CN105070654A - 一种提高晶体硅太阳能电池效率的扩散工艺 - Google Patents

一种提高晶体硅太阳能电池效率的扩散工艺 Download PDF

Info

Publication number
CN105070654A
CN105070654A CN201510401290.5A CN201510401290A CN105070654A CN 105070654 A CN105070654 A CN 105070654A CN 201510401290 A CN201510401290 A CN 201510401290A CN 105070654 A CN105070654 A CN 105070654A
Authority
CN
China
Prior art keywords
flow
little
pressure
0sccm
12slm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510401290.5A
Other languages
English (en)
Other versions
CN105070654B (zh
Inventor
陈园
杨晓琴
张宇
黄明
张广路
张广杰
金阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shangrao Jietai New Energy Technology Co., Ltd
Original Assignee
SRPV HIGH-TECH CO LTD
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SRPV HIGH-TECH CO LTD filed Critical SRPV HIGH-TECH CO LTD
Priority to CN201510401290.5A priority Critical patent/CN105070654B/zh
Publication of CN105070654A publication Critical patent/CN105070654A/zh
Application granted granted Critical
Publication of CN105070654B publication Critical patent/CN105070654B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/223Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a gaseous phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种提高晶体硅太阳能电池效率的扩散工艺,该方法是把传统工艺中的后氧化与推进这两步演变成五步,五步的氧气流量逐渐增加,温度逐渐增加。即在推进的过程中,推动力逐渐增加。该工艺相比传统工艺表面浓度更低,表面浓度梯度更平缓。这样一方面提高开压;另一方面有利于欧姆接触,降低串联电阻,提高填充因子,一定程度上提高电池片光电转换效率。

Description

一种提高晶体硅太阳能电池效率的扩散工艺
技术领域
本发明涉及一种提高晶体硅太阳能电池效率的扩散工艺,属于太阳能光伏技术领域。
背景技术
近年来,太阳能电池片生产技术不断进步,生产成本不断降低,转换效率不断提高,使得光伏发电的应用日益普及并迅猛发展,逐渐成为电力供应的重要来源。太阳能电池片可以在阳光的照射下,把光能转换为电能,实现光伏发电。
太阳能电池片的生产工艺比较复杂,简单说来,太阳能电池的制作过程主要包括:制绒、扩散、刻蚀、镀膜、印刷和烧结等。扩散制作PN结是晶硅太阳电池的核心,也是电池质量好坏的关键之一。在太阳能电池领域中,传统扩散工艺核心步骤有:氧化、扩散、推进,具体步骤为:前氧阶段、扩散阶段(一)、后氧化阶段、推进阶段、扩散阶段(二)、再推进阶段;其中后氧化的作用使通入的和部分残留在硅片表面的POCl3进一步氧化成P原子,而推进的作用是把P原子推进硅片内部形成PN结。后氧化和推进步的O2流量和温度这两个参数对表面浓度和表面浓度梯度影响较大,而表面浓度以及表面浓度梯度对电池片的效率影响较大。因此,设计一种方案,降低表面浓度和表面浓度梯度,提高开路电压和欧姆接触,最终提高太阳能电池转化效率显得尤为重要。
发明内容
本发明的目的是提供一种提高晶体硅太阳能电池效率的扩散工艺,通过把传统工艺中的后氧化与推进这两步演变成五步,这五步是让氧化和推进同时进行。五步的氧气流量逐渐增加,温度按一定梯度逐渐增加。即在推进的过程中,推动力逐渐增加,但五步整体时间和两步一致。该工艺相比传统工艺表面浓度更低,浓度梯度更平缓。这样一方面提高开压;另一方面有利于欧姆接触,降低串联电阻,提高填充因子,一定程度上提高电池片效率。
一种提高晶体硅太阳能电池效率的扩散工艺,分为16个步骤,分别为:1)进舟阶段;2)出舟阶段;3)检漏阶段;4)加热阶段;5)前氧阶段、6)扩散阶段(一);7)氧化推进阶段(一);8)氧化推进阶段(二)、9)氧化推进阶段(三)、10)氧化推进阶段(四)、11)氧化推进阶段(五);12)扩散阶段(二);13)再推进阶段;14)冷却阶段;15)进舟阶段;16)出舟阶段。
一种提高晶体硅太阳能电池效率的扩散工艺,扩散设备采用荷兰TEMPRESS扩散炉,具体为:
1)进舟阶段:大N2流量5slm,O2流量0sccm,小N2流量0sccm,压力5Pa;
2)出舟阶段:大N2流量5slm2slm,O2流量0sccm,小N2流量0sccm,压力-30pa,时间8min;
3)检漏阶段:炉内通入氮气8.5slm,大N2流量5slm2slm,O2流量0sccm,小N2流量0sccm,压力-200pa,时间2min;
4)加热阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力10pa,时间15min;
5)前氧化阶段:大N2流量12slm,O2流量1000sccm,小N2流量0sccm,压力10pa,时间2min;
6)扩散阶段:大N2流量12slm,O2流量350sccm,小N2流量1000sccm,压力10pa,时间15min;温度800℃-850℃;
7)氧化推进阶段(一):大N2流量12slm,O2流量500sccm,小N2流量50sccm,压力10pa,时间3min,温度:820℃;
8)氧化推进阶段(二):大N2流量12slm,O2流量1500sccm,小N2流量50sccm,压力10pa,时间2min;826℃;
9)氧化推进阶段(三):大N2流量12slm,O2流量2500sccm,小N2流量50sccm,压力10pa,时间2min;832℃;
10)氧化推进阶段(四):大N2流量12slm,O2流量3500sccm,小N2流量50sccm,压力10pa,时间2min;838℃;
11)氧化推进阶段(五):大N2流量12slm,O2流量4500sccm,小N2流量50sccm,压力10Pa,时间3min;844℃;
12)扩散阶段:大N2流量12slm,O2流量350sccm,小N2流量1000sccm,压力10pa,时间2min;温度800℃-850℃;
13)推进阶段::大N2流量12slm,O2流量500sccm,小N2流量50sccm,压力10pa,时间7min;
14)冷却阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力15Pa,时间15min;
15)进桨阶段:大N2流量10slm,O2流量0sccm,小N2流量0sccm,压力-30Pa,时间10min;
16)退出阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力5Pa,时间8min。
一种提高晶体硅太阳能电池效率的扩散工艺,扩散设备采用荷兰TEMPRESS扩散炉,具体为:
1)进舟阶段:大N2流量5slm,O2流量0sccm,小N2流量0sccm,压力5Pa;
2)出舟阶段:大N2流量5slm2slm,O2流量0sccm,小N2流量0sccm,压力-30pa,时间8min;
3)检漏阶段:炉内通入氮气8.5slm,大N2流量5slm2slm,O2流量0sccm,小N2流量0sccm,压力-200pa,时间2min;
4)加热阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力10pa,时间15min;
5)前氧化阶段:大N2流量12slm,O2流量1000sccm,小N2流量0sccm,压力10pa,时间2min;
6)扩散阶段:大N2流量12slm,O2流量350sccm,小N2流量1000sccm,压力10pa,时间15min;温度800℃-850℃;
7)氧化推进阶段(一):大N2流量12slm,O2流量500sccm,小N2流量50sccm,压力10pa,时间3min,温度:820℃;
8)氧化推进阶段(二):大N2流量12slm,O2流量1500sccm,小N2流量50sccm,压力10pa,时间2min;824℃;
9)氧化推进阶段(三):大N2流量12slm,O2流量2500sccm,小N2流量50sccm,压力10pa,时间2min;828℃;
10)氧化推进阶段(四):大N2流量12slm,O2流量3500sccm,小N2流量50sccm,压力10pa,时间2min;832℃;
11)氧化推进阶段(五):大N2流量12slm,O2流量4500sccm,小N2流量50sccm,压力10Pa,时间3min;836℃;
12)扩散阶段:大N2流量12slm,O2流量350sccm,小N2流量1000sccm,压力10pa,时间2min;温度800℃-850℃;
13)推进阶段::大N2流量12slm,O2流量500sccm,小N2流量50sccm,压力10pa,时间7min;
14)冷却阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力15Pa,时间15min;
15)进桨阶段:大N2流量10slm,O2流量0sccm,小N2流量0sccm,压力-30Pa,时间10min;
16)退出阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力5Pa,时间8min。
本发明的优点在于:把传统工艺中的后氧化与推进这两步演变成五步,氧化和推进同时进行,五步的氧气流量逐渐增加,温度按一定梯度逐渐增加,使电池片效率有一定的提高。
具体实施方式
为了是本技术领域的人员更好的理解本发明专利方案,并使本发明的上述目的,特征和优点能够更明显易懂,下面结合实施例做进一步详细说明。
实施例一:
一种提高晶体硅太阳能电池效率的扩散工艺,取硅片是电阻率为1-3Ω.cm的156mmx156mm规格的P型多晶硅片500pcs,将硅片进行制绒,扩散设备采用荷兰TEMPRESS扩散炉,扩散工艺具体为:
1)进舟阶段:大N2流量5slm,O2流量0sccm,小N2流量0sccm,压力5Pa;
2)出舟阶段:大N2流量5slm2slm,O2流量0sccm,小N2流量0sccm,压力-30pa,时间8min;
3)检漏阶段:炉内通入氮气8.5slm,大N2流量5slm2slm,O2流量0sccm,小N2流量0sccm,压力-200pa,时间2min;
4)加热阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力10pa,时间15min;
5)前氧化阶段:大N2流量12slm,O2流量1000sccm,小N2流量0sccm,压力10pa,时间2min;
6)扩散阶段:大N2流量12slm,O2流量350sccm,小N2流量1000sccm,压力10pa,时间15min;温度800℃-850℃;
7)氧化推进阶段(一):大N2流量12slm,O2流量500sccm,小N2流量50sccm,压力10pa,时间3min,温度:820℃;
8)氧化推进阶段(二):大N2流量12slm,O2流量1500sccm,小N2流量50sccm,压力10pa,时间2min;826℃;
9)氧化推进阶段(三):大N2流量12slm,O2流量2500sccm,小N2流量50sccm,压力10pa,时间2min;832℃;
10)氧化推进阶段(四):大N2流量12slm,O2流量3500sccm,小N2流量50sccm,压力10pa,时间2min;838℃;
11)氧化推进阶段(五):大N2流量12slm,O2流量4500sccm,小N2流量50sccm,压力10Pa,时间3min;844℃;
12)扩散阶段:大N2流量12slm,O2流量350sccm,小N2流量1000sccm,压力10pa,时间2min;温度800℃-850℃;
13)推进阶段::大N2流量12slm,O2流量500sccm,小N2流量50sccm,压力10pa,时间7min;
14)冷却阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力15Pa,时间15min;
15)进桨阶段:大N2流量10slm,O2流量0sccm,小N2流量0sccm,压力-30Pa,时间10min;
16)退出阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力5Pa,时间8min。
实施例二:
一种提高晶体硅太阳能电池效率的扩散工艺,取硅片是电阻率为1-3Ω.cm的156mmx156mm规格的P型多晶硅片500pcs,将硅片进行制绒,扩散设备采用荷兰TEMPRESS扩散炉,扩散工艺具体为:
1)进舟阶段:大N2流量5slm,O2流量0sccm,小N2流量0sccm,压力5Pa;
2)出舟阶段:大N2流量5slm2slm,O2流量0sccm,小N2流量0sccm,压力-30pa,时间8min;
3)检漏阶段:炉内通入氮气8.5slm,大N2流量5slm2slm,O2流量0sccm,小N2流量0sccm,压力-200pa,时间2min;
4)加热阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力10pa,时间15min;
5)前氧化阶段:大N2流量12slm,O2流量1000sccm,小N2流量0sccm,压力10pa,时间2min;
6)扩散阶段:大N2流量12slm,O2流量350sccm,小N2流量1000sccm,压力10pa,时间15min;温度800℃-850℃;
7)氧化推进阶段(一):大N2流量12slm,O2流量500sccm,小N2流量50sccm,压力10pa,时间3min,温度:820℃;
8)氧化推进阶段(二):大N2流量12slm,O2流量1500sccm,小N2流量50sccm,压力10pa,时间2min;824℃;
9)氧化推进阶段(三):大N2流量12slm,O2流量2500sccm,小N2流量50sccm,压力10pa,时间2min;828℃;
10)氧化推进阶段(四):大N2流量12slm,O2流量3500sccm,小N2流量50sccm,压力10pa,时间2min;832℃;
11)氧化推进阶段(五):大N2流量12slm,O2流量4500sccm,小N2流量50sccm,压力10Pa,时间3min;836℃;
12)扩散阶段:大N2流量12slm,O2流量350sccm,小N2流量1000sccm,压力10pa,时间2min;温度800℃-850℃;
13)推进阶段::大N2流量12slm,O2流量500sccm,小N2流量50sccm,压力10pa,时间7min;
14)冷却阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力15Pa,时间15min;
15)进桨阶段:大N2流量10slm,O2流量0sccm,小N2流量0sccm,压力-30Pa,时间10min;
16)退出阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力5Pa,时间8min。
对比例:
取硅片电阻率为1-3Ω.cm的156mmX156mm规格的P型多晶硅片500pcs,将硅片采用下述传统扩散工艺,扩散设备采用荷兰TEMPRESS扩散炉:
1)进舟阶段:大N2流量5slm,O2流量0sccm,小N2流量0sccm,压力5Pa;
2)出舟阶段:大N2流量5slm2slm,O2流量0sccm,小N2流量0sccm,压力-30pa,时间8min;
3)检漏阶段:炉内通入氮气8.5slm,大N2流量5slm2slm,O2流量0sccm,小N2流量0sccm,压力-200pa,时间2min;
4)加热阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力10pa,时间15min;
5)前氧化阶段:大N2流量12slm,O2流量1000sccm,小N2流量0sccm,压力10pa,时间2min;
6)扩散阶段:大N2流量12slm,O2流量350sccm,小N2流量1000sccm,压力10pa,时间15min;温度800℃-850℃;
7)后氧化阶段:大N2流量12slm,O2流量500sccm,小N2流量50sccm,压力10pa,时间6min;温度822℃;
8)推进阶段:大N2流量12slm,O2流量4500sccm,小N2流量50sccm,压力10Pa,时间6min;温度822℃;
9)扩散阶段:大N2流量12slm,O2流量350sccm,小N2流量1000sccm,压力10pa,时间2min;温度800℃-850℃;
10)推进阶段::大N2流量12slm,O2流量500sccm,小N2流量50sccm,压力10pa,时间7min;
11)冷却阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力15Pa,时间15min;
12)进桨阶段:大N2流量10slm,O2流量0sccm,小N2流量0sccm,压力-30Pa,时间10min;
13)退出阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力5Pa,时间8min。
采用实施例1、2和对比例扩散后的硅片经过后续刻蚀,镀膜,正反面电极印刷,烧结工序,其电池片的转换效率如下表所示:
实施例1和2中五步氧化推进同时进行,温度较对比例高,表面浓度较对比例要低,表面浓度梯度要小。由数据可以看出,改善后的实施例一的开压高0.9mV,短路电流高10mA,Rs低0.02mΩ,FF高0.59%,效率较对比例提高0.18%;改善后的实施例二的开压高1.1mV,短路电流高8mA,Rs低0.02mΩ,FF高0.48%,效率较对比例提高0.15%。

Claims (3)

1.一种提高晶体硅太阳能电池效率的扩散工艺,其特征在于:分为16个步骤,分别为:1)进舟阶段;2)出舟阶段;3)检漏阶段;4)加热阶段;5)前氧阶段、6)扩散阶段(一);7)氧化推进阶段(一);8)氧化推进阶段(二)、9)氧化推进阶段(三)、10)氧化推进阶段(四)、11)氧化推进阶段(五);12)扩散阶段(二);13)再推进阶段;14)冷却阶段;15)进舟阶段;16)出舟阶段。
2.一种提高晶体硅太阳能电池效率的扩散工艺,其特征在于:扩散设备采用荷兰TEMPRESS扩散炉,具体为:
1)进舟阶段:大N2流量5slm,O2流量0sccm,小N2流量0sccm,压力5Pa;
2)出舟阶段:大N2流量5slm2slm,O2流量0sccm,小N2流量0sccm,压力-30pa,时间8min;
3)检漏阶段:炉内通入氮气8.5slm,大N2流量5slm2slm,O2流量0sccm,小N2流量0sccm,压力-200pa,时间2min;
4)加热阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力10pa,时间15min;
5)前氧化阶段:大N2流量12slm,O2流量1000sccm,小N2流量0sccm,压力10pa,时间2min;
6)扩散阶段:大N2流量12slm,O2流量350sccm,小N2流量1000sccm,压力10pa,时间15min;温度800℃-850℃;
7)氧化推进阶段(一):大N2流量12slm,O2流量500sccm,小N2流量50sccm,压力10pa,时间3min,温度:820℃;
8)氧化推进阶段(二):大N2流量12slm,O2流量1500sccm,小N2流量50sccm,压力10pa,时间2min;826℃;
9)氧化推进阶段(三):大N2流量12slm,O2流量2500sccm,小N2流量50sccm,压力10pa,时间2min;832℃;
10)氧化推进阶段(四):大N2流量12slm,O2流量3500sccm,小N2流量50sccm,压力10pa,时间2min;838℃;
11)氧化推进阶段(五):大N2流量12slm,O2流量4500sccm,小N2流量50sccm,压力10Pa,时间3min;844℃;
12)扩散阶段:大N2流量12slm,O2流量350sccm,小N2流量1000sccm,压力10pa,时间2min;温度800℃-850℃;
13)推进阶段::大N2流量12slm,O2流量500sccm,小N2流量50sccm,压力10pa,时间7min;
14)冷却阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力15Pa,时间15min;
15)进桨阶段:大N2流量10slm,O2流量0sccm,小N2流量0sccm,压力-30Pa,时间10min;
16)退出阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力5Pa,时间8min。
3.一种提高晶体硅太阳能电池效率的扩散工艺,其特征在于:扩散设备采用荷兰TEMPRESS扩散炉,具体为:
1)进舟阶段:大N2流量5slm,O2流量0sccm,小N2流量0sccm,压力5Pa;
2)出舟阶段:大N2流量5slm2slm,O2流量0sccm,小N2流量0sccm,压力-30pa,时间8min;
3)检漏阶段:炉内通入氮气8.5slm,大N2流量5slm2slm,O2流量0sccm,小N2流量0sccm,压力-200pa,时间2min;
4)加热阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力10pa,时间15min;
5)前氧化阶段:大N2流量12slm,O2流量1000sccm,小N2流量0sccm,压力10pa,时间2min;
6)扩散阶段:大N2流量12slm,O2流量350sccm,小N2流量1000sccm,压力10pa,时间15min;温度800℃-850℃;
7)氧化推进阶段(一):大N2流量12slm,O2流量500sccm,小N2流量50sccm,压力10pa,时间3min,温度:820℃;
8)氧化推进阶段(二):大N2流量12slm,O2流量1500sccm,小N2流量50sccm,压力10pa,时间2min;824℃;
9)氧化推进阶段(三):大N2流量12slm,O2流量2500sccm,小N2流量50sccm,压力10pa,时间2min;828℃;
10)氧化推进阶段(四):大N2流量12slm,O2流量3500sccm,小N2流量50sccm,压力10pa,时间2min;832℃;
11)氧化推进阶段(五):大N2流量12slm,O2流量4500sccm,小N2流量50sccm,压力10Pa,时间3min;836℃;
12)扩散阶段:大N2流量12slm,O2流量350sccm,小N2流量1000sccm,压力10pa,时间2min;温度800℃-850℃;
13)推进阶段::大N2流量12slm,O2流量500sccm,小N2流量50sccm,压力10pa,时间7min;
14)冷却阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力15Pa,时间15min;
15)进桨阶段:大N2流量10slm,O2流量0sccm,小N2流量0sccm,压力-30Pa,时间10min;
16)退出阶段:大N2流量12slm,O2流量0sccm,小N2流量0sccm,压力5Pa,时间8min。
CN201510401290.5A 2015-07-10 2015-07-10 一种提高晶体硅太阳能电池效率的扩散工艺 Active CN105070654B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510401290.5A CN105070654B (zh) 2015-07-10 2015-07-10 一种提高晶体硅太阳能电池效率的扩散工艺

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510401290.5A CN105070654B (zh) 2015-07-10 2015-07-10 一种提高晶体硅太阳能电池效率的扩散工艺

Publications (2)

Publication Number Publication Date
CN105070654A true CN105070654A (zh) 2015-11-18
CN105070654B CN105070654B (zh) 2018-02-13

Family

ID=54499992

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510401290.5A Active CN105070654B (zh) 2015-07-10 2015-07-10 一种提高晶体硅太阳能电池效率的扩散工艺

Country Status (1)

Country Link
CN (1) CN105070654B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107681018A (zh) * 2017-09-14 2018-02-09 横店集团东磁股份有限公司 一种太阳能电池片的低压氧化工艺
CN112582499A (zh) * 2020-11-30 2021-03-30 中建材浚鑫科技有限公司 一种适用于多主栅搭配大尺寸硅片的扩散工艺
CN115172518A (zh) * 2022-07-08 2022-10-11 酒泉正泰新能源科技有限公司 一种太阳能电池的多次氧化扩散方法、制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589191A (en) * 1983-10-20 1986-05-20 Unisearch Limited Manufacture of high efficiency solar cells
CN102732967A (zh) * 2012-06-01 2012-10-17 上饶光电高科技有限公司 一种选择性发射极晶体硅太阳电池的磷浆扩散工艺
CN104299896A (zh) * 2013-07-18 2015-01-21 北京中科信电子装备有限公司 一种多步推进扩散工艺
CN104319308A (zh) * 2014-09-16 2015-01-28 上饶光电高科技有限公司 一种提高晶体硅太阳能电池扩散均匀性的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4589191A (en) * 1983-10-20 1986-05-20 Unisearch Limited Manufacture of high efficiency solar cells
CN102732967A (zh) * 2012-06-01 2012-10-17 上饶光电高科技有限公司 一种选择性发射极晶体硅太阳电池的磷浆扩散工艺
CN104299896A (zh) * 2013-07-18 2015-01-21 北京中科信电子装备有限公司 一种多步推进扩散工艺
CN104319308A (zh) * 2014-09-16 2015-01-28 上饶光电高科技有限公司 一种提高晶体硅太阳能电池扩散均匀性的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107681018A (zh) * 2017-09-14 2018-02-09 横店集团东磁股份有限公司 一种太阳能电池片的低压氧化工艺
CN112582499A (zh) * 2020-11-30 2021-03-30 中建材浚鑫科技有限公司 一种适用于多主栅搭配大尺寸硅片的扩散工艺
CN112582499B (zh) * 2020-11-30 2022-09-23 中建材浚鑫科技有限公司 一种适用于多主栅搭配大尺寸硅片的扩散工艺
CN115172518A (zh) * 2022-07-08 2022-10-11 酒泉正泰新能源科技有限公司 一种太阳能电池的多次氧化扩散方法、制备方法

Also Published As

Publication number Publication date
CN105070654B (zh) 2018-02-13

Similar Documents

Publication Publication Date Title
CN110299422B (zh) 一种激光硼掺杂选择性发射极TOPCon结构电池及其制备方法
CN112490304A (zh) 一种高效太阳能电池的制备方法
CN104733555A (zh) 一种高效n型双面太阳电池及其制备方法
CN115621333A (zh) 双面隧穿氧化硅钝化的背接触太阳能电池及其制备方法
CN102191562B (zh) 一种n型晶体硅太阳电池的硼扩散方法
CN207441709U (zh) 一种晶体硅太阳能电池结构
CN104319308B (zh) 一种提高晶体硅太阳能电池扩散均匀性的方法
CN105070654A (zh) 一种提高晶体硅太阳能电池效率的扩散工艺
CN103050581A (zh) 一种激光掺杂选择性发射结的扩散工艺
CN106409989A (zh) 一种n型双面太阳电池及其制备方法
CN103094417B (zh) 低高低掺杂浓度的发射极结构的太阳能电池制作方法
CN103633192A (zh) 一种提升晶体硅太阳电池光电转换效率的扩散工艺
CN104538485A (zh) 一种双面电池的制备方法
CN105489700A (zh) 一种带集成二极管的太阳电池的制备方法
CN115332366A (zh) 一种背钝化接触异质结太阳电池及其制备方法
CN108389933B (zh) 一种高浓度磷硅玻璃且高方阻的扩散方法
CN116666479B (zh) 一种双面发电的高效选择性发射极晶硅电池及其制备方法
CN108447944A (zh) 一种n型pert双面电池制备方法
CN102157626B (zh) 一种降低太阳能电池发射极和埋栅电极间接触电阻的方法
CN204497251U (zh) 一种高效n型双面太阳电池
CN107768482A (zh) 一种晶体硅太阳能电池热氧工艺
CN102683492A (zh) 双面背接触晶体硅太阳能电池的制备方法
CN105244412A (zh) 一种n型晶硅电池硼发射极的钝化方法
CN113257954B (zh) 一种解决碱抛se-perc电池el不良的方法
CN104120494A (zh) 一种适用于提升晶体硅太阳能电池转换效率的扩散工艺

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 334100 Shangrao City Economic Development Zone, Jiangxi

Patentee after: JIANGXI ZHANYU NEW ENERGY CO., LTD.

Address before: 334100 Shangrao City Economic Development Zone, Jiangxi

Patentee before: SRPV High-tech Co.,Ltd.

CP01 Change in the name or title of a patent holder
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: Diffusion technology capable of improving the efficiency of a crystalline silicon solar cell

Effective date of registration: 20190822

Granted publication date: 20180213

Pledgee: Shangrao Branch of Jiujiang Bank Co., Ltd.

Pledgor: JIANGXI ZHANYU NEW ENERGY CO., LTD.

Registration number: Y2019360000006

PC01 Cancellation of the registration of the contract for pledge of patent right
PC01 Cancellation of the registration of the contract for pledge of patent right

Date of cancellation: 20200724

Granted publication date: 20180213

Pledgee: Shangrao Branch of Jiujiang Bank Co.,Ltd.

Pledgor: JIANGXI UNIEX NEW ENERGY Co.,Ltd.

Registration number: Y2019360000006

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210120

Address after: No.8 Xingye Avenue, Shangrao economic and Technological Development Zone, Jiangxi Province 334100

Patentee after: Shangrao Jietai New Energy Technology Co., Ltd

Address before: 334100 Shangrao City Economic Development Zone, Jiangxi

Patentee before: JIANGXI UNIEX NEW ENERGY Co.,Ltd.