CN105054918B - 一种基于脉搏反射波传输时间的血压计算方法及血压仪 - Google Patents

一种基于脉搏反射波传输时间的血压计算方法及血压仪 Download PDF

Info

Publication number
CN105054918B
CN105054918B CN201510447025.0A CN201510447025A CN105054918B CN 105054918 B CN105054918 B CN 105054918B CN 201510447025 A CN201510447025 A CN 201510447025A CN 105054918 B CN105054918 B CN 105054918B
Authority
CN
China
Prior art keywords
pulse
pressure
blood pressure
rwtt
diastolic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510447025.0A
Other languages
English (en)
Other versions
CN105054918A (zh
Inventor
杨佳威
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hagnzhou Warm Caramel Core Electronic Technology Co Ltd
Original Assignee
Hagnzhou Warm Caramel Core Electronic Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hagnzhou Warm Caramel Core Electronic Technology Co Ltd filed Critical Hagnzhou Warm Caramel Core Electronic Technology Co Ltd
Priority to CN201510447025.0A priority Critical patent/CN105054918B/zh
Publication of CN105054918A publication Critical patent/CN105054918A/zh
Priority to AU2016300616A priority patent/AU2016300616B2/en
Priority to ES16829612T priority patent/ES2954155T3/es
Priority to EP16829612.7A priority patent/EP3295868B1/en
Priority to HUE16829612A priority patent/HUE063007T2/hu
Priority to PCT/CN2016/079694 priority patent/WO2017016245A1/zh
Priority to US15/562,253 priority patent/US10537254B2/en
Application granted granted Critical
Publication of CN105054918B publication Critical patent/CN105054918B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0475Special features of memory means, e.g. removable memory cards

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Signal Processing (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Vascular Medicine (AREA)
  • Power Engineering (AREA)
  • Ophthalmology & Optometry (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

本发明涉及一种基于脉搏反射波传输时间的血压计算方法及血压仪,包括以下步骤:S1:采集指尖的脉搏波形数据并存储;S2:处理脉搏波形数据,得出心率和多个脉搏周期的参数,并在每一个脉搏周期中检测脉搏波主波起点SPL1和反射波增长点SPL2的时间轴坐标,计算相应的脉搏反射波传输时间RWTT:RWTT=SPL2‑SPL1;S3:计算形成RWTT数组;S4:根据RWTT数组和心率,计算收缩压和舒张压,本发明血压计算方法和血压仪仅使用1个传感器测量指尖脉搏,简单、方便、快捷,通过分析脉搏反射波与人体血压的相关基础理论,建立起RWTT与收缩压和舒张压的相关模型,并根据两个血压模型计算出收缩压和舒张压,本发明计算出的收缩压和舒张压更加准确,误差更小,适用的范围大。

Description

一种基于脉搏反射波传输时间的血压计算方法及血压仪
技术领域
本发明涉及一种基于脉搏反射波传输时间的血压计算方法及血压仪,属于医疗器械技术领域。
背景技术
传统的电子血压仪均须通过袖套加压和减压,采用听诊法或示波法来测量血压。由于袖套加压造成的不适感,这类血压仪被称为侵入式(Invasive)血压仪。近年来出现了一些非侵入式(Non-Invasive)的血压仪,一般基于测量脉搏波传输时间(Pulse TransitTime,PTT)和PTT-BP血压模型来计算脉搏波传播速度,进而估算收缩压。
如中国专利授权公告号CN102223837 B、名称为《测定脉搏波传播速度作为血压信息的血压信息测定装置》的专利中公开:在测定装置中,利用分别装戴在上臂和下肢(脚腕)的袖带来测定上臂的血压和下肢的血压(S101)。而且,利用这些袖带同步地测定上臂的脉搏波和下肢的脉搏波(S103)。然后,基于这两个脉搏波的出现时间差,计算上臂下肢部脉搏波传播速度(baPWV)(S105、S107)。而且,基于上臂脉搏波的射血波和反射波的出现时间差,计算上臂脉搏波传播速度(上臂PWV)(S109、S111)。这种方法需要2个传感器,通常1个放置于心脏附近用于接收心音信号(ECG),另1个放置于人体四肢(手腕、手指、足底等)或耳后等部位用于接收传播到该处的脉搏波信号(通常由容积描记法取得,即PPG)。通过比较2个信号,测算出脉搏波传输时间。该方法中,2个传感器各自有相应的电路并通过导线互联,因此使用起来并不方便,通常被制作在一些可穿戴服装(饰)中。另外也有方法直接将2个传感器放置于手腕和手指处,通过比较此2处的脉搏波信号来测量从手腕到手指的PTT。然而该方法计算得出的脉搏波传播速度是局部的,并不符合PTT-BP血压模型中的定义,因此所估算的收缩压数值会有较大的偏差。
发明内容
本发明要解决的技术问题是:为克服上述问题,提供一种全新的基于脉搏反射波传输时间(Return Wave Transmission Time,RWTT)的血压电子测量技术和方法,仅需1个传感器,利用手指接触传感器的方式,通过复杂的算法计算,在短短数秒内即可计算得出舒张压、收缩压和心率等数值。
本发明解决其技术问题所采用的技术方案是:
一种基于脉搏反射波传输时间的血压计算方法,包括以下步骤:
S1:采集指尖的脉搏波形数据并存储;
S2:处理所述脉搏波形数据,得出心率和多个脉搏周期的参数,并在每一个所述脉搏周期中检测脉搏波主波起点SPL1和反射波增长点SPL2的时间轴坐标,计算相应的脉搏反射波传输时间RWTT:RWTT=SPL2-SPL1;
S3:计算每个所述脉搏周期中的脉搏反射波传输时间RWTT,形成RWTT数组;
S4:根据所述RWTT数组和心率,计算收缩压和舒张压。
优选地,还包括步骤S5:对最终计算出的收缩压和舒张压进行个人校正。
优选地,还包括步骤S21:对所述反射波增长点SPL2根据不同类型的脉搏波的轮廓特征进行相应的校正。
优选地,计算收缩压步骤具体为:根据所述RWTT数组,建立收缩压SYS公式:其中KS为1.2-1.8,优选1.5。
优选地,计算舒张压步骤具体为:根据所述RWTT数组,建立第一舒张压DIA公式:其中Kd1为2.1-3.3,优选2.7,Kd2为0.3-0.8,优选0.5,HR为心率。
优选地,计算舒张压具体为:根据所述RWTT数组,建立第二舒张压DIA公式:其中Kd1为1.6-2.4,优选2,Kd2为12-18,优选15,Kd3为52(Pnor-DC)~79(Pnor-DC),优选66(Pnor-DC),SL为标准化斜率,上述Pnor和DC分别为脉搏周期中的基准波峰和基准直流电压。
优选地,所述步骤S5具体为:将计算出的收缩压和舒张压与预先标准结果进行比对,分别得到收缩压校正参数Ksc和舒张压校正参数Kdc,将所述收缩压校正参数Ksc代入所述收缩压SYS公式形成收缩压SYS校正公式,将所述舒张压校正参数Kdc代入所述第一舒张压DIA公式和第二舒张压DIA公式,分别形成第一舒张压DIA校正公式和第二舒张压DIA校正公式。
优选地,所述收缩压SYS校正公式具体为:其中KS为1.2-1.8,优选1.5。
优选地,第一舒张压DIA校正公式具体为:其中Kd1为2.1-3.3,优选2.7,Kd2为0.3-0.8,优选0.5,HR为心率。
优选地,第二舒张压DIA校正公式具体为:其中Kd1为1.6-2.4,优选2,Kd2为12-18,优选15,Kd3为52(Pnor-DC)~79(Pnor-DC),优选66(Pnor-DC),SL为标准化斜率。
优选地,所述RWTT数组可替换为10s时间所采集的所有脉搏周期所计算得出的RWTT数组的中值RTM,从而算出10s时间内的收缩压和舒张压的中值。
优选地,所述心率HR和标准化斜率SL可替换为10s时间所采集的所有脉搏周期所计算得出的心率HR和标准化斜率SL的中值或平均值。
一种采用以上所述的基于脉搏反射波传输时间的血压计算方法的血压仪,包括脉搏传感器,所述脉搏传感器依次连接有线性电流电压转化电路、单位增益缓冲器、低通放大电路、模数转换电路和处理器,所述处理器还连接有电源。
优选地,所述脉搏传感器只设置一个。
优选地,所述处理器还连接有存储器和/或显示与录入模块和/或低压差线性稳压器。
优选地,所述低通放大电路的转角频率为20-50Hz。
优选地,所述模数转换电路的采样率设置为1kS/s。
优选地,所述处理器对数字化后的数据进行低通数字滤波,转角频率为10Hz,进一步去除噪声。
本发明的有益效果是:(1)本发明血压计算方法仅使用1个传感器测量指尖脉搏,简单、方便、快捷,通过分析脉搏反射波与人体血压的相关基础理论,建立起RWTT与收缩压和舒张压的相关模型,并根据两个血压模型计算出收缩压和舒张压,本方法计算出的收缩压和舒张压更加准确,误差更小,适用的范围大。同时本发明将该项技术与光电容积脉搏传感器完美结合,利用手指接触脉搏传感器获取脉搏波形并针对脉搏波形进行一系列的分析和计算,最终计算出血压并同时获得心率数据。
(2)本发明中的第二舒张压DIA公式由于考虑到了标准化斜率的影响,特别添加了标准化斜率的参数,因此对于血压舒张期衰减速率异常的人士更加适用,测量出的舒张压更加准确。
(3)本发明对最终计算出的收缩压和舒张压进行个人校正,用户在使用本发明的电子产品时需要先录入身高与其用标准水银血压计的测量结果数据,使用个人身高数值并进行个人血压自动校正,可以针对不同的患者获取更加精准的测量结果。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是脉搏反射波传输时间RWTT与脉搏波传输时间PTT的关系图;
图2是本发明所述血压计算方法的流程图;
图3是本发明所述血压仪的结构框图;
图4是五种类别的脉搏波轮廓图;
图5是一个具体的血压波形图。
图中标记:1-脉搏波传感器,2-线性电流电压转化电路,3-单位增益缓冲器,4-低通放大电路,5-模数转换电路,6-处理器,7-内部存储器,8-外部存储器,9-显示与录入模块,10-电源,11-低压差线性稳压器。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
实施例1
如图2所示的本发明所述一种基于脉搏反射波传输时间的血压计算方法,,包括以下步骤:
S1:采集指尖的脉搏波形数据并存储,在本发明的实际电子测量技术中,使用手指处测得的脉搏波波形表征该处的血压波形;
S2:处理所述脉搏波形数据,得出心率和多个脉搏周期的参数,本发明实施的基础关键参数反射波传输时间(Return Wave Transmission Time,RWTT)的定义如图1所示,为血压波形的主波起点和其反射波增长点之间的时间间隔。因此在每一个所述脉搏周期中检测脉搏波主波起点SPL1和反射波增长点SPL2的时间轴坐标,计算相应的脉搏反射波传输时间RWTT:RWTT=SPL2-SPL1,RWTT与脉搏波传输时间PTT定义的区别也如图1所示,PTT定义为心音信号的R峰值与血压(脉搏)波形的主波起点之间的时间间隔;
S3:通过上述公式计算所述脉搏波形数据中的每个所述脉搏周期中的脉搏反射波传输时间RWTT,形成RWTT数组;
S4:根据所述RWTT数组和心率,分别建立RWTT数组与收缩压和舒张压的计算公式,计算出收缩压和舒张压。
本发明血压计算方法仅使用1个传感器测量指尖脉搏,简单、方便、快捷,通过分析脉搏反射波与人体血压的相关基础理论,建立起RWTT与收缩压和舒张压的相关模型,并根据两个血压模型计算出收缩压和舒张压,本方法计算出的收缩压和舒张压更加准确,误差更小,适用的范围大。同时本发明将该项技术与光电容积脉搏传感器完美结合,利用手指接触脉搏传感器获取脉搏波形并针对脉搏波形进行一系列的分析和计算,最终计算出血压并同时获得心率数据。
实施例2
在实施例1所述的基于脉搏反射波传输时间的血压计算方法的基础上,还包括步骤S5:对最终计算出的收缩压和舒张压进行个人校正,用户在使用本发明的电子产品时需要先录入身高与其用标准水银血压计的测量结果数据,使用个人身高数值并进行个人血压自动校正,以获取精准测量结果。
优选的还包括步骤S21:对所述反射波增长点SPL2根据不同类型的脉搏波的轮廓特征进行相应的校正,在本实施例中,所述反射波增长点SPL2的校正涉及的五种类型脉搏波轮廓如图4所示,分四大类别,其中类别三有两种类型。类别一的反射波与主波之间呈现沟谷(notch);类别二的反射波与主波之间没有沟谷,但呈现一小段较平坦的转折段;类别三的反射波与主波之间没有沟谷,但有斜率的改变;类别三分两种类型,第一种类型主峰保持原有形状,第二种类型主峰出现增宽,将相应部分的反射波覆盖;类别四的反射波部分进一步靠近并融入主波,二者之间的斜率变化不明显。类别一脉搏波的二阶波形中,反射波增长点SPL2不需要校正,即为反射波增长点所引发的波峰位置;类别二和类别三第一种类型需对反射波增长点SPL2进行适当的微调;类别三第二种类型的反射波增长点SPL2需进行较大调整,以上调整为对发射波增长点SPL2进行前或后的移动,为现有的技术手段。
实施例3
在以上实施例1和实施例2所述基于脉搏反射波传输时间的血压计算方法的基础上,计算收缩压步骤具体为:根据所述RWTT数组,建立收缩压SYS公式,根据脉搏波传输时间PTT-血压BP模型,血液由心室通过动脉网络传播到指尖的过程可以等效为脉搏波在一个刚性管道中传播的过程,因此压力做的功等于动能和势能的总和,若我们规定在测量时把手指放在与心脏等高的位置,则可以只考虑动能。根据相关的物理理论,可以推导出:其中KS为1.5,可通过大量实验验证其准确性;此公式推出的收缩压SYS的单位为kg/m3,通过换算可转换为毫米汞柱为单位。
计算舒张压步骤具体为:舒张压的定义为动脉血压波形在舒张期衰减的最低点。舒张期血压的衰减速度取决于一系列因素,包括在收缩期主动脉血压的累积和动脉系统阻抗(与动脉系统尤其是小动脉血管壁的硬度相关)等;舒张压同样与BP有很高相关度,即与PTT2和RWTT2均有着高相关度;因此根据所述RWTT数组,建立第一舒张压DIA公式:其中Kd1为2.7,Kd2为0.5,HR为心率,此公式推出的舒张压DIA的单位为毫米汞柱,本发明中参数的数值可根据使用环境进行变换,使用了本发明中计算公式,仅将参数进行常规变换落入本发明的保护范围。
实施例4
在以上实施例所述基于脉搏反射波传输时间的血压计算方法基础上,计算舒张压具体为:根据所述RWTT数组,建立第二舒张压DIA公式:其中Kd1为2,Kd2为15,Kd3为66(Pnor-DC),SL为标准化斜率,此公式推出的舒张压DIA的单位为毫米汞柱。对于特定的个体而言,动脉血压衰减到的最低程度与其所允许的衰减时间有关,也与其衰减斜坡的斜率有关;其中衰减时间与该血压波形的周期成正比,与瞬时心率成反比;而衰减斜坡的斜率在测量所得的脉搏(血压)波形中与该波形信号的强弱(幅值)有关,因此需要进行标准化(归一化)处理。
标准化斜率SL的推导示意图见附图5,根据图示,Td为每个波形周期的衰减时间,Pnor代表波峰,Vnor代表波谷;每个波形都参考基准波峰Pnor进行标准化,因此标准化后的波谷Vnor为:
其中DC为传感器所采集到的脉搏电压波形经放大后的直流基准水平,以上Td、Vnor、Pnor和DC都为脉搏周期的参数,都是现有技术中常用的参数。继而可推出标准化后的衰减斜坡的斜率SL为:
本实施例中第二舒张压DIA公式对于血压舒张期衰减速率异常的人士更加适用,测量出的舒张压更加准确。
实施例5
在以上实施例所述的基于脉搏反射波传输时间的血压计算方法的基础上,所述步骤S5具体为:将计算出的收缩压和舒张压与预先标准结果进行比对,为比对方便,可以使用所计算得到的收缩压和舒张压的中值进行比对,在对比过程中,舒张压是差值,即用标准结果减去计算结果得到差值;收缩压是除的关系,即标准结果除以计算结果,分别得到收缩压校正参数Ksc和舒张压校正参数Kdc,将所述收缩压校正参数Ksc代入所述收缩压SYS公式形成收缩压SYS校正公式,将所述舒张压校正参数Kdc代入所述第一舒张压DIA公式和第二舒张压DIA公式,分别形成第一舒张压DIA校正公式和第二舒张压DIA校正公式。
用户第一次使用本发明的电子产品时,可先用标准的水银血压计进行测量并将测量结果输入提前输入;然后在5分钟内用本发明的电子产品进行测量,在产品进行计算过程中,会首先使用收缩压SYS公式和第一(或第二)舒张压DIA公式进行计算,并将其结果与用户输入的标准结果进行比对,得出校正参数Ksc与Kdc的值并永久存储。下次使用本发明的电子产品测量时,产品会自动使用收缩压SYS校正公式与第一(或第二)舒张压DIA校正公式进行计算。用户每一次执行上述校正过程后,产品所存储的校正参数Ksc与Kdc的值会相应更新。
所述收缩压SYS校正公式具体为:其中KS为1.5。
第一舒张压DIA校正公式具体为:其中Kd1为2.7,Kd2为0.5,HR为心率。
第二舒张压DIA校正公式具体为:其中Kd1为2,Kd2为15,Kd3为66(Pnor-DC),SL为标准化斜率。
以上所有公式中的所述RWTT数组都可替换为10s时间所采集的所有脉搏周期所计算得出的RWTT数组的中值RTM,从而算出10s时间内的收缩压和舒张压的中值。
用RWTT数组计算,则算出来的是一组数据,可以理解为实时血压数据,这一组数据之间可能会有偏差,或者由于采集的某个波形不够好导致某个数据的计算错误。用中值RTM替换,则可得到10s内收缩压和舒张压的中值,确保正确稳定的测量结果。以上所有公式中的所述心率HR和标准化斜率SL可替换为10s时间所采集的所有脉搏周期所计算得出的心率HR和标准化斜率SL的中值或平均值。
下面以一名身高为1.7m的患者为例,提供本方法具体使用过程:在首次使用本发明的电子产品前,该患者先用标准的水银血压计测得其血压数据为:收缩压120mmHg,舒张压78mmHg。患者将该组标准数据输入本发明的电子产品,并在5分钟内用本发明的电子产品进行测量。假设在首次测量中,产品在10s时间内测得的RWTT数组的中值为0.27s,心率平均值为65,Td平均值为0.56s,SL平均值为1.61(假设Pnor=2.6V,DC=2V,Kd3=40);将这些测量数据代入收缩压SYS校正公式与第一(或第二)舒张压DIA校正公式,并统一使用毫米汞柱单位后得到:
收缩压SYS=118·Ksc
第一舒张压DIA=69.5+Kdc
第二舒张压DIA=79+Kdc
通过与标准血压数据的对比可以获得Ksc=120/118=1.017,Kdc=78-69.5=8.5,或Kdc=78-79=-1;校正参数Ksc与Kdc的值永久存储,下次该患者使用本发明的电子产品测量时,产品会自动使用收缩压SYS校正公式与第一(或第二)舒张压DIA校正公式进行计算。该患者每一次执行上述校正过程后,产品所存储的校正参数Ksc与Kdc的值会相应更新。
比如该患者在第二次使用本发明的电子产品测量时,产品在10s时间内测得的RWTT数组的中值为0.26s,心率平均值为70,Td平均值为0.6s,SL平均值为1.33(Pnor、DC、Kd3保持不变,因为是同一产品);将这些测量数据,以及所存储的校正参数Ksc与Kdc的值代入收缩压SYS校正公式与第一(或第二)舒张压DIA校正公式即可算出:
收缩压
第一舒张压
第二舒张压
实施例5
一种基于脉搏反射波传输时间的血压仪,如图3所示,包括脉搏传感器,所述脉搏传感器可使用基于光电容积法的脉搏传感器,该类型脉搏传感器灵敏度高,更适用于手指接触式传感设备。
所述脉搏传感器依次连接有线性电流电压转化电路、单位增益缓冲器、低通放大电路、模数转换电路和处理器,所述处理器还连接有电源,所述电源可采用3.7V(或3.8V)可充电锂电池或镍氢电池对电路进行供电;也可采用USB(5V)供电;
以上电路可采用互补金属氧化物半导体CMOS(Complementary Metal OxideSemiconductors)技术设计并集成。CMOS工艺价格低廉,设计和制造技术成熟,性能稳定,发展迅速,因此是大规模集成电路芯片标准化、微型化的优选;
作为其他优选,以上电路也可使用离散元件实现,并将这些离散元件集成在一块印刷电路板上;处理器可由现场可编程门阵列(Field Programmable Gate Array,FPGA)、或数字信号处理器(Digital Signal Processing,DSP)、或单片机等实现。
所述处理器还连接有存储器和/或显示与录入模块和/或低压差线性稳压器,录入模块在用户录入自己的身高或个人校正血压值之前,系统会选择默认的身高值和计算公式计算血压;在用户录入自己的身高或个人校正血压值之后,用户的身高和计算得到的个人校正参数将被永久保存,直到下一次新的录入发生才会被新的数值所取代;所述存储器可以为内部存储器和/或外部存储器,具体按照需求选定,不具体限定。
若部分电路需要使用3.3V标准电压,则可使用低压差线性稳压器(low dropoutregulator,LDO)产生,相应的信号电平可使用电平转移电路进行调整。
所述低通放大电路的转角频率为20-50Hz,不宜设置过低以避免使原始脉搏波形产生形变;后续在对原始脉搏波形的分析中可通过处理器做进一步数字滤波以剔除低频噪声。
所述模数转换电路的采样率设置为1kS/s,模数转换电路应有10位以上的精度以保持采样准确度,即10s可获得约10000个样本。
所述处理器对数字化后的数据进行低通数字滤波,转角频率为10Hz,进一步去除噪声。
下面提供本发明所述血压仪的具体使用方式:脉搏波传感器1探测手指处的脉搏变化,并输出(通常)相应的小电流信号,线性电流电压转化电路2将小电流信号转化为小电压信号。单位增益缓冲器3拥有高输入阻抗可起到信号隔离的作用,并且作为缓冲器驱动下一级低通放大电路4。低通放大电路4将脉搏的小电压信号放大到适当的水平,并做第一次低通滤波,转角频率在50Hz左右,可很大程度去除高频噪声且不会使原始脉搏波形产生形变。模数转换电路5经过采样将模拟量电压信号转换为数字信号并输出给处理器6。模数转换电路5应具有足够高的采样率来获取足量的原始脉搏波波形信息,在采集满规定数量(例如10000个)的数据点后停止采集。处理器6将这些原始波形的数据存储于内部存储器7,也可以存储在外部存储器8。所述处理器中存储有以上所述的基于脉搏反射波传输时间的血压计算方法。然后处理器6将原始波形的数据做深度处理和分析,按照本发明提供的算法在每一个脉搏周期内找到脉搏波主波起点和由反射波增长点,并计算二者之间的时间间隔作为该周期的RWTT。处理器6据此计算所有周期的RWTT并取中值RTM,并依据本发明的算法分别计算出心率、收缩压和舒张压。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。

Claims (18)

1.一种基于脉搏反射波传输时间的血压计算方法的血压仪,包括一个脉搏传感器,其特征在于,所述脉搏传感器仅采用一个,所述脉搏传感器依次连接有线性电流电压转化电路、单位增益缓冲器、低通放大电路、模数转换电路和处理器,所述处理器还连接有电源;
所述处理器处理依次经过有线性电流电压转化电路、单位增益缓冲器、低通放大电路和模数转换电路的包含脉搏波形的数字信号,得出心率和多个脉搏周期的参数,并在每一个所述脉搏周期中检测脉搏波主波起点SPL1和反射波增长点SPL2的时间轴坐标,计算相应的脉搏反射波传输时间RWTT:RWTT=SPL2-SPL1;然后计算每个所述脉搏周期中的脉搏反射波传输时间RWTT,形成RWTT数组;再根据所述RWTT数组和心率,计算出收缩压和舒张压。
2.如权利要求1所述的血压仪,其特征在于,所述脉搏传感器用于探测手指处的脉搏变化,并输出相应的小电流信号到所述线性电流电压转化电路;所述线性电流电压转化电路将所述小电流信号转化为小电压信号,并经过单位增益缓冲器进行信号隔离后传输到所述低通放大电路;所述低通放大电路将小电压信号进行放大,并做第一次低通滤波,去除高频噪声;然后再经过模数转换电路将为模拟量的小电压信号转换为数字信号并输出给处理器。
3.如权利要求1所述的血压仪,其特征在于,所述处理器还可对最终计算出的收缩压和舒张压进行个人校正。
4.如权利要求1所述的血压仪,其特征在于,所述处理器还可对所述反射波增长点SPL2根据不同类型的脉搏波的轮廓特征进行相应的校正。
5.如权利要求1所述的血压仪,其特征在于,计算收缩压步骤具体为:根据所述RWTT数组,建立收缩压SYS公式:其中KS为1.2-1.8。
6.如权利要求1所述的血压仪,其特征在于,计算舒张压步骤具体为:根据所述RWTT数组,建立第一舒张压DIA公式:其中Kd1为2.1-3.3,Kd2为0.3-0.8,HR为心率。
7.如权利要求1所述的血压仪,其特征在于,计算舒张压具体为:根据所述RWTT数组,建立第二舒张压DIA公式:其中Kd1为1.6-2.4,Kd2为12-18,Kd3为52(Pnor-DC)~79(Pnor-DC),SL为标准化斜率,标准化斜率SL为:上述Pnor、Vnor和DC分别为脉搏周期中的基准波峰、基准波谷和基准直流电压,Td为每个波形周期的衰减时间。
8.如权利要求3所述的血压仪,其特征在于,对最终计算出的收缩压和舒张压进行个人校正具体为:将计算出的收缩压和舒张压与预先标准结果进行比对,分别得到收缩压校正参数Ksc和舒张压校正参数Kdc,将所述收缩压校正参数Ksc代入所述收缩压SYS公式形成收缩压SYS校正公式,将所述舒张压校正参数Kdc代入所述第一舒张压DIA公式和第二舒张压DIA公式,分别形成第一舒张压DIA校正公式和第二舒张压DIA校正公式。
9.如权利要求8所述的血压仪,其特征在于,所述收缩压SYS校正公式具体为:其中KS为1.2-1.8。
10.如权利要求8所述的血压仪,其特征在于,第一舒张压DIA校正公式具体为:其中Kd1为2.1-3.3,Kd2为0.3-0.8,HR为心率。
11.如权利要求8所述的血压仪,其特征在于,第二舒张压DIA校正公式具体为:其中Kd1为1.6-2.40,Kd2为12-180,Kd3为52(Pnor-DC)~79(Pnor-DC)0,SL为标准化斜率,标准化斜率SL为:上述Pnor、Vnor和DC分别为脉搏周期中的基准波峰、基准波谷和基准直流电压,Td为每个波形周期的衰减时间。
12.如权利要求1-11任一项所述的血压仪,其特征在于,所述RWTT数组可替换为10s时间所采集的所有脉搏周期所计算得出的RWTT数组的中值RTM,从而算出10s时间内的收缩压和舒张压的中值。
13.如权利要求7或11所述的血压仪,其特征在于,所述标准化斜率SL替换为10s时间所采集的所有脉搏周期所计算得出的标准化斜率SL的中值或平均值。
14.如权利要求6或10所述的血压仪,其特征在于,所述心率HR替换为10s时间所采集的所有脉搏周期所计算得出的心率HR的中值或平均值。
15.如权利要求1所述的血压仪,其特征在于,所述处理器还连接有存储器和/或显示与录入模块和/或低压差线性稳压器;
所述处理器用于储存数据;
所述显示与录入模块可显示处理后的数据,并可录入用户的身高值和个人校正血压值;
所述低压差线性稳压器可提供3.3V标准电压。
16.如权利要求1所述的血压仪,其特征在于,所述低通放大电路的转角频率为20-50Hz。
17.如权利要求1所述的血压仪,其特征在于,所述模数转换电路的采样率设置为1kS/s。
18.如权利要求1所述的血压仪,其特征在于,所述处理器对数字化后的数据进行低通数字滤波,转角频率为10Hz,进一步去除噪声。
CN201510447025.0A 2015-07-28 2015-07-28 一种基于脉搏反射波传输时间的血压计算方法及血压仪 Active CN105054918B (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201510447025.0A CN105054918B (zh) 2015-07-28 2015-07-28 一种基于脉搏反射波传输时间的血压计算方法及血压仪
AU2016300616A AU2016300616B2 (en) 2015-07-28 2016-04-20 Blood pressure calculation method based on pulse reflected wave transit time, and blood pressure meter
ES16829612T ES2954155T3 (es) 2015-07-28 2016-04-20 Método de cálculo de presión arterial basado en el tiempo de tránsito de la onda reflejada de pulso y tensiómetro
EP16829612.7A EP3295868B1 (en) 2015-07-28 2016-04-20 Blood pressure calculation method based on pulse reflected wave transit time, and blood pressure monitor
HUE16829612A HUE063007T2 (hu) 2015-07-28 2016-04-20 A vérnyomás számítási módszer az impulzus visszaverõdõ hullám tranzitidõn és a vérnyomás monitor alapján
PCT/CN2016/079694 WO2017016245A1 (zh) 2015-07-28 2016-04-20 一种基于脉搏反射波传输时间的血压计算方法及血压仪
US15/562,253 US10537254B2 (en) 2015-07-28 2016-04-20 Blood pressure calculation method based on pulse return wave transmission time, and blood pressure monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510447025.0A CN105054918B (zh) 2015-07-28 2015-07-28 一种基于脉搏反射波传输时间的血压计算方法及血压仪

Publications (2)

Publication Number Publication Date
CN105054918A CN105054918A (zh) 2015-11-18
CN105054918B true CN105054918B (zh) 2018-05-22

Family

ID=54484623

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510447025.0A Active CN105054918B (zh) 2015-07-28 2015-07-28 一种基于脉搏反射波传输时间的血压计算方法及血压仪

Country Status (7)

Country Link
US (1) US10537254B2 (zh)
EP (1) EP3295868B1 (zh)
CN (1) CN105054918B (zh)
AU (1) AU2016300616B2 (zh)
ES (1) ES2954155T3 (zh)
HU (1) HUE063007T2 (zh)
WO (1) WO2017016245A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105054918B (zh) * 2015-07-28 2018-05-22 杭州暖芯迦电子科技有限公司 一种基于脉搏反射波传输时间的血压计算方法及血压仪
EP3427651A4 (en) 2016-04-15 2019-12-11 Omron Corporation DEVICE AND SYSTEM FOR ANALYZING BIOLOGICAL INFORMATION AND PROGRAM THEREOF
CN106361307B (zh) * 2016-10-09 2019-09-20 杭州电子科技大学 基于光传感的可佩带式生命体征监测设备及血压检测方法
KR102655671B1 (ko) 2016-10-12 2024-04-05 삼성전자주식회사 생체정보 추정 장치 및 방법
CN110461224B (zh) * 2016-12-15 2023-04-28 薇心健康有限公司 可穿戴脉搏波形测量系统和方法
CN107320091A (zh) * 2017-07-04 2017-11-07 华为机器有限公司 一种校准血压计的方法和装置
CN108186000B (zh) * 2018-02-07 2024-04-02 河北工业大学 基于心冲击信号与光电信号的实时血压监测系统及方法
CN108719122B (zh) * 2018-04-27 2020-12-11 中国农业科学院农业信息研究所 牲畜咀嚼分析方法、装置及电子设备
CN113171071B (zh) * 2021-03-05 2022-02-15 上海立阖泰医疗科技有限公司 一种基于pwtt的血压测量手表
CN114145724A (zh) * 2021-12-08 2022-03-08 四川北易信息技术有限公司 基于ecg和ppg多生理特征参数动态监测血压的方法
CN115399742A (zh) * 2022-08-26 2022-11-29 北京超思电子技术有限责任公司 血压测量设备的校准方法及血压测量设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016114A1 (fr) * 1995-11-01 1997-05-09 Seiko Epson Corporation Appareil pour mesurer l'etat d'un organisme vivant
JP4096376B2 (ja) * 1996-07-09 2008-06-04 セイコーエプソン株式会社 リラックス指導装置
US6616613B1 (en) * 2000-04-27 2003-09-09 Vitalsines International, Inc. Physiological signal monitoring system
JP4855721B2 (ja) 2005-06-29 2012-01-18 フクダ電子株式会社 血圧測定装置
US20070149870A1 (en) * 2005-12-28 2007-06-28 Futrex, Inc. Systems and methods for determining an organism's pathology
JP5200881B2 (ja) 2008-11-20 2013-06-05 オムロンヘルスケア株式会社 血圧情報測定装置
JP5929759B2 (ja) 2010-12-08 2016-06-08 オムロンヘルスケア株式会社 血圧情報測定装置および該装置での動脈硬化度の指標の算出方法
CN102258365B (zh) * 2011-08-17 2014-04-09 天津大学 一种正弦波调制光电容积脉搏波测量装置和测量方法
CN102688024A (zh) * 2012-04-24 2012-09-26 北京大学 一种血压无创测量方法
WO2014011368A1 (en) * 2012-06-18 2014-01-16 Eso-Technologies, Inc. Compositions and methods for measurement of oxygen saturation in blood filled structures
FI20136306L (fi) * 2013-03-22 2014-09-23 Murata Manufacturing Co Parannettu verenpaineen seurantamenetelmä
US20140323876A1 (en) * 2013-04-25 2014-10-30 Covidien Lp Systems and methods for determining fluid responsiveness in the presence of gain changes and baseline changes
CN103393415B (zh) * 2013-08-20 2016-08-17 王卫东 连续血压变化的测量方法
CN203815441U (zh) * 2014-04-26 2014-09-10 赵金诚 一种新型脉搏测试仪
CN105054918B (zh) 2015-07-28 2018-05-22 杭州暖芯迦电子科技有限公司 一种基于脉搏反射波传输时间的血压计算方法及血压仪
CN204813858U (zh) * 2015-07-28 2015-12-02 杭州暖芯迦电子科技有限公司 一种基于脉搏反射波传输时间的血压仪

Also Published As

Publication number Publication date
HUE063007T2 (hu) 2023-12-28
EP3295868A4 (en) 2018-06-27
CN105054918A (zh) 2015-11-18
ES2954155T3 (es) 2023-11-20
EP3295868B1 (en) 2023-05-10
AU2016300616B2 (en) 2019-04-18
US10537254B2 (en) 2020-01-21
WO2017016245A1 (zh) 2017-02-02
AU2016300616A1 (en) 2017-10-05
EP3295868A1 (en) 2018-03-21
US20180078157A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
CN105054918B (zh) 一种基于脉搏反射波传输时间的血压计算方法及血压仪
CN108523867B (zh) 一种自校准ppg无创血压测量方法及系统
CN103892818B (zh) 一种无创中心动脉血压测量方法和设备
CN105943005B (zh) 基于光电绿光脉搏与心电图混合的无创血压检测装置
CN103190891B (zh) 基于光电容积的脉搏波速度生理参数的测量装置及方法
TWI409051B (zh) 一種以壓脈帶測量肱動脈脈波震盪訊號以估算中央動脈血壓的測量裝置及其方法
WO2017127530A1 (en) Wireless monitoring system
CN112089405B (zh) 一种脉搏波特征参数测量及显示装置
CN105726006A (zh) 用于连续估计心血管参数的脉搏轮廓方法和装置
EP2501278B1 (en) Apparatus for sensing blood flow and hemodynamic parameters
CN102178518A (zh) 用于用脉搏波连续测量估算动脉血压的个体化校正方法及装置
TWI667011B (zh) 心率檢測方法以及心率檢測裝置
CN108272446A (zh) 无创连续血压测量系统及其校准方法
CN202960481U (zh) 中医脉象采集装置
CN103505191A (zh) 一种利用压脉带的压力脉波震荡讯号以预估中心主动脉脉搏压的方法及其装置
He et al. A new approach for daily life Blood-Pressure estimation using smart watch
CN204813858U (zh) 一种基于脉搏反射波传输时间的血压仪
Khandai et al. Comparison of sensors performance for the development of wrist pulse acquisition system
Jun-an The design of ECG signal generator using PIC24F
Mafi et al. Oscillometric blood pressure pulse morphology
CN104207763A (zh) 便携式电子脉搏计
Laurenson et al. A 180 nm CMOS analog adaptive sampler for blood pressure feature extraction
Jain et al. Seismocardiography: An alternate method to estimate electro-mechanical window
CN115336990B (zh) 一种基于多点校准的无袖带动态血压测量方法
CN114305358B (zh) 血压测量模型的标定方法、装置、计算机设备和存储介质

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant