WO2017016245A1 - 一种基于脉搏反射波传输时间的血压计算方法及血压仪 - Google Patents

一种基于脉搏反射波传输时间的血压计算方法及血压仪 Download PDF

Info

Publication number
WO2017016245A1
WO2017016245A1 PCT/CN2016/079694 CN2016079694W WO2017016245A1 WO 2017016245 A1 WO2017016245 A1 WO 2017016245A1 CN 2016079694 W CN2016079694 W CN 2016079694W WO 2017016245 A1 WO2017016245 A1 WO 2017016245A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood pressure
pulse
pressure
diastolic
rwtt
Prior art date
Application number
PCT/CN2016/079694
Other languages
English (en)
French (fr)
Inventor
杨佳威
Original Assignee
杭州暖芯迦电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州暖芯迦电子科技有限公司 filed Critical 杭州暖芯迦电子科技有限公司
Priority to AU2016300616A priority Critical patent/AU2016300616B2/en
Priority to ES16829612T priority patent/ES2954155T3/es
Priority to US15/562,253 priority patent/US10537254B2/en
Priority to EP16829612.7A priority patent/EP3295868B1/en
Publication of WO2017016245A1 publication Critical patent/WO2017016245A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/022Measuring pressure in heart or blood vessels by applying pressure to close blood vessels, e.g. against the skin; Ophthalmodynamometers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7225Details of analog processing, e.g. isolation amplifier, gain or sensitivity adjustment, filtering, baseline or drift compensation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0475Special features of memory means, e.g. removable memory cards

Definitions

  • the invention relates to a blood pressure calculation method and a blood pressure meter based on pulse reflection wave transmission time, and belongs to the technical field of medical instruments.
  • the blood pressure information measuring device for measuring the pulse wave propagation velocity as blood pressure information is disclosed: in the measuring device, the cuffs respectively attached to the upper arm and the lower limb (ankle) are used. The blood pressure of the upper arm and the blood pressure of the lower limb are measured (S101). Then, the pulse wave of the upper arm and the pulse wave of the lower limb are measured synchronously by these cuffs (S103). Then, based on the difference in appearance time between the two pulse waves, the pulse wave propagation velocity (baPWV) of the upper limb lower limb is calculated (S105, S107).
  • the pulse wave propagation velocity (baPWV) of the upper limb lower limb is calculated (S105, S107).
  • the upper arm pulse wave propagation velocity (upper arm PWV) is calculated (S109, S111).
  • This method requires 2 sensors, usually one placed near the heart for receiving heart sound signals (ECG), and the other placed on the limbs (wrist, finger, sole, etc.) or behind the ear for receiving and transmitting to The pulse wave signal there (usually obtained by plethysmography, ie PPG).
  • the pulse wave transmission time is measured by comparing the two signals.
  • the two sensors each have a corresponding circuit and are interconnected by wires, so that it is not convenient to use, and is usually made in some wearable garments.
  • the technical problem to be solved by the present invention is to provide a new blood pressure electronic measurement technology and method based on the Return Wave Transmission Time (RWTT), which requires only one sensor and uses finger contact.
  • RWTT Return Wave Transmission Time
  • a blood pressure calculation method based on pulse reflection wave transmission time comprising the following steps:
  • S1 collecting pulse waveform data of the fingertip and storing it
  • step S5 of personally correcting the finally calculated systolic and diastolic pressures.
  • the method further includes the step S21: correcting the reflected wave growth point SPL2 according to contour features of different types of pulse waves.
  • the step of calculating the systolic pressure is specifically: establishing a systolic pressure SYS formula according to the RWTT array: Wherein K S is from 1.2 to 1.8, preferably 1.5.
  • the step of calculating the diastolic pressure is specifically: establishing a first diastolic pressure DIA formula according to the RWTT array: Wherein K d1 is from 2.1 to 3.3, preferably 2.7, and K d2 is from 0.3 to 0.8, preferably 0.5, and HR is heart rate.
  • calculating the diastolic pressure is specifically: establishing a second diastolic pressure DIA formula according to the RWTT array: Wherein K d1 is from 1.6 to 2.4, preferably 2, K d2 is from 12 to 18, preferably 15, and K d3 is from 52 (P nor -DC) to 79 (P nor -DC), preferably 66 (P nor -DC), SL To normalize the slope, the above P nor and DC are the reference peaks in the pulse period and the reference DC voltage, respectively.
  • the step S5 is specifically: comparing the calculated systolic pressure and diastolic pressure with a pre-standard result, respectively obtaining a systolic pressure correction parameter K sc and a diastolic pressure correction parameter K dc , and the systolic pressure correction parameter K sc is substituted into the systolic pressure SYS formula to form a systolic pressure SYS correction formula, and the diastolic pressure correction parameter K dc is substituted into the first diastolic pressure DIA formula and the second diastolic pressure DIA formula to form a first diastolic pressure DIA correction Formula and second diastolic pressure DIA correction formula.
  • the systolic pressure SYS correction formula is specifically: Wherein K S is from 1.2 to 1.8, preferably 1.5.
  • the first diastolic pressure DIA correction formula is specifically: Wherein K d1 is from 2.1 to 3.3, preferably 2.7, and K d2 is from 0.3 to 0.8, preferably 0.5, and HR is heart rate.
  • the second diastolic pressure DIA correction formula is specifically: Wherein K d1 is from 1.6 to 2.4, preferably 2, K d2 is from 12 to 18, preferably 15, and K d3 is from 52 (P nor -DC) to 79 (P nor -DC), preferably 66 (P nor -DC), SL To standardize the slope.
  • the RWTT array can be replaced with the median RTM of the RWTT array calculated for all pulse periods acquired at 10s time to calculate the median of systolic and diastolic pressures over a period of 10s.
  • the heart rate HR and the normalized slope SL may be replaced with a median or average of the heart rate HR and the normalized slope SL calculated for all pulse periods acquired at 10 s.
  • a blood pressure meter using the pulse wave reflection time-based blood pressure calculation method described above comprising a pulse sensor, wherein the pulse sensor is sequentially connected with a linear current voltage conversion circuit, a unity gain buffer, a low-pass amplification circuit, and a modulus And a conversion circuit and a processor, the processor further connected to a power source.
  • only one of the pulse sensors is provided.
  • the processor is further connected to a memory and/or display and input module and/or a low dropout linear regulator.
  • the low-pass amplifier circuit has a corner frequency of 20-50 Hz.
  • the sampling rate of the analog to digital conversion circuit is set to 1 kS/s.
  • the processor performs low-pass digital filtering on the digitized data with a corner frequency of 10 Hz to further remove noise.
  • the beneficial effects of the present invention are as follows: (1)
  • the blood pressure calculation method of the present invention uses only one sensor to measure the fingertip pulse, which is simple, convenient and fast, and establishes RWTT and systolic blood pressure by analyzing the basic theory of correlation between pulse reflection wave and human blood pressure.
  • the model of diastolic blood pressure and the systolic blood pressure and diastolic blood pressure are calculated according to the two blood pressure models.
  • the systolic blood pressure and diastolic blood pressure calculated by this method are more accurate, the error is smaller, and the applicable range is large.
  • the invention perfectly combines the technology with the photoelectric volume pulse sensor, uses the finger contact pulse sensor to acquire the pulse waveform and performs a series of analysis and calculation on the pulse waveform, and finally calculates the blood pressure and simultaneously obtains the heart rate data.
  • the second diastolic blood pressure DIA formula in the present invention is particularly suitable for those who have an abnormal blood pressure diastolic decay rate because the influence of the normalized slope is taken into consideration, and the measured diastolic blood pressure is more accurate.
  • the present invention performs personal correction on the finally calculated systolic blood pressure and diastolic blood pressure, and the user is using the present Invented electronic products need to first enter the height and the measurement data of the standard mercury sphygmomanometer, use the individual height value and perform automatic blood pressure correction, which can obtain more accurate measurement results for different patients.
  • 1 is a diagram showing a relationship between a pulse reflected wave transmission time RWTT and a pulse wave transmission time PTT;
  • FIG. 2 is a flow chart of a blood pressure calculation method according to the present invention.
  • Figure 3 is a block diagram showing the structure of the blood pressure meter of the present invention.
  • Figure 4 is a five-category pulse wave contour map
  • Figure 5 is a specific blood pressure waveform diagram.
  • 1-pulse wave sensor 2-linear current-voltage conversion circuit, 3-unit gain buffer, 4-low-pass amplifier circuit, 5-analog-to-digital conversion circuit, 6-processor, 7-internal memory, 8 - External memory, 9-display and input module, 10-power, 11-low dropout linear regulator.
  • a blood pressure calculation method based on pulse reflection wave transmission time comprising the following steps:
  • S1 collecting pulse waveform data of the fingertip and storing, in the actual electronic measurement technology of the present invention, using the pulse wave waveform measured at the finger to characterize the blood pressure waveform at the position;
  • RWTT return wave transmission time
  • FIG. 1 is a blood pressure waveform.
  • RWTT SPL2 - SPL1, RWTT and pulse wave transmission time PTT
  • PTT is defined as the time interval between the R peak of the heart sound signal and the start of the main wave of the blood pressure (pulse) waveform;
  • the blood pressure calculation method of the invention uses only one sensor to measure the fingertip pulse, and is simple, convenient and quick.
  • a correlation model between RWTT and systolic blood pressure and diastolic blood pressure is established, and according to two The systolic blood pressure and diastolic blood pressure are calculated by a blood pressure model.
  • the systolic blood pressure and diastolic blood pressure calculated by this method are more accurate, the error is smaller, and the applicable range is large.
  • the invention perfectly combines the technology with the photoelectric volume pulse sensor, uses the finger contact pulse sensor to acquire the pulse waveform and performs a series of analysis and calculation on the pulse waveform, and finally calculates the blood pressure and simultaneously obtains the heart rate data.
  • step S5 personal correction is performed on the finally calculated systolic pressure and diastolic pressure, and the user needs to use the electronic product of the present invention.
  • the method further includes the step S21: according to different types of pulse waves, the reflected wave growth point SPL2
  • the contour features are corrected accordingly.
  • the five types of pulse wave contours involved in the correction of the reflected wave growth point SPL2 are as shown in FIG. 4, and are classified into four categories, wherein the category three has two types.
  • the reflected wave of Category 1 and the main wave show a notch; there is no valley between the reflected wave of Category 2 and the main wave, but a small segment of the transition is presented; there is no difference between the reflected wave of Category 3 and the main wave.
  • the reflected wave growth point SPL2 does not need to be corrected, that is, the peak position caused by the reflected wave growth point; the second type of category 2 and category 3 needs to be appropriate for the reflected wave growth point SPL2.
  • Fine adjustment; Category 3 The second type of reflected wave growth point SPL2 needs to be greatly adjusted. The above adjustment is to move the front or back of the transmitted wave growth point SPL2, which is an existing technical means.
  • the step of calculating the systolic blood pressure is specifically: establishing a systolic pressure SYS formula according to the RWTT array, according to the pulse wave transmission time PTT - Blood pressure BP model, the process of blood flow from the ventricle through the arterial network to the fingertips can be equivalent to the process of pulse wave propagation in a rigid duct, so the work done by the pressure is equal to the sum of kinetic energy and potential energy, if we specify during the measurement If you put your finger at the same height as the heart, you can only consider kinetic energy.
  • K S is 1.5, and its accuracy can be verified by a large number of experiments; the unit of systolic pressure SYS introduced by this formula is kg/m3, which can be converted into millimeters of mercury by conversion.
  • the calculation of the diastolic blood pressure step is specifically defined as: the diastolic blood pressure is defined as the lowest point at which the arterial blood pressure waveform decays during the diastolic phase.
  • the rate of decline in diastolic blood pressure depends on a number of factors, including the accumulation of systolic aortic blood pressure and arterial system impedance (related to the arterial system, especially the stiffness of the arterial wall); diastolic blood pressure is also highly correlated with BP Degree, that is, high correlation with PTT 2 and RWTT 2 ; therefore, based on the RWTT array, the first diastolic pressure DIA formula is established: Where K d1 is 2.7, K d2 is 0.5, HR is heart rate, and the unit of diastolic blood pressure DIA introduced by this formula is mmHg.
  • the value of the parameter in the present invention can be changed according to the use environment, and the calculation formula of the present invention is used. It is within the scope of the present invention to
  • calculating the diastolic pressure is specifically: establishing a second diastolic pressure DIA formula according to the RWTT array: Where K d1 is 2, K d2 is 15, K d3 is 66 (P nor -DC), SL is the normalized slope, and the unit of diastolic blood pressure DIA introduced by this formula is mmHg.
  • the minimum attenuation of arterial blood pressure is related to the allowed decay time and also to the slope of the attenuation ramp; where the decay time is proportional to the period of the blood pressure waveform and inversely proportional to the instantaneous heart rate;
  • the slope of the slope is related to the strength (amplitude) of the waveform signal in the measured pulse (blood pressure) waveform, and therefore requires normalization (normalization) processing.
  • T d is the decay time of each waveform period, P nor represents the peak, and V nor represents the valley; each waveform is normalized with reference to the reference peak P nor , thus standardized After the trough V nor is:
  • the DC is the amplified DC reference level of the pulse voltage waveform collected by the sensor, and the above T d , V nor , P nor and DC are the parameters of the pulse period, which are commonly used parameters in the prior art.
  • the slope SL of the standardized attenuation ramp can then be derived:
  • the second diastolic blood pressure DIA formula is more suitable for people with abnormal blood pressure diastolic decay rate, and the measured diastolic pressure is more accurate.
  • the step S5 is specifically: comparing the calculated systolic pressure and the diastolic pressure with the pre-standard results, which is convenient for comparison.
  • the calculated systolic blood pressure and the median value of diastolic blood pressure can be used for comparison.
  • the diastolic blood pressure is the difference, that is, the difference is obtained by subtracting the calculation result from the standard result; the systolic pressure is the relationship of the division, that is, the standard
  • the result is divided by the calculation result, and the systolic pressure correction parameter K sc and the diastolic pressure correction parameter K dc are respectively obtained, and the systolic pressure correction parameter K sc is substituted into the systolic pressure SYS formula to form a systolic pressure SYS correction formula, and the diastolic pressure is
  • the calibration parameter K dc is substituted into the first diastolic pressure DIA formula and the second diastolic pressure DIA formula to form a first diastolic pressure DIA correction formula and a second diastolic pressure DIA correction formula, respectively.
  • the measurement can be performed by using a standard mercury sphygmomanometer and inputting the measurement result in advance; then, the electronic product of the present invention is used for measurement within 5 minutes, during the calculation of the product. It will first calculate using the systolic pressure SYS formula and the first (or second) diastolic pressure DIA formula, and compare the result with the standard result entered by the user to obtain the values of the correction parameters K sc and K dc and permanently storage. The next time the electronic product of the present invention is used for measurement, the product is automatically calculated using the systolic pressure SYS correction formula and the first (or second) diastolic pressure DIA correction formula. Each time the user performs the above calibration process, the values of the calibration parameters K sc and K dc stored by the product are updated accordingly.
  • the systolic pressure SYS correction formula is specifically: Where K S is 1.5.
  • the first diastolic pressure DIA correction formula is specifically: Where K d1 is 2.7, K d2 is 0.5, and HR is heart rate.
  • the second diastolic pressure DIA correction formula is specifically: Where K d1 is 2, K d2 is 15, K d3 is 66 (P nor -DC), and SL is a normalized slope.
  • the RWTT array in all of the above formulas can be replaced with the median RTM of the RWTT array calculated for all pulse periods acquired at 10 s, thereby calculating the median of systolic and diastolic pressures over a period of 10 s.
  • RWTT array Calculated with the RWTT array, it is calculated as a set of data, which can be understood as real-time blood pressure data. There may be deviations between this set of data, or the calculation of a certain data may be wrong due to insufficient acquisition of a certain waveform. Substitution with the median RTM results in a median of systolic and diastolic pressures within 10 s, ensuring a consistent and stable measurement.
  • the heart rate HR and the normalized slope SL in all of the above formulas may be replaced with the median or average of the heart rate HR and the normalized slope SL calculated for all pulse periods acquired at 10 s.
  • a patient with a height of 1.7 m is used as an example to provide a specific use process of the method: before using the electronic product of the present invention for the first time, the patient first measured the blood pressure data using a standard mercury sphygmomanometer: systolic blood pressure 120 mmHg, Diastolic blood pressure 78mmHg.
  • the patient inputs the set of standard data into the electronic product of the present invention and measures with the electronic product of the present invention within 5 minutes.
  • the product is automatically calculated using the systolic pressure SYS correction formula and the first (or second) diastolic pressure DIA correction formula.
  • the values of the calibration parameters K sc and K dc stored by the product are updated accordingly.
  • the median value of the RWTT array measured in the product within 10s is 0.26s
  • the average heart rate is 70
  • the average value of Td is 0.6s
  • the average value of SL is 1.33 (P nor , DC, K d3 remain unchanged because it is the same product); substitute these measured data, and the stored correction parameters K sc and K dc into the systolic pressure SYS correction formula and the first (or second)
  • the diastolic pressure DIA correction formula can be calculated:
  • a blood pressure meter based on pulse reflection wave transmission time includes a pulse sensor, and the pulse sensor can use a pulse volume sensor based on a photoelectric volume method, and the pulse sensor has high sensitivity and is more suitable for finger contact type transmission. Sensing equipment.
  • the pulse sensor is sequentially connected with a linear current voltage conversion circuit, a unity gain buffer, a low-pass amplification circuit, an analog-to-digital conversion circuit and a processor, and the processor is further connected with a power source, and the power source can be
  • the circuit is powered by a 3.7V (or 3.8V) rechargeable lithium or nickel-metal hydride battery; it can also be powered by USB (5V);
  • CMOS Complementary Metal Oxide Semiconductors
  • the above circuits can be designed and integrated using complementary metal oxide semiconductor CMOS (Complementary Metal Oxide Semiconductors) technology.
  • CMOS process is inexpensive, the design and manufacturing technology is mature, the performance is stable, and the development is rapid, so it is the optimization of standardization and miniaturization of large-scale integrated circuit chips;
  • the above circuits may also be implemented using discrete components and integrated on a printed circuit board; the processor may be a Field Programmable Gate Array (FPGA), or a digital signal processor (Digital) Signal Processing, DSP), or microcontroller implementation.
  • FPGA Field Programmable Gate Array
  • DSP Digital Signal Processing
  • the processor is further connected with a memory and/or display and input module and/or a low dropout linear regulator.
  • the input module selects a default height value and a calculation formula before the user enters his or her own height or personal corrected blood pressure value. Calculate blood pressure; after the user enters his or her own height or personal corrected blood pressure value, the user's height and calculated personal correction parameters will be permanently saved until the next new entry occurs will be replaced by the new value;
  • the internal memory and/or the external memory may be selected according to requirements, and are not specifically limited.
  • LDO low dropout regulator
  • the corner frequency of the low-pass amplifying circuit is 20-50 Hz, which is not suitable to be set too low to avoid deformation of the original pulse waveform; subsequent analysis of the original pulse waveform may be further digitally filtered by the processor to eliminate low frequency noise.
  • the sampling rate of the analog-to-digital conversion circuit is set to 1 kS/s, and the analog-to-digital conversion circuit should have an accuracy of more than 10 bits to maintain sampling accuracy, that is, about 10,000 samples can be obtained in 10 s.
  • the processor performs low-pass digital filtering on the digitized data, and the corner frequency is 10 Hz to further remove noise.
  • the pulse wave sensor 1 detects the pulse change at the finger, and outputs (usually) a corresponding small current signal
  • the linear current voltage conversion circuit 2 converts the small current signal into a small voltage signal.
  • the unity gain buffer 3 has a high input impedance to function as a signal isolation, and drives the next stage low-pass amplifying circuit 4 as a buffer.
  • the low-pass amplifying circuit 4 amplifies the small voltage signal of the pulse to an appropriate level, and performs the first low-pass filtering, and the corner frequency is about 50 Hz, which can remove the high-frequency noise to a large extent without deforming the original pulse waveform.
  • the analog-to-digital conversion circuit 5 samples the analog voltage signal into a digital signal and outputs it to the processor 6.
  • the analog to digital conversion circuit 5 should have a sufficiently high sampling rate to obtain a sufficient amount of raw pulse wave waveform information to stop acquisition after a specified number (eg, 10,000) of data points have been acquired.
  • the processor 6 stores the data of these original waveforms in the internal memory 7, and may also store it in the external memory 8.
  • the blood pressure calculation method based on the pulse reflection wave transmission time described above is stored in the processor.
  • the processor 6 then performs depth processing and analysis on the data of the original waveform.
  • the pulse wave main wave starting point and the reflected wave increasing point are found in each pulse period, and the time interval between the two is calculated as The RWTT for this period.
  • the processor 6 calculates the RWTT for all cycles and takes the median RTM accordingly, and calculates the heart rate, systolic blood pressure and diastolic blood pressure according to the algorithm of the present invention, respectively.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

一种基于脉搏反射波传输时间的血压计算方法及血压仪,包括以下步骤:S1:采集指尖的脉搏波形数据并存储;S2:处理脉搏波形数据,得出心率和多个脉搏周期的参数,并在每一个脉搏周期中检测脉搏波主波起点SPL1和反射波增长点SPL2的时间轴坐标,计算相应的脉搏反射波传输时间RWTT:RWTT=SPL2-SPL1;S3:计算形成RWTT数组;S4:根据RWTT数组和心率,计算收缩压和舒张压,本血压计算方法和血压仪仅使用1个传感器测量指尖脉搏,简单、方便、快捷,通过分析脉搏反射波与人体血压的相关理论基础,建立起RWTT与收缩压和舒张压的相关模型,并根据两个血压模型计算出收缩压和舒张压,本方法计算出的收缩压和舒张压更佳准确,误差更小,适用的范围大。

Description

一种基于脉搏反射波传输时间的血压计算方法及血压仪 技术领域
本发明涉及一种基于脉搏反射波传输时间的血压计算方法及血压仪,属于医疗器械技术领域。
背景技术
传统的电子血压仪均须通过袖套加压和减压,采用听诊法或示波法来测量血压。由于袖套加压造成的不适感,这类血压仪被称为侵入式(Invasive)血压仪。近年来出现了一些非侵入式(Non-Invasive)的血压仪,一般基于测量脉搏波传输时间(Pulse Transit Time,PTT)和PTT-BP血压模型来计算脉搏波传播速度,进而估算收缩压。
如中国专利授权公告号CN102223837B、名称为《测定脉搏波传播速度作为血压信息的血压信息测定装置》的专利中公开:在测定装置中,利用分别装戴在上臂和下肢(脚腕)的袖带来测定上臂的血压和下肢的血压(S101)。而且,利用这些袖带同步地测定上臂的脉搏波和下肢的脉搏波(S103)。然后,基于这两个脉搏波的出现时间差,计算上臂下肢部脉搏波传播速度(baPWV)(S105、S107)。而且,基于上臂脉搏波的射血波和反射波的出现时间差,计算上臂脉搏波传播速度(上臂PWV)(S109、S111)。这种方法需要2个传感器,通常1个放置于心脏附近用于接收心音信号(ECG),另1个放置于人体四肢(手腕、手指、足底等)或耳后等部位用于接收传播到该处的脉搏波信号(通常由容积描记法取得,即PPG)。通过比较2个信号,测算出脉搏波传输时间。该方法中,2个传感器各自有相应的电路并通过导线互联,因此使用起来并不方便,通常被制作在一些可穿戴服装(饰)中。另外也有方法直接将2个传感器放置于手腕和 手指处,通过比较此2处的脉搏波信号来测量从手腕到手指的PTT。然而该方法计算得出的脉搏波传播速度是局部的,并不符合PTT-BP血压模型中的定义,因此所估算的收缩压数值会有较大的偏差。
发明内容
本发明要解决的技术问题是:为克服上述问题,提供一种全新的基于脉搏反射波传输时间(Return Wave Transmission Time,RWTT)的血压电子测量技术和方法,仅需1个传感器,利用手指接触传感器的方式,通过复杂的算法计算,在短短数秒内即可计算得出舒张压、收缩压和心率等数值。
本发明解决其技术问题所采用的技术方案是:
一种基于脉搏反射波传输时间的血压计算方法,包括以下步骤:
S1:采集指尖的脉搏波形数据并存储;
S2:处理所述脉搏波形数据,得出心率和多个脉搏周期的参数,并在每一个所述脉搏周期中检测脉搏波主波起点SPL1和反射波增长点SPL2的时间轴坐标,计算相应的脉搏反射波传输时间RWTT:RWTT=SPL2-SPL1;
S3:计算每个所述脉搏周期中的脉搏反射波传输时间RWTT,形成RWTT数组;
S4:根据所述RWTT数组和心率,计算收缩压和舒张压。
优选地,还包括步骤S5:对最终计算出的收缩压和舒张压进行个人校正。
优选地,还包括步骤S21:对所述反射波增长点SPL2根据不同类型的脉搏波的轮廓特征进行相应的校正。
优选地,计算收缩压步骤具体为:根据所述RWTT数组,建立收缩压SYS公式:
Figure PCTCN2016079694-appb-000001
其中KS为1.2-1.8,优选1.5。
优选地,计算舒张压步骤具体为:根据所述RWTT数组,建立第一舒张压DIA 公式:
Figure PCTCN2016079694-appb-000002
其中Kd1为2.1-3.3,优选2.7,Kd2为0.3-0.8,优选0.5,HR为心率。
优选地,计算舒张压具体为:根据所述RWTT数组,建立第二舒张压DIA公式:
Figure PCTCN2016079694-appb-000003
其中Kd1为1.6-2.4,优选2,Kd2为12-18,优选15,Kd3为52(Pnor-DC)~79(Pnor-DC),优选66(Pnor-DC),SL为标准化斜率,上述Pnor和DC分别为脉搏周期中的基准波峰和基准直流电压。
优选地,所述步骤S5具体为:将计算出的收缩压和舒张压与预先标准结果进行比对,分别得到收缩压校正参数Ksc和舒张压校正参数Kdc,将所述收缩压校正参数Ksc代入所述收缩压SYS公式形成收缩压SYS校正公式,将所述舒张压校正参数Kdc代入所述第一舒张压DIA公式和第二舒张压DIA公式,分别形成第一舒张压DIA校正公式和第二舒张压DIA校正公式。
优选地,所述收缩压SYS校正公式具体为:
Figure PCTCN2016079694-appb-000004
其中KS为1.2-1.8,优选1.5。
优选地,第一舒张压DIA校正公式具体为:
Figure PCTCN2016079694-appb-000005
其中Kd1为2.1-3.3,优选2.7,Kd2为0.3-0.8,优选0.5,HR为心率。
优选地,第二舒张压DIA校正公式具体为:
Figure PCTCN2016079694-appb-000006
其中Kd1为1.6-2.4,优选2,Kd2为12-18,优选15,Kd3为52(Pnor-DC)~79(Pnor-DC),优选66(Pnor-DC),SL为标准化斜率。
优选地,所述RWTT数组可替换为10s时间所采集的所有脉搏周期所计算得出的RWTT数组的中值RTM,从而算出10s时间内的收缩压和舒张压的中值。
优选地,所述心率HR和标准化斜率SL可替换为10s时间所采集的所有脉搏周期所计算得出的心率HR和标准化斜率SL的中值或平均值。
一种采用以上所述的基于脉搏反射波传输时间的血压计算方法的血压仪,包括脉搏传感器,所述脉搏传感器依次连接有线性电流电压转化电路、单位增益缓冲器、低通放大电路、模数转换电路和处理器,所述处理器还连接有电源。
优选地,所述脉搏传感器只设置一个。
优选地,所述处理器还连接有存储器和/或显示与录入模块和/或低压差线性稳压器。
优选地,所述低通放大电路的转角频率为20-50Hz。
优选地,所述模数转换电路的采样率设置为1kS/s。
优选地,所述处理器对数字化后的数据进行低通数字滤波,转角频率为10Hz,进一步去除噪声。
本发明的有益效果是:(1)本发明血压计算方法仅使用1个传感器测量指尖脉搏,简单、方便、快捷,通过分析脉搏反射波与人体血压的相关基础理论,建立起RWTT与收缩压和舒张压的相关模型,并根据两个血压模型计算出收缩压和舒张压,本方法计算出的收缩压和舒张压更加准确,误差更小,适用的范围大。同时本发明将该项技术与光电容积脉搏传感器完美结合,利用手指接触脉搏传感器获取脉搏波形并针对脉搏波形进行一系列的分析和计算,最终计算出血压并同时获得心率数据。
(2)本发明中的第二舒张压DIA公式由于考虑到了标准化斜率的影响,特别添加了标准化斜率的参数,因此对于血压舒张期衰减速率异常的人士更加适用,测量出的舒张压更加准确。
(3)本发明对最终计算出的收缩压和舒张压进行个人校正,用户在使用本 发明的电子产品时需要先录入身高与其用标准水银血压计的测量结果数据,使用个人身高数值并进行个人血压自动校正,可以针对不同的患者获取更加精准的测量结果。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是脉搏反射波传输时间RWTT与脉搏波传输时间PTT的关系图;
图2是本发明所述血压计算方法的流程图;
图3是本发明所述血压仪的结构框图;
图4是五种类别的脉搏波轮廓图;
图5是一个具体的血压波形图。
图中标记:1-脉搏波传感器,2-线性电流电压转化电路,3-单位增益缓冲器,4-低通放大电路,5-模数转换电路,6-处理器,7-内部存储器,8-外部存储器,9-显示与录入模块,10-电源,11-低压差线性稳压器。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
实施例1
如图2所示的本发明所述一种基于脉搏反射波传输时间的血压计算方法,,包括以下步骤:
S1:采集指尖的脉搏波形数据并存储,在本发明的实际电子测量技术中,使用手指处测得的脉搏波波形表征该处的血压波形;
S2:处理所述脉搏波形数据,得出心率和多个脉搏周期的参数,本发明实施的基础关键参数反射波传输时间(Return Wave Transmission Time,RWTT)的定义如图1所示,为血压波形的主波起点和其反射波增长点之间的时间间隔。因此在每一个所述脉搏周期中检测脉搏波主波起点SPL1和反射波增长点SPL2的时间轴坐标,计算相应的脉搏反射波传输时间RWTT:RWTT=SPL2-SPL1,RWTT与脉搏波传输时间PTT定义的区别也如图1所示,PTT定义为心音信号的R峰值与血压(脉搏)波形的主波起点之间的时间间隔;
S3:通过上述公式计算所述脉搏波形数据中的每个所述脉搏周期中的脉搏反射波传输时间RWTT,形成RWTT数组;
S4:根据所述RWTT数组和心率,分别建立RWTT数组与收缩压和舒张压的计算公式,计算出收缩压和舒张压。
本发明血压计算方法仅使用1个传感器测量指尖脉搏,简单、方便、快捷,通过分析脉搏反射波与人体血压的相关基础理论,建立起RWTT与收缩压和舒张压的相关模型,并根据两个血压模型计算出收缩压和舒张压,本方法计算出的收缩压和舒张压更加准确,误差更小,适用的范围大。同时本发明将该项技术与光电容积脉搏传感器完美结合,利用手指接触脉搏传感器获取脉搏波形并针对脉搏波形进行一系列的分析和计算,最终计算出血压并同时获得心率数据。
实施例2
在实施例1所述的基于脉搏反射波传输时间的血压计算方法的基础上,还包括步骤S5:对最终计算出的收缩压和舒张压进行个人校正,用户在使用本发明的电子产品时需要先录入身高与其用标准水银血压计的测量结果数据,使用个人身高数值并进行个人血压自动校正,以获取精准测量结果。
优选的还包括步骤S21:对所述反射波增长点SPL2根据不同类型的脉搏波 的轮廓特征进行相应的校正,在本实施例中,所述反射波增长点SPL2的校正涉及的五种类型脉搏波轮廓如图4所示,分四大类别,其中类别三有两种类型。类别一的反射波与主波之间呈现沟谷(notch);类别二的反射波与主波之间没有沟谷,但呈现一小段较平坦的转折段;类别三的反射波与主波之间没有沟谷,但有斜率的改变;类别三分两种类型,第一种类型主峰保持原有形状,第二种类型主峰出现增宽,将相应部分的反射波覆盖;类别四的反射波部分进一步靠近并融入主波,二者之间的斜率变化不明显。类别一脉搏波的二阶波形中,反射波增长点SPL2不需要校正,即为反射波增长点所引发的波峰位置;类别二和类别三第一种类型需对反射波增长点SPL2进行适当的微调;类别三第二种类型的反射波增长点SPL2需进行较大调整,以上调整为对发射波增长点SPL2进行前或后的移动,为现有的技术手段。
实施例3
在以上实施例1和实施例2所述基于脉搏反射波传输时间的血压计算方法的基础上,计算收缩压步骤具体为:根据所述RWTT数组,建立收缩压SYS公式,根据脉搏波传输时间PTT-血压BP模型,血液由心室通过动脉网络传播到指尖的过程可以等效为脉搏波在一个刚性管道中传播的过程,因此压力做的功等于动能和势能的总和,若我们规定在测量时把手指放在与心脏等高的位置,则可以只考虑动能。根据相关的物理理论,可以推导出:
Figure PCTCN2016079694-appb-000007
其中KS为1.5,可通过大量实验验证其准确性;此公式推出的收缩压SYS的单位为kg/m3,通过换算可转换为毫米汞柱为单位。
计算舒张压步骤具体为:舒张压的定义为动脉血压波形在舒张期衰减的最低点。舒张期血压的衰减速度取决于一系列因素,包括在收缩期主动脉血压的 累积和动脉系统阻抗(与动脉系统尤其是小动脉血管壁的硬度相关)等;舒张压同样与BP有很高相关度,即与PTT2和RWTT2均有着高相关度;因此根据所述RWTT数组,建立第一舒张压DIA公式:
Figure PCTCN2016079694-appb-000008
其中Kd1为2.7,Kd2为0.5,HR为心率,此公式推出的舒张压DIA的单位为毫米汞柱,本发明中参数的数值可根据使用环境进行变换,使用了本发明中计算公式,仅将参数进行常规变换落入本发明的保护范围。
实施例4
在以上实施例所述基于脉搏反射波传输时间的血压计算方法基础上,计算舒张压具体为:根据所述RWTT数组,建立第二舒张压DIA公式:
Figure PCTCN2016079694-appb-000009
其中Kd1为2,Kd2为15,Kd3为66(Pnor-DC),SL为标准化斜率,此公式推出的舒张压DIA的单位为毫米汞柱。对于特定的个体而言,动脉血压衰减到的最低程度与其所允许的衰减时间有关,也与其衰减斜坡的斜率有关;其中衰减时间与该血压波形的周期成正比,与瞬时心率成反比;而衰减斜坡的斜率在测量所得的脉搏(血压)波形中与该波形信号的强弱(幅值)有关,因此需要进行标准化(归一化)处理。
标准化斜率SL的推导示意图见附图5,根据图示,Td为每个波形周期的衰减时间,Pnor代表波峰,Vnor代表波谷;每个波形都参考基准波峰Pnor进行标准化,因此标准化后的波谷Vnor为:
Figure PCTCN2016079694-appb-000010
其中DC为传感器所采集到的脉搏电压波形经放大后的直流基准水平,以上Td、Vnor、Pnor和DC都为脉搏周期的参数,都是现有技术中常用的参数。继而可推出 标准化后的衰减斜坡的斜率SL为:
Figure PCTCN2016079694-appb-000011
本实施例中第二舒张压DIA公式对于血压舒张期衰减速率异常的人士更加适用,测量出的舒张压更加准确。
实施例5
在以上实施例所述的基于脉搏反射波传输时间的血压计算方法的基础上,所述步骤S5具体为:将计算出的收缩压和舒张压与预先标准结果进行比对,为比对方便,可以使用所计算得到的收缩压和舒张压的中值进行比对,在对比过程中,舒张压是差值,即用标准结果减去计算结果得到差值;收缩压是除的关系,即标准结果除以计算结果,分别得到收缩压校正参数Ksc和舒张压校正参数Kdc,将所述收缩压校正参数Ksc代入所述收缩压SYS公式形成收缩压SYS校正公式,将所述舒张压校正参数Kdc代入所述第一舒张压DIA公式和第二舒张压DIA公式,分别形成第一舒张压DIA校正公式和第二舒张压DIA校正公式。
用户第一次使用本发明的电子产品时,可先用标准的水银血压计进行测量并将测量结果输入提前输入;然后在5分钟内用本发明的电子产品进行测量,在产品进行计算过程中,会首先使用收缩压SYS公式和第一(或第二)舒张压DIA公式进行计算,并将其结果与用户输入的标准结果进行比对,得出校正参数Ksc与Kdc的值并永久存储。下次使用本发明的电子产品测量时,产品会自动使用收缩压SYS校正公式与第一(或第二)舒张压DIA校正公式进行计算。用户每一次执行上述校正过程后,产品所存储的校正参数Ksc与Kdc的值会相应更新。
所述收缩压SYS校正公式具体为:
Figure PCTCN2016079694-appb-000012
其中KS为1.5。
第一舒张压DIA校正公式具体为:
Figure PCTCN2016079694-appb-000013
其中Kd1为2.7,Kd2为0.5,HR为心率。
第二舒张压DIA校正公式具体为:
Figure PCTCN2016079694-appb-000014
其中Kd1为2,Kd2为15,Kd3为66(Pnor-DC),SL为标准化斜率。
以上所有公式中的所述RWTT数组都可替换为10s时间所采集的所有脉搏周期所计算得出的RWTT数组的中值RTM,从而算出10s时间内的收缩压和舒张压的中值。
用RWTT数组计算,则算出来的是一组数据,可以理解为实时血压数据,这一组数据之间可能会有偏差,或者由于采集的某个波形不够好导致某个数据的计算错误。用中值RTM替换,则可得到10s内收缩压和舒张压的中值,确保正确稳定的测量结果。以上所有公式中的所述心率HR和标准化斜率SL可替换为10s时间所采集的所有脉搏周期所计算得出的心率HR和标准化斜率SL的中值或平均值。
下面以一名身高为1.7m的患者为例,提供本方法具体使用过程:在首次使用本发明的电子产品前,该患者先用标准的水银血压计测得其血压数据为:收缩压120mmHg,舒张压78mmHg。患者将该组标准数据输入本发明的电子产品,并在5分钟内用本发明的电子产品进行测量。假设在首次测量中,产品在10s时间内测得的RWTT数组的中值为0.27s,心率平均值为65,Td平均值为0.56s,SL平均值为1.61(假设Pnor=2.6V,DC=2V,Kd3=40);将这些测量数据代入收缩压SYS校正公式与第一(或第二)舒张压DIA校正公式,并统一使用毫米汞柱单位后得到:
收缩压SYS=118·Ksc
第一舒张压DIA=69.5+Kdc
第二舒张压DIA=79+Kdc
通过与标准血压数据的对比可以获得Ksc=120/118=1.017,Kdc=78-69.5=8.5,或Kdc=78-79=-1;校正参数Ksc与Kdc的值永久存储,下次该患者使用本发明的电子产品测量时,产品会自动使用收缩压SYS校正公式与第一(或第二)舒张压DIA校正公式进行计算。该患者每一次执行上述校正过程后,产品所存储的校正参数Ksc与Kdc的值会相应更新。
比如该患者在第二次使用本发明的电子产品测量时,产品在10s时间内测得的RWTT数组的中值为0.26s,心率平均值为70,Td平均值为0.6s,SL平均值为1.33(Pnor、DC、Kd3保持不变,因为是同一产品);将这些测量数据,以及所存储的校正参数Ksc与Kdc的值代入收缩压SYS校正公式与第一(或第二)舒张压DIA校正公式即可算出:
收缩压
Figure PCTCN2016079694-appb-000015
第一舒张压
Figure PCTCN2016079694-appb-000016
第二舒张压
Figure PCTCN2016079694-appb-000017
实施例5
一种基于脉搏反射波传输时间的血压仪,如图3所示,包括脉搏传感器,所述脉搏传感器可使用基于光电容积法的脉搏传感器,该类型脉搏传感器灵敏度高,更适用于手指接触式传感设备。
所述脉搏传感器依次连接有线性电流电压转化电路、单位增益缓冲器、低通放大电路、模数转换电路和处理器,所述处理器还连接有电源,所述电源可 采用3.7V(或3.8V)可充电锂电池或镍氢电池对电路进行供电;也可采用USB(5V)供电;
以上电路可采用互补金属氧化物半导体CMOS(Complementary Metal Oxide Semiconductors)技术设计并集成。CMOS工艺价格低廉,设计和制造技术成熟,性能稳定,发展迅速,因此是大规模集成电路芯片标准化、微型化的优选;
作为其他优选,以上电路也可使用离散元件实现,并将这些离散元件集成在一块印刷电路板上;处理器可由现场可编程门阵列(Field Programmable Gate Array,FPGA)、或数字信号处理器(Digital Signal Processing,DSP)、或单片机等实现。
所述处理器还连接有存储器和/或显示与录入模块和/或低压差线性稳压器,录入模块在用户录入自己的身高或个人校正血压值之前,系统会选择默认的身高值和计算公式计算血压;在用户录入自己的身高或个人校正血压值之后,用户的身高和计算得到的个人校正参数将被永久保存,直到下一次新的录入发生才会被新的数值所取代;所述存储器可以为内部存储器和/或外部存储器,具体按照需求选定,不具体限定。
若部分电路需要使用3.3V标准电压,则可使用低压差线性稳压器(low dropout regulator,LDO)产生,相应的信号电平可使用电平转移电路进行调整。
所述低通放大电路的转角频率为20-50Hz,不宜设置过低以避免使原始脉搏波形产生形变;后续在对原始脉搏波形的分析中可通过处理器做进一步数字滤波以剔除低频噪声。
所述模数转换电路的采样率设置为1kS/s,模数转换电路应有10位以上的精度以保持采样准确度,即10s可获得约10000个样本。
所述处理器对数字化后的数据进行低通数字滤波,转角频率为10Hz,进一步去除噪声。
下面提供本发明所述血压仪的具体使用方式:脉搏波传感器1探测手指处的脉搏变化,并输出(通常)相应的小电流信号,线性电流电压转化电路2将小电流信号转化为小电压信号。单位增益缓冲器3拥有高输入阻抗可起到信号隔离的作用,并且作为缓冲器驱动下一级低通放大电路4。低通放大电路4将脉搏的小电压信号放大到适当的水平,并做第一次低通滤波,转角频率在50Hz左右,可很大程度去除高频噪声且不会使原始脉搏波形产生形变。模数转换电路5经过采样将模拟量电压信号转换为数字信号并输出给处理器6。模数转换电路5应具有足够高的采样率来获取足量的原始脉搏波波形信息,在采集满规定数量(例如10000个)的数据点后停止采集。处理器6将这些原始波形的数据存储于内部存储器7,也可以存储在外部存储器8。所述处理器中存储有以上所述的基于脉搏反射波传输时间的血压计算方法。然后处理器6将原始波形的数据做深度处理和分析,按照本发明提供的算法在每一个脉搏周期内找到脉搏波主波起点和由反射波增长点,并计算二者之间的时间间隔作为该周期的RWTT。处理器6据此计算所有周期的RWTT并取中值RTM,并依据本发明的算法分别计算出心率、收缩压和舒张压。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。

Claims (17)

  1. 一种基于脉搏反射波传输时间的血压计算方法,其特征在于,包括以下步骤:
    S1:采集指尖的脉搏波形数据并存储;
    S2:处理所述脉搏波形数据,得出心率和多个脉搏周期的参数,并在每一个所述脉搏周期中检测脉搏波主波起点SPL1和反射波增长点SPL2的时间轴坐标,计算相应的脉搏反射波传输时间RWTT:RWTT=SPL2-SPL1;
    S3:计算每个所述脉搏周期中的脉搏反射波传输时间RWTT,形成RWTT数组;
    S4:根据所述RWTT数组和心率,计算收缩压和舒张压。
  2. 如权利要求1所述的基于脉搏反射波传输时间的血压计算方法,其特征在于,还包括步骤S5:对最终计算出的收缩压和舒张压进行个人校正。
  3. 如权利要求1或2所述的基于脉搏反射波传输时间的血压计算方法,其特征在于,还包括步骤S21:对所述反射波增长点SPL2根据不同类型的脉搏波的轮廓特征进行相应的校正。
  4. 如权利要求1-3任一项所述的基于脉搏反射波传输时间的血压计算方法,其特征在于,计算收缩压步骤具体为:根据所述RWTT数组,建立收缩压SYS公式:
    Figure PCTCN2016079694-appb-100001
    其中KS为1.2-1.8。
  5. 如权利要求1-4任一项所述的基于脉搏反射波传输时间的血压计算方法,其特征在于,计算舒张压步骤具体为:根据所述RWTT数组,建立第一舒张压DIA公式:
    Figure PCTCN2016079694-appb-100002
    其中Kd1为2.1-3.3,Kd2为0.3-0.8,HR为心率。
  6. 如权利要求1-5任一项所述的基于脉搏反射波传输时间的血压计算方法,其特征在于,计算舒张压具体为:根据所述RWTT数组,建立第二舒张压DIA公 式:
    Figure PCTCN2016079694-appb-100003
    其中Kd1为1.6-2.4,Kd2为12-18,Kd3为52(Pnor-DC)~79(Pnor-DC),SL为标准化斜率,上述Pnor和DC分别为脉搏周期中的基准波峰和基准直流电压。
  7. 如权利要求1-6任一项所述的血压仪,其特征在于,所述收缩压SYS校正公式具体为:
    Figure PCTCN2016079694-appb-100004
    其中KS为1.2-1.8。
  8. 如权利要求1-7任一项所述的血压仪,其特征在于,第一舒张压DIA校正公式具体为:
    Figure PCTCN2016079694-appb-100005
    其中Kd1为2.1-3.3,Kd2为0.3-0.8,HR为心率。
  9. 如权利要求1-8任一项所述的血压仪,其特征在于,第二舒张压DIA校正公式具体为:
    Figure PCTCN2016079694-appb-100006
    其中Kd1为1.6-2.4,Kd2为12-18,Kd3为52(Pnor-DC)~79(Pnor-DC),SL为标准化斜率。
  10. 如权利要求1-9任一项所述的基于脉搏反射波传输时间的血压计算方法,其特征在于,所述步骤S5具体为:将计算出的收缩压和舒张压与预先标准结果进行比对,分别得到收缩压校正参数Ksc和舒张压校正参数Kdc,将所述收缩压校正参数Ksc代入所述收缩压SYS公式形成收缩压SYS校正公式,将所述舒张压校正参数Kdc代入所述第一舒张压DIA公式和第二舒张压DIA公式,分别形成第一舒张压DIA校正公式和第二舒张压DIA校正公式。
  11. 如权利要求1-10任一项所述的基于脉搏反射波传输时间的血压计算方法,其特征在于,所述RWTT数组可替换为10s时间所采集的所有脉搏周期所计算得出的RWTT数组的中值RTM,从而算出10s时间内的收缩压和舒张压的中值。
  12. 如权利要求1-11任一项所述的血压仪,其特征在于,所述心率HR和 标准化斜率SL可替换为10s时间所采集的所有脉搏周期所计算得出的心率HR和标准化斜率SL的中值或平均值。
  13. 一种采用权利要求1-12任一项所述的基于脉搏反射波传输时间的血压计算方法的血压仪,包括脉搏传感器,其特征在于,所述脉搏传感器依次连接有线性电流电压转化电路、单位增益缓冲器、低通放大电路、模数转换电路和处理器,所述处理器还连接有电源。
  14. 如权利要求13所述的血压仪,其特征在于,所述脉搏传感器只设置一个,所述处理器还连接有存储器和/或显示与录入模块和/或低压差线性稳压器。
  15. 如权利要求13或14所述的血压仪,其特征在于,所述低通放大电路的转角频率为20-50Hz。
  16. 如权利要求13-15任一项所述的血压仪,其特征在于,所述模数转换电路的采样率设置为1kS/s。
  17. 如权利要求13-16任一项所述的血压仪,其特征在于,所述处理器对数字化后的数据进行低通数字滤波,转角频率为10Hz,进一步去除噪声。
PCT/CN2016/079694 2015-07-28 2016-04-20 一种基于脉搏反射波传输时间的血压计算方法及血压仪 WO2017016245A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AU2016300616A AU2016300616B2 (en) 2015-07-28 2016-04-20 Blood pressure calculation method based on pulse reflected wave transit time, and blood pressure meter
ES16829612T ES2954155T3 (es) 2015-07-28 2016-04-20 Método de cálculo de presión arterial basado en el tiempo de tránsito de la onda reflejada de pulso y tensiómetro
US15/562,253 US10537254B2 (en) 2015-07-28 2016-04-20 Blood pressure calculation method based on pulse return wave transmission time, and blood pressure monitor
EP16829612.7A EP3295868B1 (en) 2015-07-28 2016-04-20 Blood pressure calculation method based on pulse reflected wave transit time, and blood pressure monitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510447025.0A CN105054918B (zh) 2015-07-28 2015-07-28 一种基于脉搏反射波传输时间的血压计算方法及血压仪
CN201510447025.0 2015-07-28

Publications (1)

Publication Number Publication Date
WO2017016245A1 true WO2017016245A1 (zh) 2017-02-02

Family

ID=54484623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079694 WO2017016245A1 (zh) 2015-07-28 2016-04-20 一种基于脉搏反射波传输时间的血压计算方法及血压仪

Country Status (7)

Country Link
US (1) US10537254B2 (zh)
EP (1) EP3295868B1 (zh)
CN (1) CN105054918B (zh)
AU (1) AU2016300616B2 (zh)
ES (1) ES2954155T3 (zh)
HU (1) HUE063007T2 (zh)
WO (1) WO2017016245A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113171071A (zh) * 2021-03-05 2021-07-27 上海立阖泰医疗科技有限公司 一种基于pwtt的血压测量方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105054918B (zh) 2015-07-28 2018-05-22 杭州暖芯迦电子科技有限公司 一种基于脉搏反射波传输时间的血压计算方法及血压仪
CN109069035B (zh) 2016-04-15 2021-09-28 欧姆龙株式会社 生物体信息分析装置、系统以及计算机可读存储介质
CN106361307B (zh) * 2016-10-09 2019-09-20 杭州电子科技大学 基于光传感的可佩带式生命体征监测设备及血压检测方法
CN107928643B (zh) 2016-10-12 2022-04-01 三星电子株式会社 用于估计生物测量学信息的设备和方法
US10980428B2 (en) * 2016-12-15 2021-04-20 ViviPulse, LLC Wearable pulse waveform measurement system and method
CN107320091A (zh) * 2017-07-04 2017-11-07 华为机器有限公司 一种校准血压计的方法和装置
CN108186000B (zh) * 2018-02-07 2024-04-02 河北工业大学 基于心冲击信号与光电信号的实时血压监测系统及方法
CN108719122B (zh) * 2018-04-27 2020-12-11 中国农业科学院农业信息研究所 牲畜咀嚼分析方法、装置及电子设备
CN115399742A (zh) * 2022-08-26 2022-11-29 北京超思电子技术有限责任公司 血压测量设备的校准方法及血压测量设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070016085A1 (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co., Ltd. Blood pressure measuring apparatus
CN102258365A (zh) * 2011-08-17 2011-11-30 天津大学 一种正弦波调制光电容积脉搏波测量装置和测量方法
CN103260503A (zh) * 2010-12-08 2013-08-21 欧姆龙健康医疗事业株式会社 血压信息测定装置及在该装置中的动脉硬化度的指标的计算方法
CN103393415A (zh) * 2013-08-20 2013-11-20 王卫东 连续血压变化的测量方法
CN105054918A (zh) * 2015-07-28 2015-11-18 杭州暖芯迦电子科技有限公司 一种基于脉搏反射波传输时间的血压计算方法及血压仪
CN204813858U (zh) * 2015-07-28 2015-12-02 杭州暖芯迦电子科技有限公司 一种基于脉搏反射波传输时间的血压仪

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3641830B2 (ja) * 1995-11-01 2005-04-27 セイコーエプソン株式会社 生体状態測定装置
JP4096376B2 (ja) * 1996-07-09 2008-06-04 セイコーエプソン株式会社 リラックス指導装置
US6616613B1 (en) 2000-04-27 2003-09-09 Vitalsines International, Inc. Physiological signal monitoring system
US20070149870A1 (en) * 2005-12-28 2007-06-28 Futrex, Inc. Systems and methods for determining an organism's pathology
JP5200881B2 (ja) 2008-11-20 2013-06-05 オムロンヘルスケア株式会社 血圧情報測定装置
CN102688024A (zh) * 2012-04-24 2012-09-26 北京大学 一种血压无创测量方法
WO2014011368A1 (en) * 2012-06-18 2014-01-16 Eso-Technologies, Inc. Compositions and methods for measurement of oxygen saturation in blood filled structures
FI20136306L (fi) 2013-03-22 2014-09-23 Murata Manufacturing Co Parannettu verenpaineen seurantamenetelmä
US20140323876A1 (en) * 2013-04-25 2014-10-30 Covidien Lp Systems and methods for determining fluid responsiveness in the presence of gain changes and baseline changes
CN203815441U (zh) * 2014-04-26 2014-09-10 赵金诚 一种新型脉搏测试仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070016085A1 (en) * 2005-06-29 2007-01-18 Fukuda Denshi Co., Ltd. Blood pressure measuring apparatus
CN103260503A (zh) * 2010-12-08 2013-08-21 欧姆龙健康医疗事业株式会社 血压信息测定装置及在该装置中的动脉硬化度的指标的计算方法
CN102258365A (zh) * 2011-08-17 2011-11-30 天津大学 一种正弦波调制光电容积脉搏波测量装置和测量方法
CN103393415A (zh) * 2013-08-20 2013-11-20 王卫东 连续血压变化的测量方法
CN105054918A (zh) * 2015-07-28 2015-11-18 杭州暖芯迦电子科技有限公司 一种基于脉搏反射波传输时间的血压计算方法及血压仪
CN204813858U (zh) * 2015-07-28 2015-12-02 杭州暖芯迦电子科技有限公司 一种基于脉搏反射波传输时间的血压仪

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3295868A4 *
THEODOR, M. ET AL.: "Implantable accelerometer system for the determination of blood pressure using reflected wave transit time", SENSORS AND ACTUATORS A, 14 December 2013 (2013-12-14), pages 1, XP055351091, ISSN: 0924-4247 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113171071A (zh) * 2021-03-05 2021-07-27 上海立阖泰医疗科技有限公司 一种基于pwtt的血压测量方法
CN113171071B (zh) * 2021-03-05 2022-02-15 上海立阖泰医疗科技有限公司 一种基于pwtt的血压测量手表

Also Published As

Publication number Publication date
US10537254B2 (en) 2020-01-21
HUE063007T2 (hu) 2023-12-28
AU2016300616A1 (en) 2017-10-05
ES2954155T3 (es) 2023-11-20
EP3295868A4 (en) 2018-06-27
US20180078157A1 (en) 2018-03-22
AU2016300616B2 (en) 2019-04-18
EP3295868B1 (en) 2023-05-10
EP3295868A1 (en) 2018-03-21
CN105054918A (zh) 2015-11-18
CN105054918B (zh) 2018-05-22

Similar Documents

Publication Publication Date Title
WO2017016245A1 (zh) 一种基于脉搏反射波传输时间的血压计算方法及血压仪
CN108523867B (zh) 一种自校准ppg无创血压测量方法及系统
US9462956B2 (en) Calculating heart rate from acceleration signals containing cardiac activity signals
CN108185996B (zh) 动脉血管年龄估算模型构建方法和装置
CN108366749A (zh) 动态血压与生命体征监测装置、系统和方法
JP5889197B2 (ja) 身体動きモニタリングデバイス
EP2501278B1 (en) Apparatus for sensing blood flow and hemodynamic parameters
JP2018508273A (ja) 被験体の平均動脈圧を導き出すための方法および装置
TWI667011B (zh) 心率檢測方法以及心率檢測裝置
WO2017092020A1 (zh) 一种血压测量方法及装置
JPWO2009125811A1 (ja) 血圧推定装置及び血圧推定方法
Mieloszyk et al. A comparison of wearable tonometry, photoplethysmography, and electrocardiography for cuffless measurement of blood pressure in an ambulatory setting
CN112272534A (zh) 用于估计血压替代物趋势的方法和装置
KR20080044224A (ko) 비침습적 연속 혈압, 동맥탄성도 측정방법
JP6615970B1 (ja) 血圧推定装置および血圧推定プログラム
US10327649B1 (en) Non-invasive wearable blood pressure monitoring system
CN204813858U (zh) 一种基于脉搏反射波传输时间的血压仪
US20170119265A1 (en) System and Method for using Demographic Data to Derive a Pulse Wave Velocity-Blood Pressure Transform
Mazaheri et al. A comparative review of blood pressure measurement methods using pulse wave velocity
CN102283638A (zh) 智能系数匹配的血压测量方法
Shin et al. Calculation and validation of continuous pulse transit time based on normalized pulse wave velocity
CN210095711U (zh) 一种无创连续血压测量设备
JP2019513062A (ja) 被検者の収縮期血圧および/または拡張期血圧を導出する方法
Baek et al. Validation of cuffless blood pressure monitoring using wearable device
KR20080048010A (ko) 비침습적 연속 혈압, 동맥탄성도 측정장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16829612

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016829612

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15562253

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016300616

Country of ref document: AU

Date of ref document: 20160420

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE