CN105099393A - 线性均衡器及其方法 - Google Patents

线性均衡器及其方法 Download PDF

Info

Publication number
CN105099393A
CN105099393A CN201510212709.2A CN201510212709A CN105099393A CN 105099393 A CN105099393 A CN 105099393A CN 201510212709 A CN201510212709 A CN 201510212709A CN 105099393 A CN105099393 A CN 105099393A
Authority
CN
China
Prior art keywords
type
oxide semiconductor
metal oxide
mos transistor
semiconductor transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510212709.2A
Other languages
English (en)
Other versions
CN105099393B (zh
Inventor
林嘉亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Realtek Semiconductor Corp
Original Assignee
Realtek Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Realtek Semiconductor Corp filed Critical Realtek Semiconductor Corp
Publication of CN105099393A publication Critical patent/CN105099393A/zh
Application granted granted Critical
Publication of CN105099393B publication Critical patent/CN105099393B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45197Pl types
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45292Indexing scheme relating to differential amplifiers the AAC comprising biasing means controlled by the signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45336Indexing scheme relating to differential amplifiers the AAC comprising one or more resistors as feedback circuit elements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45626Indexing scheme relating to differential amplifiers the LC comprising biasing means controlled by the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45631Indexing scheme relating to differential amplifiers the LC comprising one or more capacitors, e.g. coupling capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45712Indexing scheme relating to differential amplifiers the LC comprising a capacitor as shunt
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/195High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only in integrated circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45183Long tailed pairs
    • H03F3/45192Folded cascode stages

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Amplifiers (AREA)

Abstract

本发明提供了线性均衡器及其方法。一种线性均衡器包括一第一类型的第一金属氧化物半导体(MOS)晶体管、一第二类型的第一MOS晶体管、一第二类型的第二MOS晶体管以及一第一类型的第二MOS晶体管。第一类型的第一MOS晶体管设置在一共源极放大器电路中,并且用以接收一输入信号并输出一中间信号。第二类型的第一MOS晶体管设置在由一第一自偏压RC(电阻电容)电路偏压的一自偏压拓扑中,并且用以提供中间信号的终端。第二类型的第二MOS晶体管设置在另一共源极放大器拓扑中,并且用以放大中间信号而产生一输出信号。第一类型的第二MOS晶体管设置在由一第二自偏压RC电路偏压的另一自偏压拓扑中,并且用以提供输出信号的终端。

Description

线性均衡器及其方法
技术领域
本发明是关于一种均衡器,特别是关于一种线性均衡器及其方法。
背景技术
本领域熟习技术人员应了解于说明书中所使用的各种术语。举例来说,金氧(metal-oxidesemiconductor;MOS)半晶体管,其包括二种类型:N型金属氧化物半导体晶体管(n-channelmetal-oxidesemiconductortransistor;NMOStransistor)与P型金属氧化物半导体晶体管(p-channelmetal-oxidesemiconductortransistor;PMOStransistor);用于陈述MOS晶体管连接关系的“栅极”、“源极”、“漏极”及“饱和(saturation)区”;以及电子电路的基本概念,诸如“电压”、“电流”、“转移电导(transconductance)”、“源极退化(sourcedegeneration)”、“转动率(slewrate)”、“自偏(self-biasing)”、“差动”、“伪差动”、“单端”、“共源极”、“阻抗”、“增益”、“频率响应”、“零点(zero)”、“极点(pole)”及“波德图(BodePlot)等。像这些术语与基本概念能由诸如教科书等现有技术文件而显而易见,因此于说明书中不再对其进行定义或解释。其中,教科书可例如:模拟CMOS集成电路的设计(DesignofAnalogCMOSIntegratedCircuits,BehzadRazavi着、McGraw-Hill出版,且ISBN0-07-118839-8)。
线性均衡器为放大输入信号以产生具有一增益因子的输出信号的装置且此增益因子具有故意的频率相依性,以致能适应输入信号的分散特性。与输入信号的较低频成分相比,线性均衡器提供较高的增益给输入信号的较高频成分。参照图1,习知的线性均衡器100包括一差动对120、一负载电路110、一偏压电路140以及一RC(电阻电容)退化电路130。差动对120包括NMOS晶体管121、122,并且NMOS晶体管121、122设置在一共源极放大器中。差动对120用以将一差动输入信号VI(其包括二端输入信号VI+、VI-)放大成一差动输出信号VO(其包括二端输入信号VO+、VO-)。负载电路110包括二电阻111、112,且用以提供差动输出信号VO的终端(termination)。偏压电路140包括二电流源141、142,并且用以提供差动对120的偏压电流I1、I2。RC退化电路130包括一电阻131与一电容132,并且用以提供源极退化给差动对120。于此,图标“VDD”代表供电节点,以及图标“VSS”代表接地节点。如同本领域熟习技术人员所熟知的,共源极MOS放大器的源极退化减少共源极MOS放大器的增益,并且源极退化电路的阻抗越高则导致越大的增益衰减。于此,RC退化电路130的阻抗具有频率相依性且随着频率增加而减少;相较于输入信号VI的较高频成分,输入信号VI的较低频成分遭遇RC退化电路的较低阻抗,因此较少的增益衰减;因此,与输入信号VI的较低频成分相比,提供了较高的增益给输入信号VI的较高频成分。
虽然线性均衡器100藉由提供较输入信号VI的较低频成分的增益高的输入信号VI的较高频成分的增益来执行等化作用,但仍是藉由以强加“更多增益衰减”在输入信号VI的较低频成分取代强加“更多增益增强”在输入信号VI的较高频成分来执行等化作用。如此一来,越高程度的等化作用则需要更高程度的对于输入信号的较低频成分的增益衰减。因而造成,提供大致相同的增益给较低频成分与较高频成分二者的宽带放大器常因RC退化而需要去补偿增益衰减。
发明内容
鉴于以上的问题,本发明在于提供一种线性均衡器及其方法,以通过提供增益增强给输入信号的高频成分来等化输入信号,其中较高程度的等化作用能藉由提供较高程度的增益增强给输入信号的高频成分来执行。
在一实施例中,一种线性均衡器包括一第一类型的第一金属氧化物半导体(MOS)晶体管、一第二类型的第一MOS晶体管、一第二类型的第二MOS晶体管以及一第一类型的第二MOS晶体管。第一类型的第一MOS晶体管设置在一共源极放大器电路中,并且用以接收一输入信号并输出一中间信号。第二类型的第一MOS晶体管设置在由一第一自偏压RC(电阻电容)电路偏压的一自偏压拓扑中,并且用以提供中间信号的终端。第二类型的第二MOS晶体管设置在另一共源极放大器拓扑中,并且用以放大中间信号而产生一输出信号。第一类型的第二MOS晶体管设置在由一第二自偏压RC电路偏压的另一自偏压拓扑中,并且用以提供输出信号的终端。在一些实施例中,各自偏压RC电路包括一电阻与一电容,其中对应的MOS晶体管的漏极经由电阻耦接至其栅极,而其栅极再经由电容耦接至供电节点或接地节点。在一些实施例中,第一类型的第一与第二MOS晶体管为PMOS(P型金属氧化物半导体)晶体管,而第二类型的第一与第二MOS晶体管即为NMOS(N型金属氧化物半导体)晶体管。在另一些实施例中,第一类型的第一与第二MOS晶体管则为NMOS晶体管,而第二类型的第一与第二MOS晶体管即为PMOS晶体管。
在一实施例中,一种等化方法包括:接收一输入信号、利用第一类型的第一MOS晶体管放大输入信号以产生一中间信号、利用第二类型的第一MOS晶体管提供中间信号的终端、利用第二类型的第二MOS晶体管放大中间信号以产生一输出信号、以及利用第一类型的第二MOS晶体管提供输出信号的终端。其中,第一类型的第一MOS晶体管设置在一共源极放大器拓扑中。第二类型的第一MOS晶体管设置在由一第一自偏压RC电路偏压的一自偏压拓扑中。第二类型的第二MOS晶体管设置在另一共源极放大器拓扑中。第一类型的第二MOS晶体管设置在由一第二自偏压RC电路偏压的另一自偏压拓扑中。在一些实施例中,各自偏压RC电路包括一电阻与一电容,其中对应的MOS晶体管的漏极经由电阻耦接至其栅极,而其栅极再经由电容耦接至供电节点或接地节点。在一些实施例中,第一类型的第一与第二MOS晶体管为PMOS晶体管,而第二类型的第一与第二MOS晶体管即为NMOS晶体管。在另一些实施例中,第一类型的第一与第二MOS晶体管则为NMOS晶体管,而第二类型的第一与第二MOS晶体管即为PMOS晶体管。
附图说明
图1为习知的线性均衡器的概要示意图。
图2为根据本发明一实施例的线性均衡器的概要示意图。
图3为自偏压MOS晶体管与自偏压RC电路的小信号等效电路的示意图。
图4为自偏压MOS晶体管与自偏压RC电路的频率响应的波德图。
图5为根据本发明一实施例的等化方法的流程图。
具体实施方式
以下的详细描述系参照所附图式,藉由图式说明,揭露本发明各种可实行的实施例。所记载的实施例是明确且充分揭露,以致使所属技术领域中具有通常知识者能据以实施。不同的实施例间并非相互排斥,某些实施例可与一个或一个以上的实施例进行合并而成为新的实施例。因此,下列详细描述并非用以限定本发明。
参照图2,线性均衡器200包括一第一电流源210、一差动对220、一第一对负载电路、一伪差动对260、一第二对负载电路以及一第二电流源290。第一电流源210耦接在供电节点VDD与差动对220的第一端之间。差动对220的第二端耦接第一对负载电路的第二端与伪差动对260的第三端。差动对220的第二端耦接输入端。第一对负载电路的第一端与伪差动对260的第一端耦接接地节点VSS。伪差动对260的第二端耦接输出端与第二对负载电路的第二端。第二电流源290耦接在供电节点VDD与第二对负载电路的第一端之间。以金属氧化物半导体(MOS)晶体管为例,第一端为源极、第二端为漏极、且第三端为栅极。于此,差动对220包括多个第一类型的MOS晶体管221、222,并且MOS晶体管221、222设置在一共源极放大器拓扑中。第一电流源210用以提供一第一偏压电流Ib1给源极耦接的MOS晶体管221、222。差动对220用以接收第一偏压电流Ib1以及将电压模式的输入信号VI放大成电流模式的中间信号IX。第一对负载电路为一自偏压晶体管电路,并且用以提供电流模式的中间信号IX的终端(termination)因而建立电压模式的中间信号VX。于此,第一对负载电路包括多个第二类型的MOS晶体管251、252,并且MOS晶体管251、252设置在一自偏压拓扑(self-biasedtopology)中。伪差动对260包括多个第二类型的MOS晶体管261、262,并且MOS晶体管261、262设置在一共源极放大器拓扑中。伪差动对260用以接收电压模式的中间信号VX以及输出电流模式的输出信号IO。第二对负载电路为一自偏压晶体管电路,并且用以提供电流模式的输出信号IO的终端因而建立电压模式的输出信号VO。于此,第二对负载电路包括多个第一类型的MOS晶体管271、272,并且MOS晶体管271、272设置在一自偏压拓扑中。第二电流源290用以提供一第二偏压电流Ib2给源极耦接的MOS晶体管271、272。于此,第一类型的MOS晶体管221、222、271、272为PMOS晶体管,而第二类型的MOS晶体管251、252、261、262则为NMOS晶体管。电压模式的输入信号VI为包括二端输入信号VI+、VI-的差动信号。电流模式的中间信号IX为包括二端中间信号IX+、IX-的差动信号。电压模式的中间信号VX为包括二端中间信号VX+、VX-的差动信号。电流模式的输出信号IO为包括二端输出信号IO+、IO-的差动信号。电压模式的输出信号VO为包括二端输出信号VO+、VO-的差动信号。其中,线性均衡器200可更包括多个自偏压RC电路230、240、273、276。自偏压RC电路230包括一电阻231与一电容232。电阻231耦接在MOS晶体管251的漏极与栅极之间,并且电容232耦接在MOS晶体管251的栅极与接地节点VSS之间。自偏压RC电路240包括一电阻241与一电容242。电阻241耦接在MOS晶体管252的漏极与栅极之间,并且电容242耦接在MOS晶体管252的栅极与接地节点VSS之间。自偏压RC电路273包括一电阻274与一电容275。电阻274耦接在MOS晶体管271的漏极与栅极之间,并且电容275耦接在MOS晶体管271的栅极与供电节点VDD的间。自偏压RC电路276包括一电阻277与一电容278。电阻277耦接在MOS晶体管272的漏极与栅极之间,并且电容278耦接在MOS晶体管272的栅极与供电节点VDD之间。于此,MOS晶体管251经由自偏压RC电路230而自偏压。MOS晶体管252经由自偏压RC电路240而自偏压。MOS晶体管271经由自偏压RC电路273而自偏压。MOS晶体管272则经由自偏压RC电路276而自偏压。自偏压RC电路230、240、273、276搭配各自的晶体管负载(即,MOS晶体管251、252、271、272)使用以提供较高的阻抗给较高频信号(相较于较低频信号)。因给较高频信号的较高阻抗,线性均衡器200提供较高的增益给较高频信号,以执行等化作用。即,若存在有第二频率的第二输入信号以及第一频率的第一输入信号且第一频率高于第二频率,由于RC电路230、240、273、276搭配各自的晶体管负载(即,MOS晶体管251、252、271、272)而提供第一阻抗给第一输出信号以及提供第二阻抗给第二输出信号且第一阻抗高于第二阻抗,因此线性均衡器200能以第二增益从第二输入信号输出一第二输出信号以及以第一增益从第一输入信号输出一第一输出信号且第一增益高于第二增益。
参照图3,图3为自偏压MOS晶体管与自偏压RC电路的小信号等效电路模型300的示意图。以自偏压MOS晶体管251与自偏压RC电路230为例,“Vgs”为MOS晶体管251的栅源电压、“gm”为MOS晶体管251的转移电导、“ro”为MOS晶体管251的输出阻值、“Cgs”为MOS晶体管251的栅源电容值、“Cgd”为MOS晶体管251的栅漏电容值、“R”为自偏压RC电路230的电阻231的阻值、“C”为自偏压RC电路230的电容232的电容值、“Id”为流入自偏压MOS晶体管251与自偏压RC电路230的总电流、以及“Vd”为在MOS晶体管251的漏极的端电压。实际上,输出阻值ro是远大于转移电导gm的倒数,因而能忽略输出阻值ro。通过忽略输出阻值ro,能得到自偏压MOS晶体管与自偏压RC电路的阻抗Z如下式(1)。
Z ≡ V d I d = 1 + sR ( C + C gs + C gd ) gm ( 1 + sR C gd ) ( 1 + s ( C + C gs ) / gm ) 式(1)
并且,阻抗Z具有一零点二极点的频率响应,其中零点ωz如下式(2)、第一极点ωp1如下式(3)、以及第二极点ωp2如下式(4)。
ωz=1/R(C+Cgs+Cgd)式(2)
ωp1=1/RCgd式(3)
ωp2=gm/(C+Cgs)式(4)
注意,零点ωz将永远小于第一极点ωp1。一旦gmR>1,第一极点ωp1将会小于第二极点ωp2。参照如图4所示的波德图400,若频率ω位在零点ωz与第一极点ωp1之间,阻抗Z的大小随着频率ω增加而增加。由于以负载电路终止的放大器的增益正比于负载电路的阻抗,因此线性均衡器200提供较高的增益给较高频信号藉以致频率ω落在零点ωz与第一极点ωp1之间。如此即能允许线性均衡器200执行等化作用。
线性均衡器200优于线性均衡器100的地方在于:取代强加“更多增益衰减”在较低频信号,藉由以强加“更多增益增强”在较高频信号来执行等化作用;能在不牺牲第频信号的增益下实现高程度的等化作用,因此无须使用宽带放大器。
虽然图2所示的线性均衡器200是基于使用PMOS装置作为差动对220,但能了解地,对于具有多个MOS装置的既定电路与诸如电阻和电容的被动装置,能互换PMOS装置与NMOS装置的角色(即,以PMOS晶体管取代在既定电路中的每一个NMOS晶体管,并且以NMOS晶体管取代在既定电路中的每一个PMOS晶体管),且亦互换接地与供电的角色(即,将既定电路中每一个供电节点VDD改成接地节点VSS,并且将既定电路中每一个接地节点VSS改成供电节点VDD),如此所形成的“翻转电路”与原始电路具有相同功能。举例来说,在翻转电路中,第一类型的MOS晶体管221、222、271、272为NMOS晶体管,而第二类型的MOS晶体管251、252、261、262则为PMOS晶体管。
虽然图2所示的线性均衡器200是基于差动电路拓扑,但能了解地,相同原理能应用至伪差动电路拓扑,并且亦能应用至单端电路拓扑。在一实施例(图式未示,但本领域熟习技术人员应能清楚明了)中,将电流源210、290移除,并将电路节点211、291直接耦接至供电节点VDD;如此即形成为具有二个半电路的伪差动电路拓扑的一实施例,其中二端输入信号VI+、VI-为解耦的且个别处理,以利用二个半电路分别产生成二端输出信号VO+、VO-。在另一实施例(图式未示,但本领域熟习技术人员应能清楚明了)中,将二个半电路中之一移除;如此即形成为单端电路拓扑的一实施例。
参照图5,图5为根据本发明一实施例的等化方法的流程图500,其中等化方法包括:接收一输入信号(步骤510)、利用第一类型的第一MOS晶体管放大输入信号以产生一中间信号(步骤520)、利用第二类型的第一MOS晶体管提供中间信号的终端(步骤530)、利用第二类型的第二MOS晶体管放大中间信号以产生一输出信号(步骤540)、以及利用第一类型的第二MOS晶体管提供输出信号的终端(步骤550)。其中,第一类型的第一MOS晶体管设置在一共源极放大器拓扑中。第二类型的第一MOS晶体管设置在由一第一自偏压RC电路偏压的一自偏压拓扑中。第二类型的第二MOS晶体管设置在另一共源极放大器拓扑中。第一类型的第二MOS晶体管设置在由一第二自偏压RC电路偏压的另一自偏压拓扑中。
虽然本发明以前述的实施例揭露如上,然其并非用以限定本发明,任何熟习相像技术者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的专利保护范围须视本说明书所附的申请专利范围所界定者为准。
符号说明
100线性均衡器
110负载电路
111电阻
112电阻
120差动对
121NMOS(N型金属氧化物半导体)晶体管
122NMOS晶体管
130RC(电阻电容)退化电路
131电阻
132电容
140偏压电路
141电流源
142电流源
VI+、VI-二端输入信号
VO+、VO-二端输出信号
I1、I2偏压电流
VDD供电节点
VSS接地节点
200线性均衡器
210第一电流源
211电路节点
220差动对
221MOS(金属氧化物半导体)晶体管
222MOS晶体管
230自偏压RC电路
231电阻
232电容
240自偏压RC电路
241电阻
242电容
251MOS晶体管
252MOS晶体管
260伪差动对
261MOS晶体管
262MOS晶体管
271MOS晶体管
272MOS晶体管
273自偏压RC电路
274电阻
275电容
276自偏压RC电路
277电阻
278电容
290第二电流源
291电路节点
VDD供电节点
VSS接地节点
Ib1第一偏压电流
Ib2第二偏压电流
VI+、VI-二端输入信号
IX+、IX-二端中间信号
VX+、VX-二端中间信号
IO+、IO-二端输出信号
VO+、VO-二端输出信号
300小信号等效电路模型
Vgs栅源电压
gm转移电导
ro输出阻值
Cgs栅源电容值
Cgd栅漏电容值
R阻值
C电容值
Id总电流
Vd端电压’
400波德图
ω频率
ωz零点
ωp1第一极点
ωp2第二极点
Z阻抗
500流程图
510接收一输入信号
520利用第一类型的第一MOS晶体管放大输入信号以产生一中间信号,其中第一类型的第一MOS晶体管设置在一共源极放大器拓扑中
530利用第二类型的第一MOS晶体管提供中间信号的终端,其中第二类型的第一MOS晶体管设置在由第一自偏压RC电路偏压的一自偏压拓扑中
540利用第二类型的第二MOS晶体管放大中间信号以产生一输出信号,其中第二类型的第二MOS晶体管设置在另一共源极放大器拓扑中
550利用第一类型的第二MOS晶体管提供输出信号的终端,其中第一类型的第二MOS晶体管设置在由第二自偏压RC电路偏压的另一自偏压拓扑中

Claims (10)

1.一种线性均衡器,包括:
一第一类型的一第一金属氧化物半导体晶体管,设置在一共源极放大器电路中,以接收一输入信号并输出一中间信号;
一第二类型的一第一金属氧化物半导体晶体管,设置在由一第一自偏压电阻电容电路偏压的一自偏压拓扑中,以提供该中间信号的终端;
一第二类型的一第二金属氧化物半导体晶体管,设置在另一共源极放大器拓扑中,以放大该中间信号而产生一输出信号;以及
一第一类型的一第二金属氧化物半导体晶体管,设置在由一第二自偏压电阻电容电路偏压的另一自偏压拓扑中,以提供该输出信号的终端。
2.根据权利要求1所述的线性均衡器,其中该第一自偏压电阻电容电路包括:
一电阻,耦接在该第二类型的该第一金属氧化物半导体晶体管的漏极与栅极之间;以及
一电容,耦接在一供电节点与一接地节点中之一者与该第二类型的该第一金属氧化物半导体晶体管的该栅极之间。
3.根据权利要求1所述的线性均衡器,其中该第二自偏压电阻电容电路包括:
一电阻,耦接在该第一类型的该第二金属氧化物半导体晶体管的漏极与栅极之间;以及
一电容,耦接在一供电节点与一接地节点中之一者与该第一类型的该第二金属氧化物半导体晶体管的该栅极之间。
4.根据权利要求1所述的线性均衡器,其中该第一类型为P型,以及该第二类型为N型。
5.根据权利要求1所述的线性均衡器,其中该第一类型为N型,以及该第二类型为P型。
6.一种等化方法包括:
接收一输入信号;
利用一第一类型的一第一金属氧化物半导体晶体管放大该输入信号而产生一中间信号,其中该第一类型的该第一金属氧化物半导体晶体管设置在一共源极放大器拓扑中;
利用一第二类型的一第一金属氧化物半导体晶体管提供该中间信号的终端,其中该第二类型的该第一金属氧化物半导体晶体管设置在由一第一自偏压电阻电容电路偏压的一自偏压拓扑中;
利用一第二类型的一第二金属氧化物半导体晶体管放大该中间信号而产生一输出信号,其中该第二类型的该第二金属氧化物半导体晶体管设置在另一共源极放大器拓扑中;以及
利用一第一类型的一第二金属氧化物半导体晶体管提供该输出信号的终端,其中该第一类型的该第二金属氧化物半导体晶体管设置在由一第二自偏压电阻电容电路偏压的另一自偏压拓扑中。
7.根据权利要求6所述的等化方法,其中该第一自偏压电阻电容电路包括:耦接在该第二类型的该第一金属氧化物半导体晶体管的漏极与栅极之间的一电阻,以及耦接在一供电节点与一接地节点中之一者与该第二类型的该第一金属氧化物半导体晶体管的该栅极之间的一电容。
8.根据权利要求6所述的等化方法,其中该第二自偏压电阻电容电路包括:耦接在该第一类型的该第二金属氧化物半导体晶体管的漏极与栅极之间的一电阻,以及耦接在一供电节点与一接地节点中之一者与该第一类型的该第二金属氧化物半导体晶体管的该栅极之间的一电容。
9.根据权利要求6所述的等化方法,其中该第一类型为P型,以及该第二类型为N型。
10.根据权利要求6所述的等化方法,其中该第一类型为N型,以及该第二类型为P型。
CN201510212709.2A 2014-05-07 2015-04-29 线性均衡器及其方法 Active CN105099393B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/271,509 2014-05-07
US14/271,509 US9082631B1 (en) 2014-05-07 2014-05-07 Linear equalizer circuit and method thereof

Publications (2)

Publication Number Publication Date
CN105099393A true CN105099393A (zh) 2015-11-25
CN105099393B CN105099393B (zh) 2017-12-19

Family

ID=53506831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510212709.2A Active CN105099393B (zh) 2014-05-07 2015-04-29 线性均衡器及其方法

Country Status (3)

Country Link
US (1) US9082631B1 (zh)
CN (1) CN105099393B (zh)
TW (1) TWI547125B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656880A (zh) * 2016-09-23 2017-05-10 北京大学(天津滨海)新代信息技术研究院 一种可线性调整均衡强度的rc负反馈均衡器电路
CN113259279A (zh) * 2021-06-15 2021-08-13 山东高云半导体科技有限公司 一种均衡器

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10116470B2 (en) * 2015-10-28 2018-10-30 Futurewei Technologies, Inc. Combined low and high frequency continuous-time linear equalizers
TWI658701B (zh) * 2018-02-07 2019-05-01 National Taiwan University Of Science And Technology 動態電流關聯電路及其應用之比較器及類比數位轉換裝置
CN108833317B (zh) * 2018-06-26 2021-06-25 重庆湃芯入微科技有限公司 一种基于线性均衡器的可调电容装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489838B1 (en) * 1998-04-17 2002-12-03 Advanced Micro Devices, Inc. Apparatus and method for equalizing received network signals using a single zero high-pass filter having selectable impedance
US20080101450A1 (en) * 2006-10-26 2008-05-01 Zuoguo Wu Second order continuous time linear equalizer
CN101997535A (zh) * 2009-08-19 2011-03-30 联咏科技股份有限公司 双输入均衡器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6515547B2 (en) * 2001-06-26 2003-02-04 Koninklijke Philips Electronics N.V. Self-biased cascode RF power amplifier in sub-micron technical field
US8493092B2 (en) * 2011-04-18 2013-07-23 Rambus, Inc. Linear equalizer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6489838B1 (en) * 1998-04-17 2002-12-03 Advanced Micro Devices, Inc. Apparatus and method for equalizing received network signals using a single zero high-pass filter having selectable impedance
US20080101450A1 (en) * 2006-10-26 2008-05-01 Zuoguo Wu Second order continuous time linear equalizer
CN101997535A (zh) * 2009-08-19 2011-03-30 联咏科技股份有限公司 双输入均衡器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NELSON PASS 等: "Zen5-互补输出的Zen", 《电子制作》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106656880A (zh) * 2016-09-23 2017-05-10 北京大学(天津滨海)新代信息技术研究院 一种可线性调整均衡强度的rc负反馈均衡器电路
CN106656880B (zh) * 2016-09-23 2019-09-06 北京大学(天津滨海)新一代信息技术研究院 一种可线性调整均衡强度的rc负反馈均衡器电路
CN113259279A (zh) * 2021-06-15 2021-08-13 山东高云半导体科技有限公司 一种均衡器
CN113259279B (zh) * 2021-06-15 2022-05-13 山东高云半导体科技有限公司 一种均衡器

Also Published As

Publication number Publication date
TW201543851A (zh) 2015-11-16
TWI547125B (zh) 2016-08-21
CN105099393B (zh) 2017-12-19
US9082631B1 (en) 2015-07-14

Similar Documents

Publication Publication Date Title
CN105099393A (zh) 线性均衡器及其方法
TWI623194B (zh) 運算放大器及其差分放大電路
CN105227142B (zh) 一种低压折叠式共源共栅跨导放大器
EP2630728B1 (en) Switch used in programmable gain amplifilier and programmable gain amplifilier
CN105991099A (zh) 运算放大器及使用该运算放大器进行放大的方法
US8797098B2 (en) Variable gain amplifier
CN106774572A (zh) 米勒补偿电路及电子电路
CN106464211B (zh) 转换速率控制提升电路和方法
US6545502B1 (en) High frequency MOS fixed and variable gain amplifiers
CN207442795U (zh) 适用于低噪声、宽动态范围的高带宽跨阻放大器
Pathak et al. New multiplier/divider using a single CDBA
Ali et al. Analysis of Darlington pair in distributed amplifier circuit
CN105162423B (zh) 放大器及其放大方法
CN100466474C (zh) 电压至电流转换电路装置
CN107395146B (zh) 一种恒定跨导放大器电路
CN106921349B (zh) 基于反相器结构的放大器
Kumngern et al. Fully‐balanced four‐terminal floating nullor for ultra‐low voltage analogue filter design
DE102015106253B4 (de) Einrichtung und verfahren zum verstärkereingangsschutz
US10998864B1 (en) Non-linearity correction
Singh Design of low-voltage CMOS two-stage operational transconductance amplifier
Sawigun et al. A wide-input linear range sub-threshold transconductor for sub-Hz filtering
CN103036510A (zh) 放大器
TW201630334A (zh) 具消除可定雜訊功能之電路及放大器
CN106130491B (zh) 一种实现tia自动匹配输出阻抗的电路
Shukla et al. DC offset voltage reduction in cascaded instrumentation amplifier

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant