
    • G02B6/3636Mechanical coupling means for mounting fibres to supporting carriers characterised by the cross-sectional shape of the mechanical coupling means the mechanical coupling means being grooves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49636Process for making bearing or component thereof
    • Y10T29/49643Rotary bearing
    • Y10T29/49679Anti-friction bearing or component thereof
    • Y10T29/4968Assembling of race, cage, and rolling anti-friction members

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

一种轴承,包括轴承圈和滚动元件,由此,所述轴承圈包括外表面,具有容纳光纤传感器的围绕其圆周的凹槽。所述轴承还包括夹紧元件,其采用沿轴承圈径向方向作用的夹紧力接合所述光纤传感器,使得所述光纤传感器紧密接合所述轴承圈。由于夹紧力,所述光纤传感器的相对运动可以得到减少。

Description

光纤传感器组件
技术领域
本发明涉及一种包括光纤传感器组件的轴承,此外还涉及一种将这种光纤传感器连接到轴承的方法。
背景技术
轴承是旋转机械中非常重要的部件。如果轴承出现故障,则该机械的功能可能会失效。在某些应用中,在常规定期维护之外更换发生故障的轴承可能非常困难或极其昂贵。这些应用包括深海应用、船舶或连续生产线。在试图在出现故障之前预测何时需要更换轴承时,进行状态监测。如果机械及轴承处于易于接近的位置,则可以例如通过振动测量来评估轴承的状态。对于不易接近的设备比如深海应用来说,需要其它装置来评估轴承的状态,以便能够确定何时需要维护和/或更换。
为了诊断轴承圈的状态以及为了检测轴承的负载状态和应力,有益的是动态检测轴承的变形。动态检测的一种方式是使用光纤传感器。这种传感器的使用描述在美国专利申请US2010/0158434中。该光纤传感器包括玻璃光纤,其固定在轴承圈的周边中或固定至此。该传感器通过粘合剂连接附接在轴承圈周围的凹槽中。可替代地,传感器可以通过胶黏剂连接附接。这种连接的一个缺点是,光纤传感器并不直接接触被监控的轴承圈的表面,这可能会降低测量精度。使用粘合剂连接可能需要使用高温处理,以在轴承圈与光纤传感器之间建立牢固连接。然而,使用高温可能会对光纤传感器造成热损伤。
因此,人们希望提供一种替代的轴承圈结构,其减轻现有技术感知不便中的至少一些。
发明内容
根据本发明,提供了一种轴承,包括轴承圈和滚动元件,由此,所述轴承圈包括外表面,具有容纳光纤传感器的围绕其圆周的凹槽,所述轴承还包括夹紧元件,其采用沿轴承圈径向方向作用的夹紧力接合所述光纤传感器,使得所述光纤传感器紧密接合所述轴承圈。由于夹紧力,所述光纤传感器的相对运动可以得到减少。优选地,夹紧发生在直接接触轴承圈的表面,即在光纤传感器与轴承圈表面之间没有附加层,增加了随后变形测量的准确度。此外,存在的夹紧力避免了在轴承圈的使用过程中连接层的必要性。这种连接层在使用过程中可能会恶化,从而不利地影响变形测量的质量。此外,使用凹槽和夹紧元件提供易于实现带有光纤传感器的轴承的大批量生产,因为凹槽的尺寸可以由光纤传感器的直径预先确定且制造过程可以标准化。
所述轴承可以包括任何合适的滚动元件,包括滚珠轴承、滚子轴承、滚针轴承等。通常,本发明将适用于具有内外轴承圈的轴承,其中滚子元件位于所述内外轴承圈之间,其可以设置有合适的滚道。要理解的是,本发明还可以适用于轴颈轴承和其中出现与轴承圈滚动甚至滑动接触的其它设备。
根据实施例,所述轴承圈包括容纳将光纤传感器夹紧在凹槽内的夹紧元件的通道。这种通道已被证明在通过降低传感器与滚动元件之间的轴承圈的材料厚度来增加传感器的灵敏度方面是有利的。该通道可以由两个通道侧壁形成,该侧壁包括围绕轴承圈圆周的增加厚度的区域,或连续地或间歇地。所述通道侧壁可以定位在轴承圈的每个边缘或与轴承圈边缘相距一定的距离或者它们的组合。
根据进一步的替代实施例,所述夹紧环可以包括接合装置,用于与所述通道接合。接合装置本身可以确保必要的夹紧力,或者可以与紧固装置一起作用。在一种配置中,夹紧环可以具有与通道的形状配合接合,例如通过通道侧壁内的干涉配合。
优选地,所述凹槽具有的开口或入口的宽度等于或大于所述光纤传感器的直径,由此,所述凹槽的宽度随深度而减小。这样,在所述轴承圈的轴向方向上由所述夹紧元件作用于光纤传感器上的夹紧力可以被获得。所述凹槽可以包括限定凹槽宽度的侧壁。这些侧壁可以形成为使得凹槽的宽度随着与轴承圈外表面的距离的增加而减小,例如进入到轴承圈中。光纤传感器在凹槽内的连接可以通过沿轴承圈的轴向方向将部件添加至夹紧力而增加。这样,光纤传感器不仅在径向方向上通过靠着轴承圈的表面夹紧光纤传感器而且在轴向方向上通过靠着轴承圈的侧壁夹紧光纤传感器相对于轴承圈而得以稳定。为了可以将光纤传感器插入凹槽并且靠着轴承圈的侧壁夹紧,凹槽的第一部分具有的宽度等于或大于光纤传感器的直径,凹槽的第二部分具有的宽度小于光纤传感器的直径。要理解的是,光纤传感器应优选地不被进一步插入凹槽超出与轴承圈外表面等高的位置点。然而,本领域技术人员要理解的是可以在夹紧环的接合表面上设置隆起,以便在凹槽内接合光纤传感器。同样没被排除的是两个表面具有局部凹槽且光纤保持在相对的凹槽之间。最优选地,相对于光纤传感器确定凹槽和夹紧元件的尺寸,以确保与施加至光纤传感器的预定压力紧密配合。
根据进一步的实施例,所述凹槽的横截面的至少一部分形成直线形状,诸如V形或等腰梯形。横截面的直线部分形成倾斜侧壁,从而随着深度的增加降低凹槽的宽度。此外或可替代地,凹槽的横截面的至少一部分形成弧形形状,比如抛物线、半圆形、半椭圆形等。
凹槽的长度可以是足以提供所需检测功能的任何长度。凹槽可以围绕外表面的整个圆周延伸,或者可以仅在部分圆周上延伸。凹槽还可以进行多个单转,并且可以本身迂回或沿原路返回。
光纤传感器可以是能够测量轴承状态的任何合适的光纤。本领域技术人员熟悉各种形式的传感器,这些传感器基于应变、应力、伸长率、温度等起作用。优选地,光纤传感器是光纤,更优选的是光纤布拉格光栅(FBG)传感器。由光源产生的光信号被注入光纤,例如玻璃光纤。光信号在通过光纤之后由检测器检测。当光纤沿纵向变形时,这可以由穿过光纤的检测到的光信号的至少一个参数的变化来确定。相应地,从光纤的该纵向变形来确定轴承圈的径向变形。在传感器的纵向方向上的空间分辨率由光栅周期的相应变化来实现,因光栅周期在传感器长度上的变化而导致不同的布拉格波长。
传感器可以连接在面向远离滚动体的轴承圈的一侧,优选地在外轴承圈的径向外表面。然而,本领域技术人员要认识到的是,在内轴承圈的径向向内表面的位置同样可以考虑。传感器优选地直接连接成相对着滚动体沿其移动的滚道。传感器通常将设置在静止的轴承圈上。然而,还可以将传感器设置在旋转轴承圈上。
可以通过各种形式的夹紧元件来提供将光纤传感器夹紧到凹槽中。在一个实施例中,夹紧元件可以由其中容纳轴承的外壳来提供。然而,根据优选的实施例,夹紧元件包括环形夹紧环。夹紧环围绕轴承圈的圆周设置,施加夹紧力于光纤传感器及轴承圈第一侧的表面上。如果通道围绕轴承圈的圆周设置,则夹紧环可以容纳在该通道中。该环可以是完整的环或C型夹环。本领域技术人员要清楚地认识到各种各样的夹紧元件可以提供这种功能,包括卡环、软管夹、螺钉夹、弹簧夹、形状记忆合金环、收缩配合元件等。
本发明还包括一种用于将光纤传感器连接至包括轴承圈和滚动元件的轴承的方法,由此,所述轴承圈包括外表面,所述方法包括:沿着所述轴承圈的外表面的圆周的至少一部分设置凹槽,所述凹槽具有平行于轴承圈轴向方向的宽度尺寸和平行于轴承圈径向方向的高度尺寸,将光纤传感器插入所述凹槽的至少一部分,将所述光纤传感器机械地夹紧在所述凹槽内,使得所述光纤传感器采用在其被插入的凹槽该部分上的夹紧力紧密地接合所述轴承圈。
所述凹槽可以设置在内轴承圈的内侧或外轴承圈的外侧。此外,凹槽还可以设置在固定环或旋转环。凹槽的宽度和高度尺寸使得光纤传感器可以至少部分地容纳在凹槽中。在将光纤传感器插入凹槽之前,可以将临时连接层设置在光纤传感器或凹槽或这两者。至少在使用轴承和光纤传感器时,优选的是在组装之后,或通过退化或通过蒸发,该连接层应该已经消失。夹紧元件至少布置在光纤传感器上,使得夹紧元件可以施加夹紧力到光纤传感器上。此外,夹紧元件可以在轴承圈的第一表面的至少一部分上延伸。然后通过夹紧力将光纤传感器连接到第一侧的表面。这至少在使用中导致光纤传感器与光纤传感器的第一侧的表面的直接接触。
根据一实施例,所述方法包括围绕所述轴承圈的第一侧的圆周的至少一部分设置通道,由此,所述凹槽设置在所述通道中,使得用于将光纤传感器夹紧到凹槽中的夹紧元件容纳在所述通道中。
根据另一实施例,所述方法包括设置具有入口的所述凹槽,所述入口具有的宽度等于或大于所述光纤传感器的直径,由此,所述凹槽的宽度随深度而减小,从而获得在所述轴承圈的轴向方向上由所述夹紧元件作用于所述光纤传感器上的夹紧力。
优选地,所述凹槽的横截面包括V形、等腰梯形和半椭圆形的组中的一个或它们的组合。
附图说明
参照若干示例性实施例的以下附图,本发明的特征和优点将得到理解,其中:
图1示出了根据本发明实施例的轴承的轴向横截面;
图2示出了图1轴承的径向横截面;
图3示出了由III所示的图1轴承的细节;
图4示出了本发明替代实施例的轴向横截面;以及
图5示出了具有替代夹紧环的根据本发明的轴承的透视图。
具体实施方式
图1示出了轴承1的轴向横截面,其包括具有内滚道5的内轴承圈2和具有外滚道6的外轴承圈3。滚动元件4设置在内外圈2、3之间,使得内外轴承圈2、3可以相对彼此旋转。滚动元件4位于内外滚道5、6之间。
凹槽7设置在外轴承圈3的外表面8。凹槽7容纳光纤传感器9,其包括光纤。反过来,凹槽7设置有通道12。通道12成形为两个侧壁10之间的凹部,侧壁形成外轴承圈3的厚度的增加。
光纤传感器9容纳在凹槽7中,并且通过夹紧环11连接到外轴承圈。夹紧环11容纳在通道12中。夹紧环11施加夹紧力CF到光纤传感器9上,如图3所示。
图2示出了轴承1的径向横截面。夹紧环11设置成围绕着外轴承圈3的圆周的大部分,除了形成开口13的一小部分之外,其用于将夹紧环11放置在光纤传感器9上并进入通道12。
光纤传感器9被容纳在凹槽7内,从第一端部14至第二端部15基本上在外轴承圈3的整个圆周上。第二端部15从轴承1延伸,并且可以连接到合适的检测器组件30。
通过将凹槽7设置在外轴承圈3的外表面8中来制造轴承1。凹槽7具有从外表面8延伸到外轴承圈3中的锥形横截面。将光纤传感器9放在凹槽7中,在其上夹紧环11卡扣到外轴承圈3上。为了将光纤传感器9维持在其位置,可以设置暂时固定,比如在其余装配过程中蒸发或分裂的胶黏剂。当轴承1准备使用时,该暂时固定应优选地已经消失,使得在光纤传感器9和凹槽7之间建立直接接触。光纤传感器9包括具有光纤布拉格光栅19的光纤。这是一种以反射光的特定波长并传输所有其他的光纤的短段构成的分布式布拉格反射器。这是通过创建光纤芯(其产生波长特定介质镜)的折射率的周期性变化来实现的。因此,光纤布拉格光栅用作直列特定波长的反射器。这种传感器的操作通常是常规的,将不会在本申请中进一步讨论。
图3示出了由Ⅲ所示的图1轴承1的细节。清楚地示出了凹槽7的锥形形状。凹槽7的入口16的宽度大于光纤传感器9的直径D,而后者又比凹槽7的基座21更宽。由于锥形形状,凹槽7的侧壁17在其周边18抓握光纤传感器9。凹槽7和光纤9的尺寸被具体地确定成使得在将光纤9插入到凹槽7中时,夹紧环11的内表面20相切于光纤9的周边18。在设置夹紧环11之后,夹紧力CF被施加到光纤传感器9上。由于凹槽7的倾斜侧壁17,夹紧力CF具有轴向分量A和径向分量R。
图4示出了具有替代的夹紧环111的根据本发明替代实施例的轴承101的轴向横截面。夹紧环111与第一实施例的区别在于围绕内周延伸的一对肩部112。如在图4中可以看出,肩部112用来确定光纤传感器9的夹紧的程度。光纤传感器9从而部分地容纳在凹槽107中,并且由夹紧环111的凹陷内表面120部分地容纳。应该理解的是,还可以提供其它形状的夹紧元件及通道来实现同样的效果。
图5示出了具有若干不同夹紧环的图1至3的轴承1的透视图。如图4所示的夹紧环111形成为具有开口113,其允许环111可滑过外轴承圈3并进入通道12。夹紧通过环111(其由弹簧钢制成)的固有弹簧特性发生。
夹紧环211是由弹性材料制成的完整圆周环。其可通过拉伸滑过外轴承圈3,并且由其自然恢复力而保持在通道12中。
夹紧环311是螺钉夹类型的,具有一对凸缘314,可以通过螺钉315而拉向彼此。应该理解的是,夹紧环311和轴承1是示意性地表示,而在现实中,凸缘314的大小将使得它们装配在通道12内。
夹紧环411是软管夹类型的,具有的固定螺钉415与沿环411形成的螺纹部414接合。
夹紧环511是缆线结类型的。其由塑料形成,并且具有的棘轮元件515与在环511的内表面上所形成的锯齿514接合。本领域技术人员要认识到的是,还可以实施许多其它替代形式的夹紧环。
因此,已经参照上面讨论的实施例对本发明进行了说明。应当认识到的是,在不脱离本发明的精神和范围的情况下,本实施例可以有公知于本领域技术人员的各种修改和替代形式。特别地,应该理解的是,虽然已经对单个凹槽和光纤传感器进行了说明,但可以包括多个凹槽和或多根光纤。因此,尽管已经描述了具体实施例,但这些仅是示例且并不限制本发明的范围。

Claims (15)

1.一种轴承,包括支撑多个滚动元件的轴承圈,所述轴承圈包括外表面和容纳光纤传感器的围绕所述外表面的圆周的凹槽,所述轴承还包括夹紧元件,其采用沿轴承圈径向方向作用的夹紧力接合所述光纤传感器,使得所述光纤传感器紧密接合所述轴承圈。
2.根据权利要求1所述的轴承,其中,所述轴承圈包括容纳所述夹紧元件的通道,所述凹槽位于所述通道内。
3.根据权利要求1或2所述的轴承,其中,所述凹槽具有的入口的宽度等于或大于所述光纤传感器的直径,其中,所述凹槽的宽度随深度的增加而减小,从而获得在所述轴承圈的轴向方向上由所述夹紧元件作用于所述光纤传感器上的夹紧力。
4.根据权利要求3所述的轴承,其中,所述凹槽的宽度的至少一部分随深度线性地减小。
5.根据权利要求3或4所述的轴承,由此,所述凹槽的宽度的至少一部分随深度以抛物线方式减小。
6.根据前述权利要求中任一项所述的轴承,其中,所述光纤传感器是光纤。
7.根据权利要求6所述的轴承,其中,所述光纤包括光纤布拉格光栅(FBG)传感器。
8.根据前述权利要求中任一项所述的轴承,由此,所述夹紧元件包括夹紧环。
9.一种用于将光纤传感器连接至包括轴承圈和滚动元件的轴承的方法,由此,所述轴承圈包括外表面,所述方法包括:
-沿着所述轴承圈的外表面的圆周的至少一部分设置凹槽,所述凹槽具有平行于轴承圈轴向方向的宽度尺寸和平行于轴承圈径向方向的深度尺寸,
-将光纤传感器插入所述凹槽的至少一部分,
-将所述光纤传感器机械地夹紧在所述凹槽内,使得所述光纤传感器采用在其被插入的凹槽该部分上的夹紧力紧密地接合所述轴承圈。
10.根据权利要求9所述的方法,还包括提供夹紧元件,用于将所述光纤传感器夹紧到所述凹槽中,优选地,所述夹紧元件是夹紧环。
11.根据权利要求10所述的方法,包括围绕所述轴承圈的外表面的圆周的至少一部分设置通道,由此,所述凹槽设置在所述通道中,所述夹紧元件容纳在所述通道中。
12.根据权利要求9至11中任一项所述的方法,包括将所述凹槽设置有入口,所述入口具有的宽度等于或大于所述光纤传感器的直径,其中,所述凹槽的宽度随深度而减小,使得所述光纤传感器上的夹紧力作用于光纤传感器的径向方向上。
13.根据权利要求12所述的方法,其中,所述凹槽的横截面包括V形、等腰梯形和半椭圆形的组中的一个或它们的组合。
14.根据权利要求9-13中任一项所述的方法,其中,所述光纤传感器是光纤。
15.根据权利要求14所述的方法,其中,所述光纤传感器包括光纤布拉格光栅(FBG)传感器。
CN201280078114.7A 2012-12-14 2012-12-14 光纤传感器组件 Pending CN105122025A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2012/075555 WO2014090332A1 (en) 2012-12-14 2012-12-14 Fibre sensor assembly

Publications (1)

Publication Number Publication Date
CN105122025A true CN105122025A (zh) 2015-12-02

Family

ID=47559386

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201280078114.7A Pending CN105122025A (zh) 2012-12-14 2012-12-14 光纤传感器组件

Country Status (4)

Country Link
US (1) US9546690B2 (zh)
EP (1) EP2932223B1 (zh)
CN (1) CN105122025A (zh)
WO (1) WO2014090332A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107870052A (zh) * 2017-10-20 2018-04-03 重庆大学 一种微型光纤法珀压力传感器
CN108318248A (zh) * 2017-01-16 2018-07-24 舍弗勒技术股份两合公司 基于光纤振动传感的轴承状态在线监测系统及方法
CN109990723A (zh) * 2018-11-30 2019-07-09 东莞理工学院 一种可重复使用的埋入式光栅测量装置
CN110645266A (zh) * 2019-06-26 2020-01-03 扬州市舜意机械有限公司 一种传感一体化的关节轴承及其使用方法
CN112539221A (zh) * 2019-09-23 2021-03-23 斯凯孚公司 具有用于载荷感测的单个感测光纤的轴承和轴承单元
CN114026342A (zh) * 2019-06-25 2022-02-08 舍弗勒技术股份两合公司 用于确定负载的滚子轴承组件

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104380074A (zh) * 2012-06-15 2015-02-25 Skf公司 机械装置
US10428871B2 (en) * 2014-12-19 2019-10-01 Aktiebolaget Skf Bearing ring
DE102017218878A1 (de) * 2016-11-07 2018-05-24 Aktiebolaget Skf Verkabeltes Lager
FR3067074B1 (fr) * 2017-06-02 2019-07-26 Skf Aerospace France Ensemble de roulement instrumente
DE102018214195A1 (de) 2018-08-22 2020-03-19 Aktiebolaget Skf Verfahren zum Befestigen einer Faser mit einem Faser-Bragg-Sensorsegment an eine Komponente oder Lagervorrichtung mit einer derartigen Faser
CN111853071B (zh) * 2019-04-11 2024-09-03 斯凯孚公司 一种滚子轴承、风力涡轮机和风力涡轮机的控制方法
DE102019109939A1 (de) * 2019-04-15 2020-10-15 Bayerische Motoren Werke Aktiengesellschaft Einrichtung zur Visualisierung von Auslenkungen eines Elastomerlagers
DE102019209910A1 (de) * 2019-07-05 2021-01-07 Aktiebolaget Skf Wälzlager mit integriertem Glasfasersensor
DE102020103421A1 (de) 2020-02-11 2021-08-12 Liebherr-Components Biberach Gmbh Wälzlager mit Überwachungsvorrichtung
DE102020208508A1 (de) * 2020-07-07 2022-01-13 Aktiebolaget Skf Lagerring mit integriertem Fasersensor und zugehörigem Lager

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346407A (ja) * 1987-08-07 1988-02-27 Mirai Ind Co Ltd 光ファイバ−接続具
DE3940777A1 (de) * 1989-12-06 1991-06-13 Siemens Ag Verfahren zum herstellen einer spleissvorrichtung fuer zwei optische fasern
EP0502781A1 (fr) * 1991-03-07 1992-09-09 Framatome Capteur optique, en particulier capteur de pression et procédé de mesure optique correspondant
US5785433A (en) * 1996-07-17 1998-07-28 Nsk Ltd. Rolling bearing creep prevention device
US6080982A (en) * 1998-05-13 2000-06-27 The United States Of America As Represented By The Secretary Of The Navy Embedded wear sensor
WO2003052477A2 (en) * 2001-12-18 2003-06-26 3M Innovative Properties Company A method for aligning a plurality of optical fibers in a parallel array
JP2005291287A (ja) * 2004-03-31 2005-10-20 Koyo Seiko Co Ltd センサ付転がり軸受
CN101189540A (zh) * 2005-06-07 2008-05-28 奥林巴斯医疗株式会社 光纤束及其制造方法
CN101292090A (zh) * 2005-09-06 2008-10-22 蒂姆肯公司 载荷感测轴承
WO2009100084A1 (en) * 2008-02-08 2009-08-13 Schlumberger Canada Limited Methods and apparatus for detecting strain in structures
WO2010043699A1 (de) * 2008-10-16 2010-04-22 Siemens Aktiengesellschaft Überwachungseinrichtung für ein wälzlager
US20100158434A1 (en) * 2008-12-11 2010-06-24 Prueftechnik Dieter Busch Ag Method and device for dynamic measurement of the radial deformation of a rolling bearing ring
CN201772884U (zh) * 2010-09-02 2011-03-23 中国地震局地壳应力研究所 一种压板式光纤光栅传感器
WO2011066926A1 (en) * 2009-12-04 2011-06-09 Aktiebolaget Skf Bearing monitoring using a fiber bragg grating
CN102519381A (zh) * 2011-12-19 2012-06-27 广州南洋理工职业学院 微弯式强度调制型光纤传感器
CN202563119U (zh) * 2012-03-31 2012-11-28 成都捷康特科技有限公司 一种切割定位式光纤熔接机

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2626631B1 (fr) * 1988-01-29 1994-03-25 Snr Roulements Montage de palier a roulement avec dispositif capteur
US6948856B2 (en) * 2000-11-06 2005-09-27 Nsk Ltd. Rolling bearing device and ring with sensor for the rolling bearing device
DE10303876A1 (de) * 2003-01-31 2004-08-12 Fag Kugelfischer Ag Messanordnung, Wälzlager und Verfahren zur Ermittlung der Bewegungsrichtung eines Wälzlagerbauteils
DE10304592A1 (de) * 2003-02-05 2004-08-19 Fag Kugelfischer Ag Messlager mit integriertem Datenerfassungs- und verarbeitungssystems

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6346407A (ja) * 1987-08-07 1988-02-27 Mirai Ind Co Ltd 光ファイバ−接続具
DE3940777A1 (de) * 1989-12-06 1991-06-13 Siemens Ag Verfahren zum herstellen einer spleissvorrichtung fuer zwei optische fasern
EP0502781A1 (fr) * 1991-03-07 1992-09-09 Framatome Capteur optique, en particulier capteur de pression et procédé de mesure optique correspondant
US5785433A (en) * 1996-07-17 1998-07-28 Nsk Ltd. Rolling bearing creep prevention device
US6080982A (en) * 1998-05-13 2000-06-27 The United States Of America As Represented By The Secretary Of The Navy Embedded wear sensor
WO2003052477A2 (en) * 2001-12-18 2003-06-26 3M Innovative Properties Company A method for aligning a plurality of optical fibers in a parallel array
JP2005291287A (ja) * 2004-03-31 2005-10-20 Koyo Seiko Co Ltd センサ付転がり軸受
CN101189540A (zh) * 2005-06-07 2008-05-28 奥林巴斯医疗株式会社 光纤束及其制造方法
CN101292090A (zh) * 2005-09-06 2008-10-22 蒂姆肯公司 载荷感测轴承
WO2009100084A1 (en) * 2008-02-08 2009-08-13 Schlumberger Canada Limited Methods and apparatus for detecting strain in structures
WO2010043699A1 (de) * 2008-10-16 2010-04-22 Siemens Aktiengesellschaft Überwachungseinrichtung für ein wälzlager
US20100158434A1 (en) * 2008-12-11 2010-06-24 Prueftechnik Dieter Busch Ag Method and device for dynamic measurement of the radial deformation of a rolling bearing ring
WO2011066926A1 (en) * 2009-12-04 2011-06-09 Aktiebolaget Skf Bearing monitoring using a fiber bragg grating
CN201772884U (zh) * 2010-09-02 2011-03-23 中国地震局地壳应力研究所 一种压板式光纤光栅传感器
CN102519381A (zh) * 2011-12-19 2012-06-27 广州南洋理工职业学院 微弯式强度调制型光纤传感器
CN202563119U (zh) * 2012-03-31 2012-11-28 成都捷康特科技有限公司 一种切割定位式光纤熔接机

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
温卫 等: "《综合布线系统与网路组建》", 30 June 2012 *
高占凤 等: "基于虚拟仪器技术的光纤应变测试系统", 《传感器技术学报》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318248A (zh) * 2017-01-16 2018-07-24 舍弗勒技术股份两合公司 基于光纤振动传感的轴承状态在线监测系统及方法
CN108318248B (zh) * 2017-01-16 2021-09-28 舍弗勒技术股份两合公司 基于光纤振动传感的轴承状态在线监测系统
CN107870052A (zh) * 2017-10-20 2018-04-03 重庆大学 一种微型光纤法珀压力传感器
CN107870052B (zh) * 2017-10-20 2020-01-31 重庆大学 一种微型光纤法珀压力传感器
CN109990723A (zh) * 2018-11-30 2019-07-09 东莞理工学院 一种可重复使用的埋入式光栅测量装置
CN109990723B (zh) * 2018-11-30 2021-01-12 东莞理工学院 一种可重复使用的埋入式光栅测量装置
CN114026342A (zh) * 2019-06-25 2022-02-08 舍弗勒技术股份两合公司 用于确定负载的滚子轴承组件
US12049920B2 (en) 2019-06-25 2024-07-30 Schaeffler Technologies AG & Co. KG Roller bearing assembly for determining loads
CN110645266A (zh) * 2019-06-26 2020-01-03 扬州市舜意机械有限公司 一种传感一体化的关节轴承及其使用方法
CN112539221A (zh) * 2019-09-23 2021-03-23 斯凯孚公司 具有用于载荷感测的单个感测光纤的轴承和轴承单元

Also Published As

Publication number Publication date
US9546690B2 (en) 2017-01-17
EP2932223A1 (en) 2015-10-21
EP2932223B1 (en) 2017-02-15
US20150323013A1 (en) 2015-11-12
WO2014090332A1 (en) 2014-06-19

Similar Documents

Publication Publication Date Title
CN105122025A (zh) 光纤传感器组件
EP2507605B1 (en) Bearing monitoring using a fiber bragg grating
JP6687764B2 (ja) 構造体の安全をモニタするセンシング光ファイバと音響放射統合センシングシステム及び方法
CN102235921B (zh) 同时检测应变与温变的光纤传感器
WO2007099290A1 (en) Structural monitoring
CN108425941A (zh) 滚子轴承用的状态检测装置及滚子轴承装置
CN108680291B (zh) 一种基于光纤光栅传感器的索力监测装置
WO2014090324A1 (en) Optical fibre sensor assembly
WO2014108170A1 (en) Fibreoptic sensor clip
CN110954259A (zh) 一种基于光纤微弯损耗的垫片传感器
CN105241598B (zh) 发动机转子预紧力测量方法及系统
CN102607422A (zh) 一种直线式光纤光栅位移计
US8800153B2 (en) Measuring ring with measuring tape and method for arranging the measuring tape
JP2009216665A (ja) 外輪へのひずみセンサ内蔵型転がり軸受の荷重分布測定方法及びその装置
US20110007997A1 (en) Fiber-optic temperature sensor assembly
CN108759681B (zh) 光纤光栅传感器
KR101165085B1 (ko) 그립 및 이를 이용하는 광섬유 센서, 그 계측방법
KR100965001B1 (ko) 센서 유니트를 가진 복합강연선 및 이의 제조방법
WO2016186054A1 (ja) 歪みセンサ及び歪みセンサの取付治具
JP2018189566A (ja) 光ファイバセンサケーブル
CN210108280U (zh) 一种应变温度分段式传感器
CN102486421A (zh) 六维力传感装置
CN112461417A (zh) 一种光纤光栅索力传感器的安装结构
JPH0437373B2 (zh)
CN203758611U (zh) 无膜片全光纤拾音器传感探头、传感探头组

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned
AD01 Patent right deemed abandoned

Effective date of abandoning: 20201013