CN105070781A - 一种碳纳米管柔性光敏器件及其制备方法 - Google Patents

一种碳纳米管柔性光敏器件及其制备方法 Download PDF

Info

Publication number
CN105070781A
CN105070781A CN201510262782.0A CN201510262782A CN105070781A CN 105070781 A CN105070781 A CN 105070781A CN 201510262782 A CN201510262782 A CN 201510262782A CN 105070781 A CN105070781 A CN 105070781A
Authority
CN
China
Prior art keywords
flexible
carbon nano
substrate
light
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510262782.0A
Other languages
English (en)
Other versions
CN105070781B (zh
Inventor
谢丹
戴睿轩
徐建龙
李娴
孙翊淋
张小稳
张丞
杨埔
滕长久
李志鑫
朱宏伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CN201510262782.0A priority Critical patent/CN105070781B/zh
Publication of CN105070781A publication Critical patent/CN105070781A/zh
Application granted granted Critical
Publication of CN105070781B publication Critical patent/CN105070781B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Thin Film Transistor (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种碳纳米管柔性光敏器件及其制备方法,属于柔性电子技术以及敏感电子学领域,该光敏单元器件包括依次层叠的柔性衬底、柔性支撑层、柔性缓冲层、柔性背栅电极层、柔性背栅介质层、图形化的柔性碳纳米管光敏薄膜沟道层、以及在光敏沟道上图形化的金属源电极和漏电极。本发明利用有机高分子柔性材料作为光敏器件衬底,同时采用柔性栅介质材料、金属电极、以及碳纳米管薄膜光敏薄膜,可以实现光敏器件的柔性化。光敏薄膜沟道层采用碳纳米管网络结构,具有工艺简单、室温成膜的特点,适合于柔性传感器的制备。此外,碳纳米管还具有优异的光电特性,能实现对光的高效快速检测。

Description

一种碳纳米管柔性光敏器件及其制备方法
技术领域
本发明属于柔性电子与敏感电子技术领域,特别涉及碳纳米管柔性光敏器件及其制造方法。
背景技术
半导体光敏器件是一种以半导体作为光敏材料的光敏器件,由于具有灵敏度高、响应速度快、体积小、重量轻、便于集成化、智能化、能使检测转换一体化等优点,自问世以来,产品种类不断增多,应用领域不断扩大,在自动化、遥感、环境污染检测、医学生物等方面已有重要应用。常用的半导体材料包括硅、Ⅲ~Ⅴ族和Ⅱ~Ⅵ族元素化合物、有机高分子半导体材料、以及新型低维半导体材料等。在制备光敏器件时,利用半导体的光敏特性,光照将导致半导体光敏器件电流、电压或者是电阻的变化,实现对待测光的检测。常见的光敏器件按照器件结构来划分主要有以下几类:光敏电阻、光敏二极管、光敏三极管,半导体材料在上述光敏器件中都得到了广泛应用。虽然半导体光敏器件表现出众多优点,但是如何进一步提高器件的可靠性、响应速度、开关比等指标,使其符合特殊场合下的使用需求,依然是重要的研究方向。
柔性电子是一种将电子器件及系统制备在柔性衬底上的技术,相对于硅基芯片而言,它具有柔性、高灵活性等特点。近几年来,随着柔性显示技术和智能穿戴设备逐步走入人们的日常生活,对于柔性电子产品的需求正与日俱增。而柔性传感器件的制备是柔性集成电路的一个重要组成部分,也是未来物联网技术的一个重要发展方向,相对于硅基器件而言,柔性光敏器件在更广泛的领域内可以满足许多特殊的需求,例如柔性电子皮肤、柔性电子标签式传感器等。目前,国内外对柔性器件的研究才刚刚起步,还没有形成一个完整的柔性器件研究与制备体系,特别是对于柔性敏感器件。
自问世以来,作为典型低维材料代表的碳纳米管,有着优异的光学、电学、机械性能,其独特的结构以及性质引起了广大科研工作者的关注,特别是其具有延展性的特点,使得碳纳米管在柔性电子学领域有着广阔的发展前景。碳纳米管材料具有较大的比表面积,使得对光的检测有更大的接收面积,并且由于半导体性碳纳米管拥有禁带,且禁带宽度通过掺杂等方法可调,使得碳纳米管可以实现对特定波长的光检测吸收,这一点异于另外一个低维材料的代表——石墨烯,石墨烯材料没有禁带,所以在光的特定波长方面的检测,碳纳米管优于石墨烯。
北京大学梁学磊等人提供了一种碳纳米管传感器及其制备方法(CN101252145A),该碳纳米管传感器包括碳纳米管和与该碳纳米管连接的两个电极,其制备方法步骤如下:
(1)在衬底上定向排列单根或者并排多根碳纳米管;
(2)在碳纳米管两端涂上光刻胶;
(3)通过光刻(电子束或者光学光刻)在碳纳米管两端定义电极的形状;
(4)在上述步骤形成的结构上,在碳纳米管上镀一层金属;
(5)剥离去除多余的金属层,形成沟道层。
上述发明能实现单根或者多根并排碳纳米管晶体管的制备,主要优点在于:(1)使用单根或者多根并排碳纳米管,能充分利用碳纳米管的优良光学、电学等性质;(2)采用背栅结构晶体管,使沟道层暴露在顶层,能实现沟道层直接对外界物理量变化的响应。然而该方法一个很重要的问题是碳纳米的定向生长问题,且在生长排列过程中金属性碳纳米管的难以剔除。该方法是基于传统的硅基材料,不具备柔性的特点,工艺制备流程复杂,且制造工艺偏差大。
发明内容
本发明的目的在于克服上述现有的技术缺陷,提供一种柔性碳纳米管光敏器件及其制备方法,实现对外界光敏检测。本发明利用柔性材料作为光敏器件的衬底,同时采用柔性栅介质以及柔性背栅电极,可以保证器件的柔性基础。光敏薄膜是光敏器件最为核心的部分,本发明利用碳纳米管网络,及进行功能化处理的碳纳米管网络作为光敏薄膜沟道层,实现对光的敏感检测,具有工艺简单、成本低、性能优异的特点,且满足工艺在低温下实现的要求。
本发明提出的一种柔性碳纳米管光敏器件,其特征在于,该光敏器件包括依次层叠的柔性衬底、支撑层、缓冲层、柔性背栅电极层、柔性背栅介质层,在柔性衬底、支撑层、缓冲层、柔性背栅电极、柔性背栅介质层上制备的图形化的柔性碳纳米管光敏薄膜沟道层,以及在光敏沟道之上制备图形化的源漏电极。
本发明还提出上述碳纳米柔性光敏器件的制备方法,其特征在于,包括以下步骤:
1)在通过热氧化生长有200~300nm厚氧化硅层的厚度为300~600um的硅片衬底上,旋涂一层20~30μm聚酰亚胺(PI)或者聚二甲基硅氧烷(PDMS)聚合物薄膜作为柔性器件支撑层;
2)在制备好所述柔性支撑层的硅片衬底上磁控溅射或者电子束蒸发厚度为10~20nm厚二氧化硅,或者对其进行功能化处理的二氧化硅层,作为柔性器件的缓冲层;
3)在二氧化硅缓冲层上磁控溅射或电子束蒸发制备方阻为6~10Ω/cm2的ITO,或旋涂直径为50~100nm,长度为15~20um的银纳米线网络,或旋涂金属性碳纳米管分散液,形成碳纳米管网络导电薄膜作为柔性背栅电极;
4)在制备好柔性背栅电极的衬底上利用低温原子层沉积生长一层10~20nm厚的金属氧化物(可采用HfO2、TiO2、Al2O3)作为背栅介质层;
5)利用多聚赖氨酸或者3~氨丙基三乙氧基硅烷(APTES)对得到的背栅介质层进行功能化处理,使其表面带有氨基官能团;采用滴涂、旋涂或喷涂工艺将半导体性单壁碳纳米管分散液涂到带有氨基官能团的衬底上,或者将该衬底浸泡至碳纳米管分散液中,制备出半导体性碳纳米管网络光敏薄膜作为光敏薄膜沟道层,并通过引入纳米金颗粒、量子点、生物染料等对其进行光吸收增强修饰;
6)采用光刻图形化以及电子束蒸发或者热蒸发的方式在步骤5)所制得的衬底上制备金属源、漏电极;
7)再通过二次光刻工艺以及氧离子刻蚀工艺对光敏材料薄膜沟道进行图形化工艺,形成最终的图形化的光敏薄膜沟道层;
8)将上述制备出的柔性光敏器件从硅衬底上剥离,并转移至柔性衬底(可采用聚对苯二甲酸乙二醇酯(PET)或聚萘二甲酸乙二醇酯(PEN)等)上,形成柔性光敏器件。
同基于传统硅基的半导体光敏器件相比,本发明具有以下几个优点:
1.光敏器件采用柔性衬底、柔性栅介质、柔性光敏薄膜、以及柔性电极等材料,实现整个器件柔性的要求;
2.由半导体性碳纳米管网络,或者功能化处理的半导体性碳纳米管网络作为敏感薄膜,可以满足柔性电子对于低温工艺的要求,且具有较强的柔韧性;
3.碳纳米管网络具有较好的稳定性,且光敏性能和电学性能优异,可以实现对光的快速高效响应;
4.碳纳米管网络功能化处理,通过掺杂调控实现禁带宽度的调节,可以对特定波长的光进行检测。
5.本发明所述器件制备工艺简单,适用于大规模集成电路的生产制造。
综合上述碳纳米管半导体柔性光敏器件,具有较高的稳定性,且电学性能好、光敏性能优异,可以实现对光的高效快速响应,同时制备工艺简单,成本低廉,因而在未来柔性电路的发展中具有更大的应用潜能。
本发明的有益效果为:所述碳纳米管柔性光敏器件适用于大规模柔性集成电路制造工艺,具有制备工艺简单,成本低的优点;由碳纳米管网络或者功能化的碳纳米管网络作为敏感薄膜,可以满足柔性电子对于低温工艺的要求,且具有较强的柔韧性;碳纳米管网络本征具有较好的电学以及光敏性能,可以实现对光的高效快速响应;功能化的碳纳米管网络,通过掺杂调控对禁带宽度调节,实现对特定波长的光进行检测。
附图说明
图1为本发明的碳纳米管柔性光敏器件结构示意图;
图2为本发明的碳纳米管柔性光敏器件的制备工艺流程图,其中:
图2(a)为硅片9上热氧化生长二氧化硅层8的示意图;
图2(b)为在氧化硅/硅衬底上制备柔性支撑层1的示意图;
图2(c)为柔性支撑层1上生长柔性缓冲层2的示意图;
图2(d)为在柔性缓冲层2制备柔性背栅电极层3的示意图;
图2(e)为在柔性背栅电极层3上制备金属氧化物作为柔性背栅介质层4的示意图;
图2(f)为在柔性背栅介质层4上制备碳纳米管网络光敏薄膜沟道层5的示意图;
图2(g)为在光敏薄膜沟道层5上制备源电极6和漏电极7的示意图;
图2(h)为利用光刻以及刻蚀工艺对光敏薄膜进行图形化形成沟道5的示意图;
图2(i)为将柔性支撑层1上制备的光敏器件与氧化硅8/硅片9的衬底分离的示意图;
图2(j)为将器件支撑层以上部分转移到柔性衬底10上的示意图。
具体实施方式
下面结合附图和具体实施方式详细介绍本发明的内容。
本发明提出的半导体柔性光敏器件实施例,其结构如图1所示,包括依次层叠的柔性衬底10、柔性支撑层1、柔性缓冲层2、柔性背栅电极层3、柔性金属氧化物背栅介质层4、图形化的光敏薄膜沟道层5,在光敏薄膜沟道层5上制备的金属源电极6和金属漏电极7。
所述衬底采用的材料为聚对苯二甲酸类塑料(PET),或者聚萘二甲酸乙二醇酯(PEN)。
所述的柔性支撑层1为厚度为20~30um,透光率≥70~80%的PI或者PDMS薄膜。
所述的金属背栅电极3为方阻6~10Ω/cm2的ITO导电薄膜,或采用直径为50~100nm,长度为15~20um的银纳米线网络薄膜,或旋涂碳纳米管分散液,形成碳纳米管导电薄膜。
所述背栅介质4为厚度为10~20nm的金属氧化物薄膜,包括HfO2或者TiO2、Al2O3等。
所述的光敏薄膜沟道层5为半导体性单壁碳纳米管网络薄膜,并通过引入纳米金颗粒、量子点、生物染料等对其进行光吸收增强修饰得到的功能化处理的薄膜。
所述源漏电极6和7采用铬(Cr)/金(Au)堆叠结构,厚度为:10~20nm/50~60nm;或者钛(Ti)/金(Au)堆叠结构,厚度为10~30nm/50~60nm;或者钛/钯(Ti/Pd),厚度为0.5~2nm/50~60nm。
本发明的碳纳米管网络柔性光敏器件的制备方法,如图2所示,主要包括以下步骤(各层的名称要与上述器件的名称一致):
1)在厚度为300~600um的硅片衬底9上,热氧化生长一层200~300nm的二氧化硅层8;
2)在生长氧化硅层8的硅衬底9上,旋涂一层20~30μm聚酰亚胺(PI)或者聚二甲基硅氧烷(PDMS)聚合物薄膜作为柔性支撑层1;
3)在制备好柔性支撑层的硅片衬底上磁控溅射或者电子束蒸发厚度为10~20nm厚的二氧化硅薄膜作为柔性缓冲层2;
4)在二氧化硅柔性缓冲层上磁控溅射或者电子束蒸发制备方阻为6~10Ω/cm2的ITO,或旋涂粒径为50~100nm,长度为15~20um的银纳米线网络,或旋涂金属性碳纳米管分散液,形成碳纳米管导电薄膜作为柔性背栅电极层3;
5)在制备好背栅电极的衬底上利用原子层沉积生长一层10~20nm厚的金属氧化物(包括HfO2、TiO2或Al2O3)作为柔性金属氧化物背栅介质层4;
6)利用多聚赖氨酸或者3~氨丙基三乙氧基硅烷(APTES)对上述得到的背栅介质层进行功能化处理,使其表面带有氨基官能团;采用滴涂、旋涂、喷涂等工艺将半导体性单壁碳纳米管分散液旋涂到带有氨基官能团的衬底上,或者将衬底浸泡至碳纳米管分散液中,制备出碳纳米管网络光敏薄膜作为光敏薄膜沟道层5,并通过引入纳米金颗粒、量子点、生物染料等对其进行光吸收增强修饰;
7)采用光刻图形化以及电子束蒸发或者热蒸发的方式在步骤6)所制得的衬底上制备金属源电极6、漏电极7;
8)通过二次光刻工艺以及氧离子刻蚀工艺对光敏材料薄膜沟道进行图形化工艺,形成最终的图形化的光敏薄膜沟道层5;
9)将上述制备出的柔性光敏器件从硅衬底上剥离,并转移至柔性衬底10(聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)等)上,形成柔性光敏器件。
上述制备方法各步骤的具体工艺均为本领域的常规技术,在此不再重复。
实施例一:
本实施例用于制备碳纳米管柔性光敏器件,具体工艺流程如下:
1)在厚度为300~600um的硅片衬底9上,热氧化生长一层200~300nm的二氧化硅层8;
2)在生长氧化硅层8的硅衬底9上,旋涂一层20~30μm聚酰亚胺(PI)薄膜作为柔性支撑层1;
3)在制备好柔性支撑层的硅片衬底上磁控溅射或者电子束蒸发厚度为10~20nm厚的二氧化硅薄膜作为柔性缓冲层2;
4)在二氧化硅柔性缓冲层上磁控溅射方阻为6~10Ω/cm2的ITO作为柔性背栅电极层3;
5)在制备好柔性背栅电极的衬底上利用低温原子层沉积生长一层10~20nm厚的金属氧化物HfO2作为柔性背栅介质层4;
6)利用多聚赖氨酸对上述得到的柔性背栅介质层进行功能化处理,使其表面带有氨基官能团;使用浸泡法,将带有氨基官能团的衬底浸泡至碳纳米管水或者水/乙醇(体积比为1:1)分散液(浓度为0.01mg/mL)中静置30~90分钟,取出空气中静置10~20分钟,并依次使用去离子水和异丙醇冲洗,最后用氮气吹干,形成柔性光敏碳纳米管网络薄膜作为光敏薄膜沟道层5,并通过引入纳米金颗粒、量子点、生物染料等对其进行光吸收增强修饰;
7)采用光刻图形化以及电子束蒸发的方式在步骤6)所制得的衬底上制备金属Cr/Au(厚度为10~20nm/50~60nm)堆叠结构作为源电极6、漏电极7;
8)通过二次光刻工艺以及氧离子刻蚀工艺对光敏材料薄膜沟道进行图形化工艺,形成最终的图形化的光敏薄膜沟道层5;
9)将上述制备出的柔性光敏器件从硅衬底上剥离,并转移至柔性衬底10(聚对苯二甲酸乙二醇酯(PET)、聚萘二甲酸乙二醇酯(PEN)等)上,形成柔性光敏器件。
实施例二:
本实施例制备碳纳米管光敏器件,基本与实施例一相同,不同点是步骤4)采用旋涂银纳米线网络的工艺制备柔性背栅电极层3,其粒径为50~100nm,长度为15~20um,银纳米线网络导电性能更好,且相比于ITO,其具有更好的柔韧性。
实施例三:
本实施例制备碳纳米管柔性光敏器件,基本与实施例一相同,不同点是步骤4)采用旋涂法将碳纳米管网络薄膜制备在柔性背栅电极层3上,转速为1500~4000rpm,时间为25~40s,将碳纳米管水或者水/乙醇,体积比为1:1分散液,浓度为0.01mg/mL,旋涂至带有氨基官能团的背栅介质层上,旋涂结束后在80℃热板上烘烤10min,重复上述步骤直至所需厚度,形成光敏薄膜沟道层5。
实施例四:
本实施例制备碳纳米管柔性光敏器件,基本与实施例一相同,不同点是步骤10)将聚对苯二甲酸乙二醇酯(PET)改为聚萘二甲酸乙二醇酯(PEN)作为柔性衬底10。
实施例五:
本实施例制备掺杂碳纳米管柔性光敏器件,基本与实施例四相同,不同点是步骤6)采用纳米金颗粒、量子点、生物染料等对其进行光吸收增强修饰的碳纳米管网络作为光敏薄膜沟道层5,增强碳纳米管网络特定波长的光吸收率。
本文中的具体实施方式仅是本发明的几个比较典型实施例,但是这样的描述并不用来以任何方式限定本发明,凡是本权利要求所保护的半导体柔性光敏器件及制备方法范畴内均属于本发明范畴。
在本发明中,碳纳米管柔性光敏材料可以与柔性衬底相适应,且其制备过程可在室温下进行,解决了柔性光敏器件对低温工艺以及所用材料柔韧性的要求。同时,碳纳米管网络,或者功能化碳纳米管网络作为光敏薄膜,可以实现对碳纳米管网络禁带宽度及光吸收的调节,对特定波长的光敏感,且碳纳米管网络电学和光敏性能优异,可以快速高效地对光进行检测。

Claims (9)

1.一种碳纳米管柔性光敏器件,其特征在于,该光敏器件包括依次层叠的柔性衬底、柔性支撑层、柔性缓冲层、柔性背栅电极层、柔性背栅介质层,在柔性衬底、柔性支撑层、柔性缓冲层、柔性背栅电极、柔性背栅介质层上制备的图形化的柔性光敏薄膜沟道层,以及在光敏薄膜沟道层之上图形化的柔性金属源漏电极。
2.如权利要求1所述光敏器件,其特征在于,所述的柔性背栅电极为方阻6~8Ω/cm2的ITO导电薄膜或采用直径为50~100nm,长度为15~20um的银纳米线网络薄膜,或者旋涂金属性碳纳米管分散液,形成碳纳米管导电薄膜。
3.如权利要求1所述光敏器件,其特征在于,所述柔性背栅介质为HfO2、TiO2或Al2O3等金属氧化物。
4.如权利要求1所述光敏器件,其特征在于,所述的光敏薄膜沟道层为半导体性单壁碳纳米管网络薄膜,以及对半导体性单壁碳纳米管网络进行功能化处理的薄膜。
5.如权利要求1所述光敏器件,其特征在于,所述源、漏电极采用铬/金堆叠结构,厚度为:10~20nm/50~60nm;或者钛/金堆叠结构,厚度为10~30nm/50~60nm;或者钛/钯堆叠结构,厚度为0.5~2nm/50~60nm的任一种。
6.一种如权利要求1所述半导体柔性光敏器件的制备方法,其特征在于,包括以下步骤:
1)在氧化硅/硅衬底上,旋涂一层20~30μm聚酰亚胺(PI)或者聚二甲基硅氧烷(PDMS)聚合物薄膜作为支撑层;
2)在制备好上述双层聚合物的硅片衬底上磁控溅射或者电子束蒸发厚度为10~20nm厚的二氧化硅层,或者对其进行功能化处理的二氧化硅层,作为柔性器件的缓冲层;
3)在二氧化硅层上磁控溅射或者电子束蒸发制备方阻为6~10Ω/cm2的ITO,或旋涂粒径为50~100nm,长度为15~20um的银纳米线网络薄膜,或旋涂金属性碳纳米管分散液,形成碳纳米管网络导电薄膜作为柔性背栅电极;
4)在制备好背栅电极的衬底上利用低温原子层沉积生长一层10~20nm厚的金属氧化物作为金属氧化物背栅介质层;
5)利用多聚赖氨酸或者3~氨丙基三乙氧基硅烷(APTES)对上述得到的背栅介质层进行功能化处理,使其表面带有氨基官能团;采用滴涂、旋涂或喷涂工艺将半导体性单壁碳纳米管分散液涂到带有氨基官能团的衬底上,或者将衬底浸泡至碳纳米管分散液中,制备出碳纳米管网络光敏薄膜作为光敏薄膜沟道层,并通过引入纳米金颗粒、量子点、生物染料等对其进行光吸收增强修饰;
6)采用光刻图形化以及电子束蒸发或者热蒸发的方式在步骤6)所制得的衬底上制备金属源、漏电极;
7)通过二次光刻工艺以及氧离子刻蚀工艺对光敏材料薄膜沟道进行图形化工艺,形成最终的图形化的光敏薄膜沟道层;
8)将上述制备出的柔性光敏器件从氧化硅/硅衬底上剥离,并转移至柔性衬底,从而得到柔性光敏器件。
7.如权利要求6所述方法,其特征在于,所述步骤5)具体包括半导体性单壁碳纳米管网络采用浸泡法将获得的带有氨基官能团的衬底浸泡至碳纳米管水或者水/乙醇,体积比为1:1,分散液的浓度为0.01mg/mL,中静置30~90分钟,取出空气中静置10~20分钟,并依次使用去离子水和异丙醇冲洗,最后用氮气吹干,形成柔性光敏碳纳米管网络薄膜。
8.如权利要求6所述制备方法,其特征在于,所述步骤4中的金属氧化物为HfO2、TiO2或Al2O3
9.如权利要求6所述制备方法,其特征在于,所述柔性衬底采用聚对苯二甲酸乙二醇酯(PET)或聚萘二甲酸乙二醇酯(PEN)中任一种。
CN201510262782.0A 2015-05-21 2015-05-21 一种碳纳米管柔性光敏器件及其制备方法 Active CN105070781B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510262782.0A CN105070781B (zh) 2015-05-21 2015-05-21 一种碳纳米管柔性光敏器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510262782.0A CN105070781B (zh) 2015-05-21 2015-05-21 一种碳纳米管柔性光敏器件及其制备方法

Publications (2)

Publication Number Publication Date
CN105070781A true CN105070781A (zh) 2015-11-18
CN105070781B CN105070781B (zh) 2017-03-01

Family

ID=54500106

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510262782.0A Active CN105070781B (zh) 2015-05-21 2015-05-21 一种碳纳米管柔性光敏器件及其制备方法

Country Status (1)

Country Link
CN (1) CN105070781B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742369A (zh) * 2016-03-25 2016-07-06 电子科技大学 一种新型底栅结构的柔性薄膜晶体管及其制备方法
CN106442689A (zh) * 2016-09-29 2017-02-22 青岛大学 基于氧化镍‑碳纳米管的多巴胺传感器的制备与应用
CN106601338A (zh) * 2016-11-18 2017-04-26 中国科学院深圳先进技术研究院 一种具有功能化的柔性电极及其制备方法
CN106783902A (zh) * 2016-12-15 2017-05-31 上海集成电路研发中心有限公司 图像传感器结构及其制作方法
CN107068291A (zh) * 2017-04-10 2017-08-18 武汉理工大学 一种转移银纳米线透明导电薄膜到柔性衬底的方法
CN108735820A (zh) * 2017-04-19 2018-11-02 中国科学院金属研究所 以光刻胶为栅绝缘层的碳纳米管薄膜晶体管及制作和应用
CN111293035A (zh) * 2018-12-07 2020-06-16 中国科学院物理研究所 一种碳纳米管薄膜的制备方法
CN111370578A (zh) * 2020-03-20 2020-07-03 中国科学院微电子研究所 仿生晶体管结构及其特征时间的控制方法
CN111370526A (zh) * 2020-03-17 2020-07-03 南京大学 一种视网膜形态光电传感阵列及其图片卷积处理方法
CN110676341B (zh) * 2018-07-03 2021-06-25 清华大学 半导体结构、光电器件、光探测器及光探测仪
WO2023141449A1 (en) * 2022-01-19 2023-07-27 Nutech Ventures Voltage controlled organic inverse photo transistor and applications thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101656278A (zh) * 2009-09-15 2010-02-24 上海交通大学 基于无序网状碳纳米管薄膜的太阳能微电池的制备方法
US20110147715A1 (en) * 2008-06-16 2011-06-23 Purdue Research Foundation Medium Scale Carbon Nanotube Thin Film Integrated Circuits on Flexible Plastic Substrates

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110147715A1 (en) * 2008-06-16 2011-06-23 Purdue Research Foundation Medium Scale Carbon Nanotube Thin Film Integrated Circuits on Flexible Plastic Substrates
CN101656278A (zh) * 2009-09-15 2010-02-24 上海交通大学 基于无序网状碳纳米管薄膜的太阳能微电池的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
汪炳伟: "碳纳米管和石墨烯在柔性电子器件中的应用", 《印刷电路信息》 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742369A (zh) * 2016-03-25 2016-07-06 电子科技大学 一种新型底栅结构的柔性薄膜晶体管及其制备方法
CN106442689A (zh) * 2016-09-29 2017-02-22 青岛大学 基于氧化镍‑碳纳米管的多巴胺传感器的制备与应用
CN106442689B (zh) * 2016-09-29 2018-03-02 青岛大学 基于氧化镍‑碳纳米管的多巴胺传感器的制备与应用
CN106601338A (zh) * 2016-11-18 2017-04-26 中国科学院深圳先进技术研究院 一种具有功能化的柔性电极及其制备方法
CN106783902B (zh) * 2016-12-15 2019-11-22 上海集成电路研发中心有限公司 图像传感器结构及其制作方法
CN106783902A (zh) * 2016-12-15 2017-05-31 上海集成电路研发中心有限公司 图像传感器结构及其制作方法
CN107068291A (zh) * 2017-04-10 2017-08-18 武汉理工大学 一种转移银纳米线透明导电薄膜到柔性衬底的方法
CN107068291B (zh) * 2017-04-10 2019-04-30 武汉理工大学 一种转移银纳米线透明导电薄膜到柔性衬底的方法
CN108735820A (zh) * 2017-04-19 2018-11-02 中国科学院金属研究所 以光刻胶为栅绝缘层的碳纳米管薄膜晶体管及制作和应用
CN110676341B (zh) * 2018-07-03 2021-06-25 清华大学 半导体结构、光电器件、光探测器及光探测仪
CN111293035A (zh) * 2018-12-07 2020-06-16 中国科学院物理研究所 一种碳纳米管薄膜的制备方法
CN111293035B (zh) * 2018-12-07 2022-12-06 中国科学院物理研究所 一种碳纳米管薄膜的制备方法
CN111370526A (zh) * 2020-03-17 2020-07-03 南京大学 一种视网膜形态光电传感阵列及其图片卷积处理方法
CN111370526B (zh) * 2020-03-17 2023-12-26 南京大学 一种视网膜形态光电传感阵列及其图片卷积处理方法
CN111370578A (zh) * 2020-03-20 2020-07-03 中国科学院微电子研究所 仿生晶体管结构及其特征时间的控制方法
CN111370578B (zh) * 2020-03-20 2022-08-30 中国科学院微电子研究所 仿生晶体管结构及其特征时间的控制方法
WO2023141449A1 (en) * 2022-01-19 2023-07-27 Nutech Ventures Voltage controlled organic inverse photo transistor and applications thereof

Also Published As

Publication number Publication date
CN105070781B (zh) 2017-03-01

Similar Documents

Publication Publication Date Title
CN105070781A (zh) 一种碳纳米管柔性光敏器件及其制备方法
Han et al. An overview of the development of flexible sensors
Xu et al. Flexible self-powered ZnO film UV sensor with a high response
An et al. Self-powered ZnS nanotubes/Ag nanowires MSM UV photodetector with high on/off ratio and fast response speed
Yoo et al. High photosensitive indium–gallium–zinc oxide thin-film phototransistor with a selenium capping layer for visible-light detection
Huang et al. Metal oxide nanowire transistors
CN105762281A (zh) 一种铁电局域场增强型二维半导体光电探测器及制备方法
Huang et al. A flexible and transparent ceramic nanobelt network for soft electronics
Sun et al. Aligned tin oxide nanonets for high-performance transistors
Cadafalch Gazquez et al. Low-cost, large-area, facile, and rapid fabrication of aligned ZnO nanowire device arrays
WO2019080467A1 (zh) 一种有机小分子晶体图案化阵列的制备方法
Zheng et al. Electrospun nanowire arrays for electronics and optoelectronics
CN104132989A (zh) 基于混合绝缘层的有机场效应管气体传感器及其制备方法
CN106198635A (zh) 一种基于有机场效应晶体管的湿度传感器及其制备方法
CN105810820A (zh) 一种多孔结构有机场效应晶体管光敏存储器及其制备方法
CN107833940A (zh) 一种基于二维二硫化钼‑二硫化铼异质结的光电子器件、制备方法及应用
Chung et al. Low-voltage and short-channel pentacene field-effect transistors with top-contact geometry using parylene-C shadow masks
CN105576123A (zh) 全石墨烯族柔性有机场效应管及其制造方法
CN102270692A (zh) 石墨烯-硒化镉纳米带异质结、电池、组件及制备方法
Li et al. Low-dimensional nanostructure based flexible photodetectors: device configuration, functional design, integration, and applications
Jeong et al. Hybrid polymer/metal oxide thin films for high performance, flexible transistors
CN104465993A (zh) 一种碳基复合透明电极及制备方法
CN106784115A (zh) 费米能级可调的pin结构石墨烯光探测器及其制备方法
Hanna et al. Visible-blind UV photodetectors using a polymer/ZnO nanocomposite thin film
Qian et al. Architecture of CuS/PbS heterojunction semiconductor nanowire arrays for electrical switches and diodes

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant