CN105097983B - 一种异质结近红外光敏传感器及其制备方法 - Google Patents

一种异质结近红外光敏传感器及其制备方法 Download PDF

Info

Publication number
CN105097983B
CN105097983B CN201510437074.6A CN201510437074A CN105097983B CN 105097983 B CN105097983 B CN 105097983B CN 201510437074 A CN201510437074 A CN 201510437074A CN 105097983 B CN105097983 B CN 105097983B
Authority
CN
China
Prior art keywords
substrate
evaporation source
preparation
hetero
tellurium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510437074.6A
Other languages
English (en)
Other versions
CN105097983A (zh
Inventor
方国家
宋增才
李博睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University WHU
Original Assignee
Wuhan University WHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University WHU filed Critical Wuhan University WHU
Priority to CN201510437074.6A priority Critical patent/CN105097983B/zh
Publication of CN105097983A publication Critical patent/CN105097983A/zh
Application granted granted Critical
Publication of CN105097983B publication Critical patent/CN105097983B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02966Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe including ternary compounds, e.g. HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • H01L31/1832Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe comprising ternary compounds, e.g. Hg Cd Te
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于光电子领域,涉及一种异质结近红外光敏传感器及其制备方法。是由热蒸发气相沉积法制备的碲锌氧复合物与p‑Si形成的异质结光敏传感器,包括p型硅衬底,碲锌氧复合物,顶电极和底电极。其关键在于碲锌氧复合物的制备。这种新型的传感器表现出了波段可调的稳定优良的光敏探测性能,可探测波长从紫外‑可见‑近红外波段调节至限定在1040nm的近红外波段。

Description

一种异质结近红外光敏传感器及其制备方法
技术领域
本发明属于纳米材料制备与应用领域,也属于光电子领域,涉及一种硅/碲锌氧复合物异质结近红外光敏传感器及其制备方法。
背景技术
硅材料是当代半导体产业的基石,在光敏探测领域有着极其重要的应用,传统的Si探测器的光谱响应范围一般是400-1100 nm。最近这些年来,Si 与其它一些半导体材料如石墨烯(Zhu M, Zhang L, Li X, He Y, Li X, Guo F, Zhang X, Wang K, Xie D, LiX, Wei B and Zhu H 2015 J. Mater. Chem. A 7 8133)、氧化锌(Tsai D H, Lin C A,Lien W C, Chang H C, Wang Y L and He J H 2011 ACS Nano 5 7748)、氧化铜(Hong Q,Cao Y, Xu J, Lu H, He J and Sun J L 2014 ACS Appl. Mater. Interfaces 620887)、PEDOT:PSS(Lin T, Liu X, Zhou B, Zhan Z, Cartwright A N and Swihart M T2014 Adv. Funct. Mater. 24 6016)、硫化镉(Manna S, Das S, Mondal S P, Singha Rand Ray S K 2012 J. Phys. Chem. C 116 7126)、锗量子点(Chien C Y, Lai W T,Chang Y J, Wang C C, Kuo M H and Li P W 2014 Nanoscale 6 5303)、ITO(Yun J H,Kim J and Park Y C 2014 J. Appl. Phys. 116 064904)形成的异质结光敏探测器器件得到了深入的研究。在这些半导体材料中,由于宽禁带半导体氧化锌在紫外光敏探测器方面具有很大的潜力,其与硅形成的异质结光敏探测器件深受研究人员的青睐。然而由于氧化锌对紫外光敏感、硅对可见-近红外光敏感,二者形成的异质结光敏探测器也都受限于此,并没有获得过比较纯净的只对近红外光敏感的探测器。
发明内容
本发明所要解决的技术问题是提供一种异质结近红外光敏传感器及其制备方法。
本发明为解决上述问题,提供一种碲锌氧新型复合物材料的制备方法,并制备了一种碲锌氧复合物/p-Si异质结光敏探测器。碲锌氧复合物具有良好的衬底附着力,随着复合物中各组分相对含量的变化,器件表现出了波段可调的稳定优良的光敏探测性能。
本发明的异质结近红外光敏传感器,是由热蒸发气相沉积法制备的碲锌氧复合物与p-Si形成的异质结光敏传感器,包括p型硅衬底,碲锌氧复合物,顶电极和底电极。
所述顶电极是半透明Au电极,底电极是铟镓电极。
所述P型硅衬底电阻率1-10Ω·cm。
上述近红外光敏传感器的制备方法,采用如下具体步骤:
首先在硅衬底上沉积一层对氧化锌具有亲和性的薄膜作为种子层,然后将衬底和蒸发源同时放入可控气氛管式炉,二者距离约7-16cm,控制反应温度为1000℃,升温速度10℃/min,保温10-30min,通入反应气体为Ar和O2,所述蒸发源是由摩尔比为1:1:(0.05-0.07)的ZnO粉末、碳粉、碲粉组成;
反应完成后利用金属掩模,继续用磁控溅射法镀一层半透明的Au顶电极。最后在衬底底部刮涂铟镓电极,完成对器件的封装。
所述种子层为金,其厚度为30-100nm。
反应气体为20 sccm 的Ar气和8 sccm 的O2
本发明利用气相法的生长机理,首次在蒸发源中加入碲粉末,实现了一种碲锌氧新型复合物的合成。并且制备出了p-Si/碲锌氧复合物异质结光敏探测器,随着复合物中各组分相对含量的变化,这种新型的传感器表现出了波段可调的稳定优良的光敏探测性能,可探测波长从紫外-可见-近红外波段调节至限定在1040nm的近红外波段,进而被调节至可见-近红外波段。获得了一种紫外-可见-近红外光敏探测器,探测波长为380-1050nm,对805nm单色光响应度为4.10 mA/W; 获得了一种近红外光敏探测器,探测波长被限定在1040nm附近,对1040 nm单色光响应度为24.61 mA/W; 获得了一种可见-近红外光敏探测器,探测波长为400-1100 nm,对855 nm单色光响应度为102.41 mA/W。
附图说明
图1是气相法制备TeZnO复合物的可控气氛管式炉的装置示意图,1为蒸发源的位置,2、3、4、5、6为衬底的位置,距离蒸发源以此为7、10、13、16、19cm,7为通入反应气体Ar和O2, 8为管式炉炉管。
图2是p-Si/TeZnO复合物异质结光敏探测器结构示意图;其中:1为p-Si衬底,2为TeZnO复合物,3为Au电极,4为InGa电极。
图3是用光敏测试系统测量实施例1所制备的光敏探测器在0伏偏压下的不同波长的光响应谱,其中,横坐标是波长,纵坐标是响应度。
图4是用光敏测试系统测量实施例2所制备的光敏探测器在0伏偏压下的不同波长的光响应谱,其中,横坐标是波长,纵坐标是响应度。
图5是用光敏测试系统测量实施例3所制备的光敏探测器在0伏偏压下的不同波长的光响应谱,其中,横坐标是波长,纵坐标是响应度。
图6是用光敏测试系统测量实施例4所制备的光敏探测器在0伏偏压下的不同波长的光响应谱,其中,横坐标是波长,纵坐标是响应度。
图7是用光敏测试系统测量实施例5所制备的光敏探测器在0伏偏压下的不同波长的光响应谱,其中,横坐标是波长,纵坐标是响应度。
具体实施方式
本发明的异质结近红外光敏传感器的制备和检测流程如下:
1.在干净的衬底上利用磁控溅射镀膜的方法沉积一层30-100nm厚的Au作为种子层。
2.将蒸发源和衬底同时放入可控气氛管式炉中,蒸发源所处的温度设为1000oC,衬底以此放置在距离蒸发源7、10、13、16或19cm的位置,升温速度10℃/min,保温10-30min,反应气氛为Ar气20 sccm和O2 8 sccm。蒸发源是0.255-0.265g ZnO粉末、0.040-0.060g碳粉、0.020-0.030g碲粉。
3.反应完成后将衬底取出,旋涂聚甲基丙烯酸甲酯(PMMA)溶液填充复合物表面的孔隙。
4.利用金属掩模的方法继续沉积半透明的金属Au顶电极。
5.然后在衬底底部刮涂InGa电极。
6.利用银浆和铜导线将顶电极和底电极引出,并在100℃下烘干。
7.利用光敏测试系统测试器件的光敏特性。
下面结合附图和实施例对本发明进一步阐述,但并不因此将本发明限制在所述的实施例范围之内。
实施例1:
本例中,衬底放于图1中2的位置。具体步骤如下:
1.采用传统的半导体工艺清洗p-Si衬底。
2.在衬底上沉积一层30nm的Au薄膜作为种子层。
3.将衬底和蒸发源放入可控气氛管式炉,衬底距离蒸发源7 cm,蒸发源所处的温度设为1000oC,升温速度10℃/min,保温10min,反应气氛为Ar气20 sccm和O2 8 sccm。蒸发源是0.261g ZnO粉末、0.043g碳粉、0.020g碲粉。
4.反应完成后将衬底取出,旋涂PMMA溶液填充复合物表面的孔隙。
5.利用金属掩模的方法继续沉积半透明的金属Au顶电极。
6.然后在衬底底部刮涂InGa电极。
7.利用银浆和铜导线将顶电极和底电极引出,并在100℃下烘干。
8.利用光敏测试系统测试器件的光敏特性,即可得到器件对光的响应谱结果,参见附图3。
9.由响应谱看出,该传感器的敏感波长范围比较宽,从380nm到接近1000nm,响应度最高点位于665nm附近,最高响应度为0.92mA/W.
实施例2:
在本例中,衬底放于图1中3的位置。具体步骤如下:
1.采用传统的半导体工艺清洗p-Si衬底。
2.在衬底上沉积一层30 nm的Au薄膜作为种子层。
3.将衬底和蒸发源放入可控气氛管式炉,衬底距离蒸发源10 cm,蒸发源所处的温度设为1000oC,升温速度10℃/min,保温30 min,反应气氛为Ar气20 sccm和O2 8 sccm。蒸发源是0.264g ZnO粉末、0.053g碳粉、0.024g碲粉。
4.反应完成后将衬底取出,旋涂PMMA溶液填充复合物表面的孔隙。
5.利用金属掩模的方法继续沉积半透明的金属Au顶电极。
6.然后在衬底底部刮涂InGa电极。
7.利用银浆和铜导线将顶电极和底电极引出,并在100oC下烘干。
8.利用光敏测试系统测试器件的光敏特性,即可得到器件对光的响应谱结果,参见附图4。
9.由响应谱看出,该传感器的敏感波长范围比较宽,从380nm到接近1050nm,响应度最高点位于805nm附近,最高响应度为4.10 mA/W.
实施例3:
在本例中,衬底放于图1中4的位置。具体步骤如下:
1.采用传统的半导体工艺清洗p-Si衬底。
2.在衬底上沉积一层100 nm的Au薄膜作为种子层。
3.将衬底和蒸发源放入可控气氛管式炉,衬底距离蒸发源13 cm,蒸发源所处的温度设为1000oC,升温速度10℃/min,保温10min,反应气氛为Ar气20 sccm和O2 8 sccm。蒸发源是0.255g ZnO粉末、0.044g碳粉、0.020g碲粉。
4.反应完成后将衬底取出,旋涂PMMA溶液填充复合物表面的孔隙。
5.利用金属掩模的方法继续沉积半透明的金属Au顶电极。
6.然后在衬底底部刮涂InGa电极。
7.利用银浆和铜导线将顶电极和底电极引出,并在100℃下烘干。
8.利用光敏测试系统测试器件的光敏特性,即可得到器件对光的响应谱结果,参见附图5。
9.由响应谱看出,该传感器的敏感波长范围比较窄,只对1000nm到1100 nm范围的光比较敏感,响应度最高点位于1040 nm附近,最高响应度为1.27 mA/W.
实施例4:
在本例中,衬底放于图1中5的位置。具体步骤如下:
1.采用传统的半导体工艺清洗p-Si衬底。
2.在衬底上沉积一层100 nm的Au薄膜作为种子层。
3.将衬底和蒸发源放入可控气氛管式炉,衬底距离蒸发源16 cm,蒸发源所处的温度设为1000oC,升温速度10℃/min,保温30min,反应气氛为Ar气20 sccm和O2 8 sccm。蒸发源是0.263g ZnO粉末、0.047g碳粉、0.030g碲粉。
4.反应完成后将衬底取出,旋涂PMMA溶液填充复合物表面的孔隙。
5.利用金属掩模的方法继续沉积半透明的金属Au顶电极。
6.然后在衬底底部刮涂InGa电极。
7.利用银浆和铜导线将顶电极和底电极引出,并在100℃下烘干。
8.利用光敏测试系统测试器件的光敏特性,即可得到器件对光的响应谱结果,参见附图6。
9.由响应谱看出,该传感器的敏感波长范围比较窄,只对1000nm到1100 nm范围的光比较敏感,响应度最高点位于1040nm附近,最高响应度为24.61 mA/W.
实施例5:
在本例中,衬底放于图1中6的位置。具体步骤如下:
1.采用传统的半导体工艺清洗p-Si衬底。
2.在衬底上沉积一层100 nm的Au薄膜作为种子层。
3.将衬底和蒸发源放入可控气氛管式炉,衬底距离蒸发源19 cm,蒸发源所处的温度设为1000oC,升温速度10℃/min,保温30min,反应气氛为Ar气20 sccm和O2 8 sccm。蒸发源是0.265g ZnO粉末、0.048g碳粉、0.026g碲粉。
4.反应完成后将衬底取出,旋涂PMMA溶液填充复合物表面的孔隙。
5.利用金属掩模的方法继续沉积半透明的金属Au顶电极。
6.然后在衬底底部刮涂InGa电极。
7.利用银浆和铜导线将顶电极和底电极引出,并在100℃下烘干。
8.利用光敏测试系统测试器件的光敏特性,即可得到器件对光的响应谱结果,参见附图7。
9.由响应谱看出,该传感器的敏感波长范围比较宽,从400nm到接近1100nm,响应度最高点位于855nm附近,最高响应度为102.41 mA/W。

Claims (6)

1.一种异质结近红外光敏传感器,其特征在于,是由热蒸发气相沉积法制备的碲锌氧复合物与p-Si形成的异质结光敏传感器,包括p型硅衬底,碲锌氧复合物,顶电极和底电极,所述碲锌氧复合物的蒸发源是由摩尔比为1:1:(0.05-0.07)的ZnO粉末、碳粉、碲粉组成。
2.根据权利要求1所述的异质结近红外光敏传感器,其特征在于,所述顶电极是半透明Au电极,底电极是铟镓电极。
3.根据权利要求1所述的异质结近红外光敏传感器,其特征在于,所述p型硅衬底电阻率为1-10Ω·cm。
4.权利要求1所述的近红外光敏传感器的制备方法,其特征在于采用如下步骤:
首先在硅衬底上沉积一层对氧化锌具有亲和性的薄膜作为种子层,然后将衬底和蒸发源同时放入可控气氛管式炉,二者距离7-16cm,控制反应温度为1000℃,升温速度10℃/min,保温10-30min,通入反应气体为Ar和O2,所述蒸发源是由摩尔比为1:1:(0.05-0.07)的ZnO粉末、碳粉、碲粉组成;
反应完成后利用金属掩模,继续用磁控溅射法镀一层半透明的Au顶电极;
最后在衬底底部刮涂铟镓电极,完成对器件的封装。
5.根据权利要求4所述的制备方法,其特征在于,所述种子层为金,其厚度为30-100nm。
6.根据权利要求4或5所述的制备方法,其特征在于,反应气体为20 sccm 的Ar气和8sccm 的O2
CN201510437074.6A 2015-07-23 2015-07-23 一种异质结近红外光敏传感器及其制备方法 Active CN105097983B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510437074.6A CN105097983B (zh) 2015-07-23 2015-07-23 一种异质结近红外光敏传感器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510437074.6A CN105097983B (zh) 2015-07-23 2015-07-23 一种异质结近红外光敏传感器及其制备方法

Publications (2)

Publication Number Publication Date
CN105097983A CN105097983A (zh) 2015-11-25
CN105097983B true CN105097983B (zh) 2017-04-12

Family

ID=54578003

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510437074.6A Active CN105097983B (zh) 2015-07-23 2015-07-23 一种异质结近红外光敏传感器及其制备方法

Country Status (1)

Country Link
CN (1) CN105097983B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105932091B (zh) * 2016-07-13 2017-05-17 合肥工业大学 一种自驱动二维碲化钼同型异质结近红外光电探测器及其制备方法
CN109004057B (zh) * 2018-08-01 2019-11-12 广州大学 基于非晶氮化物薄膜的宽谱光电探测器件及其制备方法
CN113871508A (zh) * 2021-08-19 2021-12-31 华中科技大学 一种碲半导体薄膜红外探测器件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59203708A (ja) * 1983-05-02 1984-11-17 Res Dev Corp Of Japan テルル−亜鉛系非晶質化合物材料及びその製造法
WO2006080099A1 (ja) * 2005-01-25 2006-08-03 Kodenshi Corporation 半絶縁性酸化亜鉛半導体薄膜とシリコンとのヘテロ接合を有する光ダイオード
CN100459179C (zh) * 2005-09-30 2009-02-04 中国科学院物理研究所 一种ZnO/MgB2异质结材料及制备方法

Also Published As

Publication number Publication date
CN105097983A (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
Ke et al. Low temperature annealed ZnO film UV photodetector with fast photoresponse
CN105097983B (zh) 一种异质结近红外光敏传感器及其制备方法
Liao et al. Thermally stable visible-blind diamond photodiode using tungsten carbide Schottky contact
Aksoy et al. Effect of ambient temperature on electrical properties of nanostructure n-ZnO/p-Si heterojunction diode
Wang et al. Solution-assembled nanowires for high performance flexible and transparent solar-blind photodetectors
Kumar et al. Origin of enhanced carrier mobility and electrical conductivity in seed-layer assisted sputtered grown Al doped ZnO thin films
CN104752546B (zh) 一种金属氧化物紫外探测器
Choi et al. Control of crystallinity in PbPc: C60 blend film and application for inverted near-infrared organic photodetector
Chu et al. AZO/Au/AZO tri-layer thin films for the very low resistivity transparent electrode applications
CN106129257A (zh) 一种钙钛矿薄膜光电晶体管及其制备方法
Arora et al. Amorphous indium-gallium-zinc-oxide as electron transport layer in organic photodetectors
CN109979675A (zh) 一种高透过率p型碘化铜透明导电薄膜的制备方法
CN111463295A (zh) 氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法
Song et al. High-work-function transparent conductive oxides with multilayer films
CN109461820A (zh) 二维无铅有机-无机杂化钙钛矿二极管光探测器及其制备方法
CN106876515A (zh) 薄膜晶体管结构可见盲光电探测器及其制备方法
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
Lee et al. Effects of annealing and plasma treatment on the electrical and optical properties of spin-coated ITZO films
Mundle et al. Electrical conductivity and photoresistance of atomic layer deposited Al-doped ZnO films
CN108365099A (zh) 一种高性能钙钛矿/有机半导体异质结型光电探测器
Khan et al. Improved optoelectronic performance of sol–gel derived ZnO nanostructured thin films
Qasuria et al. Stable perovskite based photodetector in impedance and capacitance mode
Yin et al. Influences of defects evolvement on the properties of sputtering deposited ZnO: Al films upon hydrogen annealing
Matthews et al. Organofunctional silane modification of aluminum-doped zinc oxide surfaces as a route to stabilization
CN102134699A (zh) 一种多层透明导电薄膜的制备方法及其制备的薄膜和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant