CN105070789B - 一种晶体硅太阳能电池发射极的制备方法 - Google Patents

一种晶体硅太阳能电池发射极的制备方法 Download PDF

Info

Publication number
CN105070789B
CN105070789B CN201510514386.2A CN201510514386A CN105070789B CN 105070789 B CN105070789 B CN 105070789B CN 201510514386 A CN201510514386 A CN 201510514386A CN 105070789 B CN105070789 B CN 105070789B
Authority
CN
China
Prior art keywords
ion implanting
emitter stage
thermal annealing
solar energy
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510514386.2A
Other languages
English (en)
Other versions
CN105070789A (zh
Inventor
刘运宇
王栩生
邢国强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Funing atlas sunshine Power Technology Co., Ltd
CSI Cells Co Ltd
Original Assignee
CSI Solar Technologies Inc
CSI GCL Solar Manufacturing Yancheng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSI Solar Technologies Inc, CSI GCL Solar Manufacturing Yancheng Co Ltd filed Critical CSI Solar Technologies Inc
Priority to CN201510514386.2A priority Critical patent/CN105070789B/zh
Publication of CN105070789A publication Critical patent/CN105070789A/zh
Application granted granted Critical
Publication of CN105070789B publication Critical patent/CN105070789B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种晶体硅太阳能电池发射极的制备方法,包括如下步骤:(1) 在晶体硅表面进行第一次整面离子注入;(2) 热退火,形成PN结;(3) 在上述晶体硅表面进行第二次整面离子注入;(4) 快速热退火,形成表面的高浓度掺杂;所述快速热退火的温度为960~1050℃,时间为5~60秒。本发明通过两次小剂量的离子注入,结合高温退火的方式制备发射极,解决了现有技术中大剂量离子注入损伤层无法充分修复的问题,降低了结区复合,同时还能提高短波响应,提高光电转换效率;实验证明,相比现有技术,本发明的光电转换效率可以提高0.3%,取得了意想不到的技术效果。

Description

一种晶体硅太阳能电池发射极的制备方法
技术领域
本发明涉及太阳能应用技术领域,具体涉及一种晶体硅太阳能电池发射极的制备方法。
背景技术
常规的化石燃料日益消耗殆尽,在现有的可持续能源中,太阳能无疑是一种最清洁、最普遍和最有潜力的替代能源。太阳能电池,也称光伏电池,是一种将太阳的光能直接转化为电能的半导体器件。由于它是绿色环保产品,不会引起环境污染,而且是可再生资源,所以在当今能源短缺的情形下,太阳能电池是一种有广阔发展前途的新型能源。目前,在所有的太阳电池中,晶体硅太阳电池是得到大范围商业推广的太阳能电池之一,这是由于硅材料在地壳中有着极为丰富的储量,同时晶体硅太阳电池相比其他类型的太阳能电池有着优异的电学性能和机械性能,因此,晶体硅太阳能电池在光伏领域占据着重要的地位。
太阳能电池的发射极是太阳能电池发电的关键,其主要起到两个作用,其一是与硅片基底形成PN结,即起到分离光生载流子的作用;其二是与电极形成良好的欧姆接触,减小电池的串联电阻。
现有的太阳能电池发射极制备方法主要有扩散和离子注入2种。对于扩散制备太阳能电池发射极,其不能同时精确控制结深和表面浓度;比如,用扩散形成较高的表面浓度,则总的掺杂浓度会比较高,这会引起短波响应变差、开压和电流降低;而低表面浓度又会引起接触电阻变大,填充因子降低。对于离子注入法制备发射极,为了修复注入损伤,需要进行高温退火,且退火温度受注入剂量影响,一般是剂量越大需要的时间越长;然而,长时间的高温退火会使表面浓度降低,接触变差;而为了保证表面较高的浓度,又需要加大注入剂量,但是剂量变大也会导致短波响应变差。
因此,如何同时控制结深和表面浓度,以制备均匀的高质量的PN结,最终提高电池片的光电转换效率,成为了本领域的技术难题之一。
发明内容
本发明目的是提供一种晶体硅太阳能电池发射极的制备方法。
为达到上述目的,本发明采用的技术方案是:一种晶体硅太阳能电池发射极的制备方法,包括如下步骤:
(1)在晶体硅表面进行第一次整面离子注入;
第一次离子注入的剂量为0.5E15~1.5E15cm-2
(2)热退火,形成PN结;
所述热退火的温度为850~950℃,时间为10~60分钟;
(3)在上述晶体硅表面进行第二次整面离子注入;
第二次离子注入的剂量为0.5E15~1.5E15cm-2
(4)快速热退火,形成表面的高浓度掺杂;
所述快速热退火的温度为960~1050℃,时间为5~60秒;
所述第二次离子注入的掺杂类型和第一次离子注入的掺杂类型相同;
当离子注入的掺杂元素为P时,所述两次离子注入的总剂量为1.5E15~2.4E15cm-2
当离子注入的掺杂元素为B时,所述两次离子注入的总剂量为1.0E15~1.9E15cm-2
本发明的方法不仅可以得到高质量的均匀的PN结,又能保证高表面浓度;同时,总的掺杂量较少,高浓度都集中在硅片表面200纳米内,因而可在降低烧结温度的情况下形成良好的欧姆接触;此外,减少总掺杂量,还能提升电池的开路电压,减小金属化烧结温度也能减少金属离子引起的复合,提升电池的开路电压。
本发明采用两次离子注入,第一次注入后进行退火,通过对时间和温度的控制,形成需要结深的PN结;第二次注入后进行快速热退火,使第二次注入的杂质在注入浓度附近活化,主要集中在表面200nm以内,表面浓度主要通过第二次注入控制。因此,本发明的方法可以同时控制结深和表面浓度,制备均匀的高质量的PN结,并减少总的掺杂量,只在表面200nm内有较高的浓度用于保证金属电极的接触,而减小高掺杂带来的复合。
优选的,当离子注入的掺杂元素为P时,所述两次离子注入的总剂量为1.5E15~2.0E15cm-2
当离子注入的掺杂元素为B时,所述两次离子注入的总剂量为1.2E15~1.6E15cm-2
优选的,所述步骤(4)中,快速热退火的温度为1000~1020℃,时间为30~50秒。
上述技术方案中,所述步骤(4)中,所述表面的高浓度掺杂的掺杂浓度为3E20~1E21cm-3
上述技术方案中,所述步骤(2)和步骤(3)之间还具有清洗步骤,以去除硅片表面的氧化层。
上述技术方案中,所述步骤(2)的热退火在惰性气氛中进行。也可以在含有氧化性的气氛中进行,如氧气。
由于上述技术方案运用,本发明具有下列优点:
1.本发明通过两次小剂量的离子注入,结合高温退火的方式制备发射极,解决了现有技术中大剂量离子注入损伤层无法充分修复的问题,降低了结区复合,同时还能提高短波响应,提高光电转换效率;实验证明,相比现有技术,本发明的光电转换效率可以提高0.3%,取得了意想不到的技术效果;
2.本发明通过第一次离子注入结合常规热退火工艺控制PN结结深;第二次离子注入结合短时间的快速热退火激活注入的杂质,可以保证第二次的注入杂质大部分保留在硅片表面200纳米以内,因而表面浓度较大,电极与硅片的接触电阻更小;
3.本发明通过整面重掺形成N++/N+或P++/P+高低结,有利于载流子的分离,提高开路电压和短路电流;
4.本发明的制备方法简单,适用于工业化生产。
具体实施方式
下面结合实施例对本发明作进一步描述:
实施例一
一种晶体硅太阳能电池发射极的制备方法,采用常规P型硅片,包括如下步骤:
(1)在制绒后的晶体硅表面进行第一次整面离子注入;
第一次离子注入的P的剂量为0.5E15cm-2
(2)热退火,形成PN结;
所述热退火的温度为850℃,时间为30分钟;
(3)清洗;
(4)在上述晶体硅表面进行第二次整面离子注入;
第二次离子注入的P剂量为1.0E15cm-2
(5)快速热退火,形成表面的高浓度掺杂;
所述快速热退火的温度为1000℃,时间为50秒;
所述第二次离子注入的掺杂类型和第一次离子注入的掺杂类型相同;离子注入的掺杂元素都为P时,所述两次离子注入的总剂量为1.5E15。
然后进行清洗、镀减反膜、丝网印刷、烧结,即可得到晶体硅太阳能电池。
对比例一
一种晶体硅太阳能电池发射极的制备方法,采用常规P型硅片,包括如下步骤:
(1)在制绒后的晶体硅表面进行整面离子注入;
离子注入的P的剂量为3.0E15cm-2
(2)热退火,形成PN结;
所述热退火的温度为800℃,时间为40分钟。
然后进行清洗、镀减反膜、丝网印刷、烧结,即可得到晶体硅太阳能电池。
将上述实施例和对比例进行电性能测试,结果如下:
从上述电性能对比数据来看,与对比例相比,实施例一的开路电压、短路电流密度、填充因子都有明显的提升,串联电阻有所降低,电池效率提升0.3%,取得了意想不到的技术效果。

Claims (6)

1.一种晶体硅太阳能电池发射极的制备方法,其特征在于,包括如下步骤:
(1) 在晶体硅表面进行第一次整面离子注入;
第一次离子注入的剂量为0.5E15~1.5E15 cm-2
(2) 热退火,形成PN结;
所述热退火的温度为850~950℃,时间为10~60分钟;
(3) 在上述晶体硅表面进行第二次整面离子注入;
第二次离子注入的剂量为0.5E15~1.5E15 cm-2
(4) 快速热退火,形成表面的高浓度掺杂;
所述快速热退火的温度为960~1050℃,时间为5~60秒;
所述第二次离子注入的掺杂类型和第一次离子注入的掺杂类型相同;
当离子注入的掺杂元素为P时,所述两次离子注入的总剂量为1.5 E15~2.4E15 cm-2
当离子注入的掺杂元素为B时,所述两次离子注入的总剂量为1.0 E15~1.9E15 cm-2
第二次注入的杂质主要集中在表面200 nm以内。
2.根据权利要求1所述的晶体硅太阳能电池发射极的制备方法,其特征在于:当离子注入的掺杂元素为P时,所述两次离子注入的总剂量为1.5 E15~2.0E15 cm-2
当离子注入的掺杂元素为B时,所述两次离子注入的总剂量为1.2 E15~1.6E15 cm-2
3.根据权利要求1所述的晶体硅太阳能电池发射极的制备方法,其特征在于:所述步骤(4)中,快速热退火的温度为1000~1020℃,时间为30~50秒。
4.根据权利要求1所述的晶体硅太阳能电池发射极的制备方法,其特征在于:所述步骤(4)中,所述表面的高浓度掺杂的掺杂浓度为3E20~1E21cm-3
5.根据权利要求1所述的晶体硅太阳能电池发射极的制备方法,其特征在于:所述步骤(2)和步骤(3)之间还具有清洗步骤,以去除硅片表面的氧化层。
6.根据权利要求1所述的晶体硅太阳能电池发射极的制备方法,其特征在于:所述步骤(2)的热退火在惰性气氛中进行。
CN201510514386.2A 2015-08-20 2015-08-20 一种晶体硅太阳能电池发射极的制备方法 Active CN105070789B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510514386.2A CN105070789B (zh) 2015-08-20 2015-08-20 一种晶体硅太阳能电池发射极的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510514386.2A CN105070789B (zh) 2015-08-20 2015-08-20 一种晶体硅太阳能电池发射极的制备方法

Publications (2)

Publication Number Publication Date
CN105070789A CN105070789A (zh) 2015-11-18
CN105070789B true CN105070789B (zh) 2017-11-10

Family

ID=54500114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510514386.2A Active CN105070789B (zh) 2015-08-20 2015-08-20 一种晶体硅太阳能电池发射极的制备方法

Country Status (1)

Country Link
CN (1) CN105070789B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098283A (zh) * 2019-04-25 2019-08-06 晶科能源科技(海宁)有限公司 一种匹配激光选择性掺杂的离子注入磷扩散方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011524639A (ja) * 2008-06-11 2011-09-01 インテバック・インコーポレイテッド 太陽電池装置及び太陽電池素子形成方法
CN102683504B (zh) * 2012-06-05 2015-08-05 中国科学院苏州纳米技术与纳米仿生研究所 通过离子注入砷改进晶体硅太阳能电池制作工艺的方法
CN103021777B (zh) * 2012-12-10 2015-09-09 京东方科技集团股份有限公司 一种离子注入方法及装置
CN103247720B (zh) * 2013-05-10 2015-12-09 苏州阿特斯阳光电力科技有限公司 一种晶体硅异质结太阳能电池的制备方法
CN103268905B (zh) * 2013-05-17 2017-02-08 浙江正泰太阳能科技有限公司 太阳能晶硅电池的制造方法
CN103618028B (zh) * 2013-11-15 2016-06-15 中电电气(南京)光伏有限公司 一种制备具有表面钝化的pn结和晶体硅太阳能电池的方法和设备

Also Published As

Publication number Publication date
CN105070789A (zh) 2015-11-18

Similar Documents

Publication Publication Date Title
Yan et al. Polysilicon passivated junctions: The next technology for silicon solar cells?
CN102222726B (zh) 采用离子注入法制作交错背接触ibc晶体硅太阳能电池的工艺
CN102487102B (zh) 太阳能电池及其制备方法
CN109509813A (zh) 一种无掩膜的p型全背电极接触晶硅太阳电池的制备方法
CN102637767A (zh) 太阳能电池的制作方法以及太阳能电池
CN111106188B (zh) N型电池及其选择性发射极的制备方法、以及n型电池
CN111477720A (zh) 一种钝化接触的n型背结太阳能电池及其制备方法
US20120015474A1 (en) Method for fabricating silicon heterojunction solar cells
CN103137448A (zh) 掺杂方法、pn结构、太阳能电池及其制作方法
CN102487103A (zh) 太阳能电池及其制备方法
TW201644062A (zh) 背面接合型太陽電池
CN102738263B (zh) 掺杂单元、掺杂晶片、掺杂方法、电池及制作方法
CN105070789B (zh) 一种晶体硅太阳能电池发射极的制备方法
CN103811582A (zh) 离子注入制作超低表面掺杂浓度的低方阻硅太阳电池方法
CN102683504B (zh) 通过离子注入砷改进晶体硅太阳能电池制作工艺的方法
JP2015142079A (ja) 光電変換装置
CN102737964B (zh) 一种晶体硅片及其扩散方法
KR101300803B1 (ko) 고상성장을 이용한 태양전지 도핑층 형성방법
CN102738264B (zh) 掺杂单元、掺杂晶片、掺杂方法、太阳能电池及制作方法
CN102569495A (zh) 太阳能晶片的掺杂方法以及掺杂晶片
KR20090019600A (ko) 고효율 태양전지 및 그의 제조방법
CN102569492B (zh) 太阳能晶片的掺杂方法以及掺杂晶片
CN105826412B (zh) 一种太阳能电池及其制备方法
CN102339893A (zh) 太阳能晶片的制备方法
KR101356849B1 (ko) 결정질 실리콘 태양 전지 및 이의 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: No. 199, deer mountain road, Suzhou high tech Zone, Jiangsu Province

Patentee after: CSI Cells Co.,Ltd.

Patentee after: Funing atlas sunshine Power Technology Co., Ltd

Address before: No. 199, deer mountain road, Suzhou high tech Zone, Jiangsu Province

Patentee before: CSI Cells Co.,Ltd.

Patentee before: CSI-GCL SOLAR MANUFACTURING (YANCHENG) Co.,Ltd.

CP03 Change of name, title or address