CN105088119B - 由γ’强化超合金制成的增材制造组件的构建后热处理方法 - Google Patents

由γ’强化超合金制成的增材制造组件的构建后热处理方法 Download PDF

Info

Publication number
CN105088119B
CN105088119B CN201510239365.4A CN201510239365A CN105088119B CN 105088119 B CN105088119 B CN 105088119B CN 201510239365 A CN201510239365 A CN 201510239365A CN 105088119 B CN105088119 B CN 105088119B
Authority
CN
China
Prior art keywords
component
heat treatment
temperature
material manufacturing
building
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510239365.4A
Other languages
English (en)
Other versions
CN105088119A (zh
Inventor
T.埃特
R.恩格里
A.库恩兹勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia IP UK Ltd
Original Assignee
Ansaldo Energia IP UK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=50693512&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN105088119(B) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ansaldo Energia IP UK Ltd filed Critical Ansaldo Energia IP UK Ltd
Publication of CN105088119A publication Critical patent/CN105088119A/zh
Application granted granted Critical
Publication of CN105088119B publication Critical patent/CN105088119B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/64Treatment of workpieces or articles after build-up by thermal means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/009Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of turbine components other than turbine blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Powder Metallurgy (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Health & Medical Sciences (AREA)
  • Child & Adolescent Psychology (AREA)
  • Forging (AREA)
  • Heat Treatment Of Articles (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明涉及增材制造的高强度组件的构建后热处理方法,所述高强度组件由基于Ni或Co或Fe或它们的组合的γ'强化超合金制成。在增材制造后的第一构建后热处理期间在特定温度范围内施加20‑60℃/min的快速加热速率避免或至少最小化在加热期间组件中的γ'沉淀。相较于常规热处理组件中出现的显著裂纹,这产生无裂纹组件/制品。

Description

由γ’强化超合金制成的增材制造组件的构建后热处理方法
技术领域
本发明涉及超合金技术。它涉及组件的构建后(post-built)热处理方法,所述组件由γ'强化超合金制成并通过增材制造(additive manufacturing)技术(例如通过选择性激光熔融(SLM))构建。使用本公开内容的方法可避免组件中(例如涡轮部件中)显著的裂纹例如应变老化裂化。
背景技术
已知高强度镍、钴或铁基超合金(例如具有另外元素如铝和钛的镍基超合金)因为材料中高度的γ'相的沉淀硬化效应而具有其高强度特征。还已知这些超合金很难成功焊接。
SLM-产生的制品相较于相同合金的常规浇铸材料具有不同的微结构。这些过程中的高能束材料相互作用导致在SLM期间的高冷却速率和很快固化。
作为结果,合金元素的分离与沉淀的形成降低。因此,由于增材制造过程固有的快速冷却,很少至没有γ'沉淀存在于构建后的组件(由含有γ'的合金制成)中。
需要构建后热处理以调整部件的微结构和减少/消除剩余应力。在这些构建后热处理期间,γ'相在第一加热期间沉淀。但与该沉淀相关联的体积改变可导致部件中显著的裂纹(例如应变老化裂化)。当前施加的应用于SLM-加工的γ'强化超合金的热处理顺序导致显著的裂化和因此导致部件报废(rejection)。
已知使用不同的焊接前和焊接后热处理用于通过焊接连接由γ'强化超合金制成的浇铸组件或组件的部件。
US7854064 B2公开了修复涡轮部件的方法,该方法包括使用加热速率介于16-23℃/min,温度范围介于593-871℃的焊接前固溶(solutioning)热处理。在一个实施方案中提及从固溶温度到低于677℃的0.2-5℃/min的缓慢冷却速率。此外,除上述焊接前热处理之外,还描述了使用与焊接前热处理相同的加热速率的焊接后热处理。根据该文献的方法可应用于多种浇铸和锻造镍基合金,例如Waspaloy、IN738、IN792或IN939。提及电子束和钨电弧焊接作为实例方法。
虽然公开于US7854064 B2的方法具有可修复(例如实质上不存在微裂纹地焊接)由镍基超合金制成的涡轮组件的优点,但它就所述焊接前与焊接后热处理的多个步骤而言具有耗费时间和成本的缺点。
最近,申请人提交了有关不带焊接填充物的γ'强化超合金(例如IN738LC、MarM247、CM247LC、CMSX-4、MK4HC、MD2)的电子束焊接的新的专利申请(未公布)。对比US7854064,该方法不取决于特定的焊接前热处理并因此可用于修复以及用于连接新部件。为了使该方法更有效,在接近于γ'可沉淀的最终保持温度的整个温度范围内(1100℃,而非871℃)使用快速加热速率。仅在不存在其它避免裂纹的方式时,即不带焊接填装物的焊接过程,时结合使用该方法。使用可延展的焊接填充物也可有助于避免裂纹形成,但是,使用这些焊接填装物削弱了焊缝。
然而,上述文献仅涵盖连接方法(例如焊接),因此并没有涵盖整个通过增材制造(例如通过选择性激光熔融(SLM))制成的组件。
发明内容
本发明的目的为提供用于热处理组件的有效方法,所述组件由含有γ'的超合金制成并通过增材制造技术(优选SLM)构建。相比存在于常规热处理的增材制造组件中显著的裂纹,本方法将保证可生产无裂缝的组件/制品。
附图说明
增材制造组件(由基于Ni或Co或Fe或其组合的γ'强化超合金制成)的构建后热处理方法包括以下步骤:
a)提供刚构建状态下的增材制造组件,随后
b)将所述组件从室温(RT)加热至温度T1,其中T1比热膨胀系数开始下降的温度Ts低50-100℃,随后
c)保持所述组件在T1下经时间t1以实现均匀的组件温度,随后
d)通过施加加热速率v2为至少25℃/min的快速加热将所述组件从T1加热至T2≥850℃以避免或至少降低γ'相的沉淀,随后
e)根据热处理的目的向所述组件施加进一步的时间/温度步骤。
本发明的核心是在增材制造之后的第一构建后热处理期间在特定温度范围内施加快速加热速率以最小化/避免在加热期间组件中的γ'沉淀。本方法相较于呈现显著裂纹的常规热处理的组件,有利地产生无裂纹的组件/制品。
在一个实施方案中,在步骤e)中,实施两小时的等温停留时间t2以减少剩余应力。
优选地,加热速率v2为25-60℃/min。该范围内更高的速率可通过诱导加热实现。加热速率v1(步骤b中)可优选为1-10℃/min。
在本发明的另一实施方案中,在步骤e)中,在温度T3>T2下施加不同或另外的保持时间以进一步减少剩余应力和/或使微结构再结晶。
在压力下(例如在高温等静压(HIP)期间)实施热处理是有利的。
在一个实施方案中,将以下构建后热处理参数应用于增材制造且由IN738LC制成的组件(例如定子热屏蔽):
T1 = 400℃
v1 = 5℃/min
t1 = 60 min
v2 = 35℃/min
T2 = 1050℃
t2 = 2h
T3 = 1200℃
t3 = 4h。
以下描述另外的实施方案。
现在使用不同的实施方案并参照附图更紧密地阐明本发明。
图1显示SLM加工的IN738LC的热膨胀系数,其取决于温度、构建方向和第一或第二加热;
图2显示SLM加工的IN738LC的热容量,其取决于温度、构建方向和第一或第二加热;
图3显示(除图1与图2之外)SLM加工的IN738LC在刚构建状态下的拉伸机械结果;
图4显示用于SLM加工的IN738LC的根据现有技术的标准热处理程序的时间-温度-图表;
图5显示用于SLM加工的IN738LC的根据本发明实施方案的时间-温度-图表。
具体实施方式
图1显示SLM加工的IN738LC的热膨胀系数,其取决于温度、构建方向和第一或第二加热。可以看到,在第一加热期间,曲线中出现了异常(起始于超过400℃),其特征在于热膨胀系数的下降。该异常在第二加热期间不再出现并可归因于第一加热期间的γ'沉淀。热膨胀系数的异常指征了由于γ'沉淀所导致的体积收缩。
同样可见于图2,图2显示SLM加工的IN738LC的热容量,其取决于温度、构建方向和第一或第二加热。
除热-物理性质外还列出了刚构建状态下(例如没有任何热处理)的拉伸机械结果(见于图3)。
可以看到,在室温下,在刚构建状态下,IN738LC的延性相当高(~20-24%)。然而,通过在2h内将试样加热(加热速率为~7℃/min)至850℃并在15min保持时间后对其进行测试,观察到延性显著降低(从~20%到~0.2%!)。
在第一加热期间在升高的温度下固有的低延性和由于SLM加工而存在的显著量的剩余应力是显著裂化的原因。
值得一提的是,对于另一个γ'强化超合金CM247LC(于850℃在刚构建状态下测试)观察到可比的低延性。
图4显示现有技术已知的用于组件(由浇铸或锻造的IN738LC制成)的标准热处理程序(例如应力解除热处理)。将这一标准热处理施加在SLM-制造的IN738LC组件。遗憾的是,在这一热处理之后,该组件具有显著的裂纹,因此为缺陷产品。
对于通常施加在γ'强化超合金上的其它标准热处理程序获得了类似的结果。
相比之下,施加根据本发明的热处理分别导致相应的无裂纹组件。
图5显示IN738LC的根据本发明实施方案的时间-温度-图表。以相当低的加热速率v1=5℃/min和足够长以保证均匀的组件/部件温度的保持时间t1=60min将组件加热至~400℃(=T1)。随后,关键点是此时快速加热(以v2=35℃/min从400到~1050℃)穿过临界温度区域以避免/降低γ'的沉淀。
一旦超过了临界温度区域,可取决于热处理目的附加另外不同的时间/温度步骤。在根据图5的实例中,在T3=1050℃实施2小时(t3)的等温停留以减少剩余应力。可于更高的温度下增加不同或另外的保持时间以例如进一步减少剩余应力和/或使微结构再结晶。例如,以1250℃/3h或1200℃/4h处理导致再结晶。
甚至更高的加热速率可有利于比IN738LC含更高量γ'的合金(例如CM247LC和CMSX-4)。此外,也可取决于对应合金的固溶温度提高等温停留温度。
所述根据本发明的热处理必须为SLM构建之后施加的第一热处理。可将其施加在已从基盘移除的SLM组件(其构建于已有的部件上(混合构建))或仍在基盘上的SLM组件上。在后两种情况中,热处理另外通过避免由γ'的沉淀导致的延性降低而有助于避免由不同的热膨胀系数所导致的裂纹(其可在热处理期间产生另外的应力)。
此外,值得一提的是也可在压力下(例如在具有另外益处的高温等静压(HIP)期间)实施上述热处理。
加热速率v2优选为25-60℃/min。更高的速率可通过诱导加热实现。
一旦根据本发明实施了第一热处理,可施加其它标准热处理。
当然,本发明不受限于所述实施方案。它可用于所有通过SLM加工γ'超合金的组件,例如用于服务的燃气涡轮/模块化部件中的混合部件。

Claims (6)

1.增材制造组件的构建后热处理方法,所述增材制造组件由基于Ni或Co或Fe或它们的组合的γ'强化超合金制成,所述方法包括以下步骤:
a)提供刚构建状态下的增材制造组件,随后
b)将所述组件以加热速率v1从室温(RT)加热至温度T1,其中T1比热膨胀系数开始下降的温度Ts低50-100℃,随后
c)保持所述组件在T1下经时间t1以实现均匀的组件温度,随后
d)通过施加加热速率v2为至少25℃/min的快速加热将所述组件从T1加热至T2≥850℃以避免或至少降低γ'相的沉淀,随后
e)根据热处理的目的向所述组件施加进一步的时间t2/温度T3步骤。
2.根据权利要求1所述的方法,其特征在于在步骤d)中,所述加热速率为v2=25-60℃/min。
3.根据权利要求1所述的方法,其特征在于在步骤e)中,实施2小时的等温停留时间t2以减少剩余应力。
4.根据权利要求3所述的方法,其特征在于在步骤e)中,在温度T3>T2下施加不同或另外的保持时间以进一步减少剩余应力和/或使微结构再结晶。
5.根据权利要求1所述的方法,其特征在于在高温等静压条件下在压力下实施步骤b)-e)中的热处理。
6.根据权利要求1-2或5中任一项所述的方法,其特征在于用于增材制造且由IN738LC制成的组件的以下构建后热处理参数:
T1 = 400℃
v1 = 5℃/min
v2 = 35℃/min
T2 = 1050℃
T3 = 1120℃且t2 =2h,或T3 = 1200℃且t2 =4h,或T3 = 1250℃且t2 =3h。
CN201510239365.4A 2014-05-12 2015-05-12 由γ’强化超合金制成的增材制造组件的构建后热处理方法 Active CN105088119B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP14167904.3 2014-05-12
EP14167904.3A EP2944402B1 (en) 2014-05-12 2014-05-12 Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys

Publications (2)

Publication Number Publication Date
CN105088119A CN105088119A (zh) 2015-11-25
CN105088119B true CN105088119B (zh) 2019-05-10

Family

ID=50693512

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510239365.4A Active CN105088119B (zh) 2014-05-12 2015-05-12 由γ’强化超合金制成的增材制造组件的构建后热处理方法

Country Status (7)

Country Link
US (1) US9670572B2 (zh)
EP (1) EP2944402B1 (zh)
JP (1) JP2015227505A (zh)
KR (1) KR20150129616A (zh)
CN (1) CN105088119B (zh)
CA (1) CA2890977A1 (zh)
RU (1) RU2684989C2 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2944402B1 (en) 2014-05-12 2019-04-03 Ansaldo Energia IP UK Limited Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys
US10378087B2 (en) 2015-12-09 2019-08-13 General Electric Company Nickel base super alloys and methods of making the same
DE102016203901A1 (de) 2016-03-10 2017-09-14 MTU Aero Engines AG Verfahren und Vorrichtung zum Herstellen zumindest eines Bauteilbereichs eines Bauteils
JP6826821B2 (ja) * 2016-05-12 2021-02-10 三菱重工業株式会社 金属部材の製造方法
JP2020506090A (ja) * 2017-02-02 2020-02-27 アイメリーズ タルク アメリカ,インコーポレーテッド 3dプリンティングで造形されたプラスチック部品におけるロード間の接着及び合体の改善
WO2018216067A1 (ja) 2017-05-22 2018-11-29 川崎重工業株式会社 高温部品及びその製造方法
EP3406371A1 (en) * 2017-05-22 2018-11-28 Siemens Aktiengesellschaft Method of relieving mechanical stress in additive manufacturing
CN108914029A (zh) * 2017-06-13 2018-11-30 刘红宾 一种防止异种金属材料锯齿状界面开裂的方法
GB201709540D0 (en) * 2017-06-15 2017-08-02 Rolls Royce Plc Processing method
GB2565063B (en) 2017-07-28 2020-05-27 Oxmet Tech Limited A nickel-based alloy
US10889872B2 (en) 2017-08-02 2021-01-12 Kennametal Inc. Tool steel articles from additive manufacturing
WO2019099000A1 (en) * 2017-11-15 2019-05-23 Siemens Energy, Inc. Method of repairing gamma prime strengthened superalloys
US11097348B2 (en) 2017-12-08 2021-08-24 General Electric Company Structures and components having composite unit cell matrix construction
EP3521804A1 (en) * 2018-02-02 2019-08-07 CL Schutzrechtsverwaltungs GmbH Device for determining at least one component parameter of a plurality of, particularly additively manufactured, components
GB201808824D0 (en) * 2018-05-30 2018-07-11 Rolls Royce Plc Crack reduction for additive layer manufacturing
DE102018210397A1 (de) * 2018-06-26 2020-01-02 Siemens Aktiengesellschaft Verfahren zur additiven Herstellung einer Struktur mit Kühlmittelführung, Bauteil und Vorrichtung
CN108994304B (zh) * 2018-07-27 2019-07-26 中南大学 一种消除金属材料增材制造裂纹提高力学性能的方法
US10577679B1 (en) 2018-12-04 2020-03-03 General Electric Company Gamma prime strengthened nickel superalloy for additive manufacturing
US11077512B2 (en) * 2019-02-07 2021-08-03 General Electric Company Manufactured article and method
US11807929B2 (en) 2019-03-14 2023-11-07 Unison Industries, Llc Thermally stabilized nickel-cobalt materials and methods of thermally stabilizing the same
US11235405B2 (en) * 2019-05-02 2022-02-01 General Electric Company Method of repairing superalloy components using phase agglomeration
GB2584654B (en) 2019-06-07 2022-10-12 Alloyed Ltd A nickel-based alloy
GB2587635B (en) * 2019-10-02 2022-11-02 Alloyed Ltd A Nickel-based alloy
CN110964992B (zh) * 2019-11-28 2021-06-01 西安航天发动机有限公司 一种低温环境工作的增材制造高温合金的热处理方法
CN111390180A (zh) * 2020-04-27 2020-07-10 南京国重新金属材料研究院有限公司 一种提高由激光选区熔化技术制造的gh3536合金的持久性能的方法
CN112828310B (zh) * 2020-12-31 2023-01-24 湖北三江航天红阳机电有限公司 一种提高3d打印镍基高温合金件韧性的方法
CN113584294B (zh) * 2021-06-25 2023-03-14 西安热工研究院有限公司 一种沉淀强化高温合金焊后去应力处理方法
CN114109044B (zh) * 2021-11-25 2022-08-23 浙江大学 一种3d编织打印一体化结构建造设备

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2586887A1 (en) * 2011-10-31 2013-05-01 Alstom Technology Ltd Method for manufacturing components or coupons made of a high temperature superalloy

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2496810C (en) * 2002-08-28 2011-07-26 The P.O.M. Group Part-geometry independent real time closed loop weld pool temperature control system for multi-layer dmd process
US7854064B2 (en) 2006-06-05 2010-12-21 United Technologies Corporation Enhanced weldability for high strength cast and wrought nickel superalloys
US8313593B2 (en) * 2009-09-15 2012-11-20 General Electric Company Method of heat treating a Ni-based superalloy article and article made thereby
US9175373B2 (en) * 2011-02-15 2015-11-03 Siemens Energy, Inc. Inertia friction weld of superalloy with enhanced post weld heat treatment
CH705662A1 (de) * 2011-11-04 2013-05-15 Alstom Technology Ltd Prozess zur Herstellung von Gegenständen aus einer durch Gamma-Prime-Ausscheidung verfestigten Superlegierung auf Nickelbasis durch selektives Laserschmelzen (SLM).
EP2944402B1 (en) 2014-05-12 2019-04-03 Ansaldo Energia IP UK Limited Method for post-built heat treatment of additively manufactured components made of gamma-prime strengthened superalloys

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2586887A1 (en) * 2011-10-31 2013-05-01 Alstom Technology Ltd Method for manufacturing components or coupons made of a high temperature superalloy

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
High temperature material properties of IN738LC processed by selective laser melting(SLM) technology;L.Rickenbacher et al;《Rapid Prototyping Journal》;20131231;第19卷(第4期);第282-290页

Also Published As

Publication number Publication date
EP2944402A1 (en) 2015-11-18
EP2944402B1 (en) 2019-04-03
KR20150129616A (ko) 2015-11-20
RU2015116523A (ru) 2016-11-20
US20150322557A1 (en) 2015-11-12
RU2684989C2 (ru) 2019-04-16
JP2015227505A (ja) 2015-12-17
CN105088119A (zh) 2015-11-25
US9670572B2 (en) 2017-06-06
CA2890977A1 (en) 2015-11-12
RU2015116523A3 (zh) 2018-11-12

Similar Documents

Publication Publication Date Title
CN105088119B (zh) 由γ’强化超合金制成的增材制造组件的构建后热处理方法
US9677149B2 (en) Method for post-weld heat treatment of welded components made of gamma prime strengthened superalloys
JP6034041B2 (ja) 高温配管物およびその製造方法
US11072044B2 (en) Superalloy component braze repair with isostatic solution treatment
JPWO2016158705A1 (ja) Ni基超耐熱合金の製造方法
US11826849B2 (en) Heat treatment and stress relief for solid-state welded nickel alloys
WO2016052423A1 (ja) Ni基超耐熱合金
JP2012250286A (ja) 異なる粒状構造の領域を有する構成部品及びその製造方法
KR102049329B1 (ko) 초합금 접합을 위한 유지 및 냉각 공정
JP2024001311A (ja) Ni-Cr-Co-Mo-Ti-Al合金の延性を向上させるための熱処理
SIHOTANG et al. Fatigue life of the repair TIG Welded Hastelloy X superalloy
JP6238276B2 (ja) 蒸気タービン用部材の製造方法
US20220134472A1 (en) Precipitation-strengthened cast product welding repair method
CN113584294A (zh) 一种沉淀强化高温合金焊后去应力处理方法
Hreben et al. Similar and Dissimilar Welding of Nickel-Based Superalloys for A-USC Steam Turbine Rotors in NextGenPower Project
JP6025216B2 (ja) Fe−Ni基合金およびFe−Ni基合金の製造法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
CB02 Change of applicant information

Address after: Baden, Switzerland

Applicant after: ALSTOM TECHNOLOGY LTD

Address before: Baden, Switzerland

Applicant before: Alstom Technology Ltd.

COR Change of bibliographic data
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20171123

Address after: London, England

Applicant after: Security energy UK Intellectual Property Ltd

Address before: Baden, Switzerland

Applicant before: ALSTOM TECHNOLOGY LTD

GR01 Patent grant
GR01 Patent grant