CN105047748B - 一种硅锗异质结太阳电池及其制备方法 - Google Patents

一种硅锗异质结太阳电池及其制备方法 Download PDF

Info

Publication number
CN105047748B
CN105047748B CN201510282991.1A CN201510282991A CN105047748B CN 105047748 B CN105047748 B CN 105047748B CN 201510282991 A CN201510282991 A CN 201510282991A CN 105047748 B CN105047748 B CN 105047748B
Authority
CN
China
Prior art keywords
solar cell
silicon
heterojunction solar
silicon germanium
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510282991.1A
Other languages
English (en)
Other versions
CN105047748A (zh
Inventor
沈辉
邱开富
吴伟梁
包杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Runyang Yueda Photovoltaic Technology Co Ltd
Original Assignee
National Sun Yat Sen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Sun Yat Sen University filed Critical National Sun Yat Sen University
Priority to CN201510282991.1A priority Critical patent/CN105047748B/zh
Publication of CN105047748A publication Critical patent/CN105047748A/zh
Application granted granted Critical
Publication of CN105047748B publication Critical patent/CN105047748B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type the devices comprising monocrystalline or polycrystalline materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0312Inorganic materials including, apart from doping materials or other impurities, only AIVBIV compounds, e.g. SiC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种硅锗异质结太阳电池,该硅锗异质结太阳电池的结构从上至下依次包括:银电极、掺铝氧化锌AZO导电层、n型单晶硅、i型SiGe合金缓冲层薄膜、p型Ge薄膜和金电极,所述硅锗异质结太阳电池具有300~1800nm的宽光谱响应值。该电池在硅与锗之间沉积一层硅锗合金缓冲层,可以有效地降低界面态,减少界面复合,增大电池的开路电压。另外由于缓冲层的带隙渐变,可以更好地吸收太阳光,从而增大电池的短路电流。还公开了上述硅锗异质结太阳电池的制备方法。该制备方法原料安全,可直接应用现有设备,成本相对较低。

Description

一种硅锗异质结太阳电池及其制备方法
技术领域
本发明属于太阳电池技术领域,具体涉及一种硅锗异质结太阳电池及其制备方法。
背景技术
太阳能是人类取之不尽,用之不竭的可再生能源,同时也是不产生任何环境污染的清洁能源。充分有效地利用太阳能,对于解决能源短缺及环境污染有着重要的意义。
不管是常规晶体硅太阳电池还是高效晶体硅太阳电池,都需要经过高温扩散工艺以制备pn结,由此将给晶体硅带来晶格损伤和各种缺陷,引入复合中心从而降低太阳电池的效率。采用非晶硅与晶体硅结合形成的pn异质结太阳电池则无需高温工艺,可以在低于300℃的条件下制备。1983年Koji Okuda等人采用非晶硅和多晶硅叠层结构在200-300℃条件下制备了效率超过12%的异质结太阳电池。1992年三洋机电的Makoto Tanaka等人在非晶硅与晶体硅层之间插入了一层本征非晶硅层,在低于200℃的条件下制备了效率超过18%的异质结太阳电池,此电池就是后来举世闻名的HIT(Heterojunction withIntrinsic Thin-Layer)太阳电池。
HIT太阳电池经过多年的研究,如今取得了25.6%的世界效率。但此项技术一直垄断在日本人的手中。而且HIT太阳电池目前存在一些问题:一、设备昂贵,且原材料为高危险性化学物品。二、获取低界面态的非晶硅/晶体硅界面,要求工艺和设备达到较高的标准。三、非晶硅薄膜体内存在大量的缺陷,会引起严重的载流子复合。因此有必要寻找一种新材料与晶体硅结合形成异质结制备高效太阳电池。
锗(Ge)也是一种金刚石结构的半导体,室温下禁带宽度是0.66eV,电子和空穴迁移率比硅的3倍还高,对波长大于1100nm波段的红外光吸收系数高达103-104cm-1。硅与锗的晶格失配高达4.1%,但锗直接沉积在Si表面在界面处会出现严重的缺陷。实际上,Ge可以无限固溶在Si中形成SiGe合金,且SiGe合金的晶格常数与光学带隙随着合金中Ge含量的变化而变化。因此,本发明拟对具有晶体硅、硅锗缓冲层和锗结构的硅锗异质结太阳电池进行进一步的研究。
发明内容
本发明所要解决的第一个技术问题是提供一种硅锗异质结太阳电池,该电池在硅与锗之间沉积一层硅锗合金缓冲层,可以有效地降低界面态,减少界面复合,增大电池的开路电压,另外由于缓冲层的带隙渐变,可以更好地吸收太阳光,从而增大电池的短路电流。
本发明所要解决的第二个技术问题是提供上述硅锗异质结太阳电池的制备方法,该制备方法原料安全,可直接应用现有设备,成本相对较低。
本发明的第一个技术问题是通过以下技术方案来实现的:一种硅锗异质结太阳电池,该硅锗异质结太阳电池的结构从上至下依次包括:银电极、掺铝氧化锌AZO导电层、n型单晶硅片、i型SiGe合金缓冲层薄膜、p型Ge薄膜和金电极,所述硅锗异质结太阳电池具有300~1800nm的宽光谱响应值。
硅锗异质结太阳电池中,硅片主要吸收300~1100nm波段的太阳光,p型Ge薄膜主要吸收1100~1800nm波段的太阳光,所以该种太阳电池可以吸收的太阳光谱范围为300~1800nm,有效地拓宽了光谱响应;同时硅与锗之间沉积一层晶格常数与带隙都随Ge含量变化而变化的硅锗合金缓冲层,可以有效地降低硅与锗直接接触由于晶格失配较大而导致的较多的界面态,减少界面复合,增大电池的开路电压,另外由于缓冲层的带隙渐变,可以更好地吸收太阳光,从而增大电池的短路电流。
进一步的,所述掺铝氧化锌AZO导电层的厚度为50~150nm,所述i型SiGe合金缓冲层薄膜的厚度为100~300nm,所述p型Ge薄膜的厚度为100~400nm。
其中i型SiGe合金缓冲层薄膜优选采用等离子体增强化学气相沉积法PECVD制得。
本发明的第二个技术问题是通过以下技术方案来实现的:上述硅锗异质结太阳电池的制备方法,包括以下步骤:
(1)选取单面抛光的n型单晶硅片,在抛光面上沉积Si3N4掩膜;
(2)对n型单晶硅片的非抛光面进行单面制绒,在非抛光面上形成绒面结构;
(3)采用HF溶液去除抛光面上Si3N4掩膜;
(4)清洗硅片后干燥;
(5)在n型单晶硅片的抛光面上沉积Ge含量逐渐增大的i型SiGe合金缓冲层薄膜;
(6)在i型SiGe合金缓冲层薄膜上沉积p型Ge薄膜;
(7)在步骤(2)的绒面结构上沉积掺铝氧化锌AZO导电层;
(8)在AZO导电层上沉积银电极作为前电极,在p型Ge薄膜上沉积金电极作为背电极,制得具有c-Si(n)/SiGe(i)/Ge(p)结构的硅锗异质结太阳电池。
在上述硅锗异质结太阳电池的制备方法中:
步骤(1)中采用等离子体增强化学气相沉积法PECVD在抛光面上沉积Si3N4掩膜,Si3N4掩膜的厚度优选为70~80nm;PECVD的各项参数为:NH3和SiH4的流量比优选为1:3.5~4.5,衬底温度优选为285~315℃,反应压力优选为90~130Pa,沉积时间优选为90~105s。
步骤(2)中制绒时采用的溶剂优选为氢氧化钾KOH和异丙醇IPA的水溶液,其中氢氧化钾KOH和异丙醇IPA的水溶液,其中氢氧化钾KOH的质量百分含量为2~5%,异丙醇IPA的体积百分含量为2~4%,溶剂温度为70~80℃,制绒时间为20~30min。
步骤(3)中优选采用HF溶液去除抛光面上Si3N4掩膜,HF溶液中HF的体积百分含量优选为5~10%,腐蚀时间优选为10~15min。
步骤(4)中清洗硅片优选采用RCA清洗工艺,干燥优选采用N2吹干。
步骤(5)中优选采用等离子体增强化学气相沉积法PECVD在n型晶体硅片的抛光面上沉积Ge含量逐渐增大的i型SiGe合金缓冲层薄膜,PECVD的各项参数为:GeH4流量为20~80sccm,SiH4流量为20~40sccm,H2流量范围为1~5sccm,厚度为100~300nm,硅衬底温度为200~300℃,功率300~400W,压强为4~6mtorr,时间1~3min。
在PECVD工艺中,通过固定SiH4的流量,调节GeH4的流量,使其从20sccm增大到80sccm,进而实现获得Ge含量增大的i型SiGe合金缓冲层薄膜。
作为本发明的一些优选的实施方式,本发明中的i型SiGe合金缓冲层薄膜为三层,可以通过以下方式获得:如20ssccm下沉积30″,35sccm下沉积30″,80sccm下沉积30″,或20sccm下沉积30″,50sccm下沉积30″,80sccm下沉积30″,或20sccm下沉积30″,60sccm下沉积30″,80sccm下沉积30″等等,此处仅为列举,具体的实施方式有很多种方式,i型SiGe合金缓冲层薄膜也不仅局限于三层,可以根据具体的需要选择。
步骤(6)中优选采用等离子体增强化学气相沉积法PECVD在i型SiGe合金缓冲层薄膜上沉积p型Ge薄膜,PECVD的各项参数为GeH4流量为10~30sccm,H2流量为2~8sccm,B2H6流量为1~10sccm,厚度为100~400nm,衬底温度为200~300℃,功率300~400W,压强为8~10mtorr,时间2~7min。
步骤(7)中采用分子束外延法MBE在绒面结构上沉积掺铝氧化锌AZO导电层,分子束外延法MBE的各项参数为:生长腔体的真空度为10-6~10-7Pa,氧流量为1~1.6sccm,功率为250~380W,锌温度为250~330℃,硅片的温度为100~200℃,生长速率为2~4nm/min,铝源温度为300~500℃,掺铝氧化锌AZO导电层的厚度为50~150nm。
步骤(8)中在AZO导电层上局部区域采用蒸镀法沉积银电极,蒸镀银电极的各项参数为:硅片温度为50~100℃,真空度为1×10-4~4×10-4Pa,蒸发的速率为采用蒸镀法在p型Ge薄膜上沉积金电极,蒸镀法的各项参数为:硅片温度为50~100℃,真空度为1×10-4~4×10-4Pa,蒸发的速率为
与现有技术相比,本发明具有如下优点:
(1)本发明硅锗异质结太阳电池通过在硅与锗之间沉积一层硅锗合金缓冲层,可以有效地降低界面态,减少界面复合,增大电池的开路电压,另外由于缓冲层的带隙渐变,可以更好地吸收太阳光,从而增大电池的短路电流;
(2)本发明硅锗异质结太阳电池的光谱响应范围可以拓展为300~1800nm,使得太阳光的利用更加充分;
(3)本发明硅锗异质结太阳电池制备方法在整个制备工艺过程中,避免高温处理过程,且制备过程中无污染物质的排放,对环境保护与节约能源有利;
(4)在本发明的基础上,通过在硅片的上表面沉积光学带隙为1.35eV的直接带隙半导体InP,即通过在硅片的制绒面上进一步沉积InP,沉积完InP后再在InP表面沉积AZO,制备InP/Si/Ge双结异质结太阳电池,可以将光谱进一步拓展。
附图说明
图1是本发明实施例1-3中单面抛光的n型单晶硅片;
图2是本发明实施例1-3中抛光面沉积了Si3N4掩膜的硅片;
图3是本发明实施例1-3中单面制绒过后的硅片;
图4是本发明实施例1-3中利用HF溶液除去了Si3N4掩膜的硅片;
图5是本发明实施例1-3中在硅片抛光面利用PECVD沉积了本征SiGe合金缓冲层(即i型SiGe合金缓冲层)后的样品;
图6是本发明实施例1-3中在SiGe合金缓冲层表面利用PECVD沉积了p型Ge薄膜的样品;
图7是本发明实施例1-3中在样品上表面利用MBE沉积了AZO透明导电层的样品;
图8是本发明实施例1-3中在Ge薄膜表面蒸镀了金电极的样品;
图9是本发明实施例1-3中在AZO层蒸镀了银电极的样品,也即最终硅锗异质结太阳电池的示意图。
下面将结合具体实施例和附图进一步阐明本发明的内容,但这些实施例并不限制本发明的保护范围。
具体实施方式
实施例1
本实施例提供的硅锗异质结太阳电池,该硅锗异质结太阳电池的结构从上至下依次包括:银电极、掺铝氧化锌AZO导电层、n型单晶硅片、i型SiGe合金缓冲层薄膜、p型Ge薄膜和金电极,该硅锗异质结太阳电池具有300~1800nm的宽光谱响应值。
其中掺铝氧化锌AZO导电层的厚度100nm,i型SiGe合金缓冲层薄膜的厚度为150nm,p型Ge薄膜的厚度为200nm。
该硅锗异质结太阳电池通过包括以下步骤的方法制得:
(1)选取单面抛光的n型单晶硅片,用PECVD在抛光面上沉积Si3N4掩膜,PECVD的各项参数为:NH3和SiH4流量比为1:4,衬底温度为290℃,反应压力为100Pa,厚度为75nm,沉积时间为100s,如图1-2中所示;
(2)对硅片的非抛光面进行单面制绒,在非抛光面上形成绒面结构,制绒时采用的溶剂为氢氧化钾KOH和异丙醇IPA的水溶液,其中氢氧化钾KOH的质量百分含量为2.5%,异丙醇IPA的体积百分含量为3.28%,溶剂温度为75℃,制绒时间为25min,如图3中所示;
(3)用10vol%的HF溶液腐蚀Si3N410min以除去Si3N4掩膜,如图4中所示;
(4)硅片清洗采用RCA清洗工艺硅片,然后采用N2吹干;
其中RCA清洗工艺优选包括以下步骤:
(a)将硅片浸入丙酮溶液中超声清洗5min,然后用去离子水清洗;
(b)将硅片浸入异丙醇溶液中超声清洗5min,然后用去离子水清洗;
(c)将硅片浸入浓H2SO4和H2O2(体积比为1:3)的混合溶液中30min,然后用去离子水清洗;
(d)接着浸入10vol%的HF溶液中2min,然后用去离子水清洗;
(e)接着浸入10vol%的HCl和10vol%H2O2混合溶液中6min,然后用去离子水清洗;
(f)接着浸入10vol%的NH3·H2O和10vol%H2O2混合溶液中6min,并保持溶液温度为80℃,然后用去离子水清洗;
(g)接着浸入5vol%的HCl和5vol%的HF混合溶液中3min,然后用去离子水清洗;
(h)最后将硅片浸入10vol%的HF溶液中,然后用去离子水清洗干净。
(5)在硅片的抛光面上采用PECVD沉积i型SiGe合金缓冲层,SiH4流量为20sccm,GeH4流量依次为20sccm30″,40sccm30″,80sccm30″,H2流量为2sccm,厚度为150nm,衬底温度为300℃,功率400W,压强为6mtorr,时间为1.5min,如图5中所示;
(6)接着在SiGe合金缓冲层表面用PECVD沉积p型Ge薄膜,GeH4流量为20sccm,H2流量为5sccm,B2H6流量为5sccm,厚度为200nm,衬底温度为300℃,功率400W,压强为10mtorr,时间4min,如图6中所示;
(7)最后在硅的制绒面用分子束外延法沉积AZO透明导电膜,生长腔体的真空度为10-7Pa;氧流量为1.6sccm,功率设定380W,锌温度设定为330℃,基片的温度为200℃,生长速率为4nm/min,厚度为100nm,铝源温度设定为500℃,如图7中所示;
(8)在Ge薄膜背表面蒸镀金(Au)电极,基底温度为50℃,真空度为4×10-4Pa,蒸发的速率为厚度为100nm,如图8中所示。
(9)在步骤(7)的AZO表面加上电极掩模板,蒸镀银(Ag)作为前电极;基底温度为50℃,真空度为4×10-4Pa,蒸发的速率为银电极的厚度为200nm,最终制得Si/Ge异质结太阳电池,如图9中所示。
实施例2
本实施例提供的硅锗异质结太阳电池,从上至下依次包括:银电极、AZO导电层、n型单晶硅片、i型SiGe合金缓冲层薄膜、p型Ge薄膜和金电极,该硅锗异质结太阳电池具有300~1800nm的宽光谱响应值。
其中AZO导电层的厚度150nm,i型SiGe合金缓冲层薄膜的厚度为300nm,p型Ge薄膜的厚度为400nm。
如图1-9所示,该硅锗异质结太阳电池通过包括以下步骤的方法制得:
(1)选取单面抛光的n型单晶硅片,利用PECVD制备Si3N4掩膜,NH3和SiH4流量比为1:3.5,衬底温度为285℃,反应压力为90Pa,厚度为70nm,沉积时间为90s;
(2)对硅片的非抛光面进行单面制绒,制绒工艺为2wt%KOH、2vol%异丙醇IPA、腐蚀温度为80℃、腐蚀时间为25min;
(3)用5vol%的HF溶液腐蚀Si3N415min以除去Si3N4掩膜;
(4)然后采用RCA清洗工艺(同实施例1)清洗硅片,N2吹干;
(5)在样品抛光面用PECVD沉积i型SiGe合金缓冲层,SiH4流量为30sccm,GeH4流量依次为20sccm30″,50sccm30″,80sccm30″,H2流量为5sccm,厚度为300nm,衬底温度为300℃,功率400W,压强为6mtorr,时间为1.5min;
(6)接着在SiGe合金缓冲层表面用PECVD沉积p型Ge薄膜,GeH4流量为30sccm,H2流量为5sccm,B2H6流量为8sccm,厚度为400nm,衬底温度为300℃,功率400W,压强为10mtorr,时间7min;
(7)最后在硅的制绒面用MBE沉积AZO透明导电膜,生长腔体的真空度为10-6Pa;氧流量定为1sccm,功率设定250W,锌温度设定为250℃,硅片的温度为100℃,生长速率为2nm/min,厚度为150nm,铝源温度设定为300℃;
(8)在AZO表面蒸镀Ag电极,基底温度为100℃,真空度为1×10-4Pa,蒸发的速率为厚度为150nm;
(9)在Ge薄膜表面蒸镀金电极,基底温度为100℃,真空度为1×10-4Pa,蒸发的速率为厚度为150nm,最终制得Si/Ge异质结太阳电池。
实施例3
本实施例提供的硅锗异质结太阳电池,从上至下依次包括:银电极、AZO导电层、n型单晶硅片、i型SiGe合金缓冲层薄膜、p型Ge薄膜和金电极,该硅锗异质结太阳电池具有300~1800nm的宽光谱响应值。
其中AZO导电层的厚度50nm,i型SiGe合金缓冲层薄膜的厚度为100nm,p型Ge薄膜的厚度为100nm。
如图1-9所示,该硅锗异质结太阳电池通过包括以下步骤的方法制得:
(1)选取单面抛光的n型单晶硅片,利用PECVD制备Si3N4掩膜,NH3和SiH4流量比为1:4.5,衬底温度为315℃,反应压力为130Pa,厚度为80nm,沉积时间为105s;
(2)对硅片的非抛光面进行单面制绒,制绒工艺为4wt%KOH、4vol%异丙醇IPA、腐蚀温度为70℃、腐蚀时间为30min;
(3)用8vol%的HF溶液腐蚀Si3N412min以除去Si3N4掩膜;
(4)然后采用RCA清洗工艺(同实施例1)清洗硅片,N2吹干;
(5)在样品抛光面用PECVD沉积SiGe合金缓冲层,SiH4流量为40sccm,GeH4流量依次为20sccm30″,60sccm30″,80sccm30″,H2流量为5sccm,厚度为100nm,衬底温度为300℃,功率400W,压强为6mtorr,时间为1.5min;
(6)接着在SiGe合金缓冲层表面用PECVD沉积p型Ge薄膜,GeH4流量为20sccm,H2流量为8sccm,B2H6流量为1sccm,厚度为100nm,衬底温度为200℃,功率350W,压强为8mtorr,时间2min;
(7)最后在硅的制绒面用MBE沉积AZO透明导电膜,生长腔体的真空度为5×10-7Pa;氧流量为1sccm,功率设定300W,锌温度设定为250℃,基片的温度为150℃,生长速率为3nm/min,厚度为50nm,铝源温度设定为500℃;
(8)在AZO表面蒸镀Ag电极,基底温度为80℃,真空度为3×10-4Pa,蒸发的速率为厚度为150nm;
(9)在Ge薄膜表面蒸镀金电极,基底温度为80℃,真空度为3×10-4Pa,蒸发的速率为厚度为150nm,最终制得Si/Ge异质结太阳电池。
显然,上述内容只是为了说明本发明的特点,而并非对本发明的限制,有关技术领域的普通技术人员根据本发明在相应的技术领域做出的变化应属于本发明的保护范畴。

Claims (10)

1.一种硅锗异质结太阳电池,其特征是该硅锗异质结太阳电池的结构从上至下依次包括:银电极、掺铝氧化锌导电层、n型单晶硅片、i型SiGe合金缓冲层薄膜、p型Ge薄膜和金电极,所述硅锗异质结太阳电池具有300~1800nm的宽光谱响应值;
所述硅锗异质结太阳电池的制备方法,包括以下步骤:
(1)选取单面抛光的n型单晶硅片,在抛光面上沉积Si3N4掩膜;
(2)对n型单晶硅片的非抛光面进行单面制绒,在非抛光面上形成绒面结构;
(3)采用HF溶液去除抛光面上Si3N4掩膜;
(4)清洗硅片后干燥;
(5)在n型单晶硅片的抛光面上沉积Ge含量逐渐增大的i型SiGe合金缓冲层薄膜;
(6)在i型SiGe合金缓冲层薄膜上沉积p型Ge薄膜;
(7)在步骤(2)的绒面结构上沉积掺铝氧化锌导电层;
(8)在AZO导电层上沉积银电极作为前电极,在p型Ge薄膜上沉积金电极作为背电极,制得具有c-Si/SiGe/Ge 结构的硅锗异质结太阳电池。
2.根据权利要求1所述的硅锗异质结太阳电池,其特征是:所述掺铝氧化锌导电层的厚度为50~150nm,所述i型SiGe合金缓冲层薄膜的厚度为100~300nm,所述p型Ge薄膜的厚度为100~400nm。
3.权利要求1或2所述的硅锗异质结太阳电池的制备方法,其特征是包括以下步骤:
(1)选取单面抛光的n型单晶硅片,在抛光面上沉积Si3N4掩膜;
(2)对n型单晶硅片的非抛光面进行单面制绒,在非抛光面上形成绒面结构;
(3)采用HF溶液去除抛光面上Si3N4掩膜;
(4)清洗硅片后干燥;
(5)在n型单晶硅片的抛光面上沉积Ge含量逐渐增大的i型SiGe合金缓冲层薄膜;
(6)在i型SiGe合金缓冲层薄膜上沉积p型Ge薄膜;
(7)在步骤(2)的绒面结构上沉积掺铝氧化锌导电层;
(8)在AZO导电层上沉积银电极作为前电极,在p型Ge薄膜上沉积金电极作为背电极,制得具有c-Si/SiGe/Ge结构的硅锗异质结太阳电池。
4.根据权利要求3所述的硅锗异质结太阳电池的制备方法,其特征是:步骤(1)中采用等离子体增强化学气相沉积法在抛光面上沉积Si3N4掩膜,Si3N4掩膜的厚度为70~80nm,PECVD的各项参数为:NH3和SiH4的流量比为1:3.5~4.5,衬底温度为285~315℃,反应压力为90~130Pa,沉积时间为90s~105s。
5.根据权利要求3所述的硅锗异质结太阳电池的制备方法,其特征是:步骤(2)中制绒时采用的溶剂为氢氧化钾和异丙醇的水溶液,其中氢氧化钾的质量百分含量为2~5%,异丙醇的体积百分含量为2~4%,溶剂温度为70~80℃,制绒时间为20~30min;步骤(3)中采用HF溶液去除抛光面上Si3N4掩膜,其中HF的体积百分含量为5~10%,腐蚀时间为10~15min。
6.根据权利要求3所述的硅锗异质结太阳电池的制备方法,其特征是:步骤(4)中清洗硅片采用RCA 清洗工艺,干燥采用N2吹干。
7.根据权利要求3所述的硅锗异质结太阳电池的制备方法,其特征是:步骤(5)中采用等离子体增强化学气相沉积法在n型单晶硅片的抛光面上沉积Ge含量逐渐增大的i型SiGe合金缓冲层薄膜,PECVD的各项参数为:GeH4流量为20~80sccm,SiH4流量为20~40sccm,H2流量范围为1~5sccm,厚度为100~300nm,衬底温度为200~300℃,功率300~400W,压强为4~6mtorr,时间1~3min。
8.根据权利要求3所述的硅锗异质结太阳电池的制备方法,其特征是:步骤(6)中采用等离子体增强化学气相沉积法在i型SiGe合金缓冲层薄膜上沉积p型Ge薄膜,PECVD的各项参数为:GeH4流量为10~30sccm,H2流量为2~8sccm,B2H6流量为1~10sccm,厚度为100~400nm,衬底温度为200~300℃,功率300~400W,压强为8~10mtorr,时间2~7min。
9.根据权利要求3所述的硅锗异质结太阳电池的制备方法,其特征是:步骤(7)中采用分子束外延法在绒面结构上沉积掺铝氧化锌导电层,分子束外延法的各项参数为:生长腔体的真空度为10-6~10-7 Pa,氧流量为1~1.6sccm,功率为250~380W,锌温度为250~330 ℃,硅片的温度为100~200 ℃,生长速率为2~4 nm/min,铝源温度为300~500 ℃,掺铝氧化锌导电层的厚度为50~150nm。
10.根据权利要求3所述的硅锗异质结太阳电池的制备方法,其特征是:步骤(8)中在AZO导电层上局部区域采用蒸镀法沉积银电极,蒸镀银电极的各项参数为:硅片温度为50 ~100℃,真空度为1×10-4~4×10-4 Pa,蒸发速率为1~2 Å/s;采用蒸镀法在p型Ge薄膜上沉积金电极,蒸镀法的各项参数为:硅片温度为50~100 ℃,真空度为1×10-4~4×10-4 Pa,蒸发的速率为1~2 Å/s。
CN201510282991.1A 2015-05-28 2015-05-28 一种硅锗异质结太阳电池及其制备方法 Active CN105047748B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510282991.1A CN105047748B (zh) 2015-05-28 2015-05-28 一种硅锗异质结太阳电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510282991.1A CN105047748B (zh) 2015-05-28 2015-05-28 一种硅锗异质结太阳电池及其制备方法

Publications (2)

Publication Number Publication Date
CN105047748A CN105047748A (zh) 2015-11-11
CN105047748B true CN105047748B (zh) 2017-08-11

Family

ID=54454134

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510282991.1A Active CN105047748B (zh) 2015-05-28 2015-05-28 一种硅锗异质结太阳电池及其制备方法

Country Status (1)

Country Link
CN (1) CN105047748B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110120434B (zh) * 2019-06-18 2024-03-26 合肥晶澳太阳能科技有限公司 电池片及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1216405C (zh) * 2000-08-01 2005-08-24 三菱麻铁里亚尔株式会社 半导体衬底、场效应晶体管、锗化硅层形成方法及其制造方法
CN102388466A (zh) * 2009-02-19 2012-03-21 Iqe硅化合物有限公司 光伏电池
CN103594542A (zh) * 2012-08-15 2014-02-19 国际商业机器公司 光伏器件和形成光伏器件的方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1085419C (zh) * 1998-12-15 2002-05-22 冶金工业部钢铁研究总院 碱性二次镍氢电池及其制造方法
US20100059119A1 (en) * 2008-09-09 2010-03-11 Electronics And Telecommunications Research Institute Solar cell and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1216405C (zh) * 2000-08-01 2005-08-24 三菱麻铁里亚尔株式会社 半导体衬底、场效应晶体管、锗化硅层形成方法及其制造方法
CN102388466A (zh) * 2009-02-19 2012-03-21 Iqe硅化合物有限公司 光伏电池
CN103594542A (zh) * 2012-08-15 2014-02-19 国际商业机器公司 光伏器件和形成光伏器件的方法

Also Published As

Publication number Publication date
CN105047748A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
CN104993059B (zh) 一种硅基钙钛矿异质结太阳电池及其制备方法
Yuan et al. Silicon solar cells with front hetero-contact and aluminum alloy back junction
TW201001721A (en) Method for obtaining high performance thin film devices deposited on highly textured substrates
CN109004053A (zh) 双面受光的晶体硅/薄膜硅异质结太阳电池及制作方法
CN102299206B (zh) 一种异质结太阳电池及其制备方法
TW201128789A (en) New structure solar cell with superlattices
CN101976710A (zh) 基于氢化微晶硅薄膜的晶体硅异质结太阳电池的制备方法
CN102403369A (zh) 一种用于太阳能电池的钝化介质膜
CN103000741A (zh) 一种黑色异质结晶硅电池及其制造方法
CN109638094A (zh) 高效异质结电池本征非晶硅钝化层结构及其制备方法
CN107731935A (zh) 一种背钝化晶硅太阳能电池及其背钝化膜层的制备方法
CN107170840A (zh) 背接触异质结太阳电池及其发射极、太阳电池制备方法
CN207282509U (zh) 双面受光的晶体硅/薄膜硅异质结太阳电池
CN210668401U (zh) 一种硅基叠层双面太阳电池
CN112838132A (zh) 一种太阳能电池叠层钝化结构及其制备方法
CN105047748B (zh) 一种硅锗异质结太阳电池及其制备方法
CN201699034U (zh) 一种硅基异质结太阳电池
CN204315603U (zh) 一种背面抛光晶硅太阳能电池
CN103594536B (zh) 多结多叠层硅基薄膜太阳能电池及其制造工艺
CN102522453B (zh) 一种场效应晶体硅太阳能电池的制作方法
CN105280745B (zh) GaInP/GaAs /InGaAs/Ge四结级联太阳电池及其制作方法
CN114188429A (zh) 一种带有隧穿隧道结的同质异质结电池及其制备方法
CN103430326A (zh) 微晶PIN结的SiOxN型层
Petti et al. Thin Films in Photovoltaics
CN102157594A (zh) nc-Si:H/SiNx超晶格量子阱太阳电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210524

Address after: No.58 Xiangjiang Road, Yancheng Economic and Technological Development Zone, Jiangsu Province 224005

Patentee after: JIANGSU RUNYANG YUEDA PHOTOVOLTAIC TECHNOLOGY Co.,Ltd.

Address before: 510275 No. 135 West Xingang Road, Guangzhou, Guangdong, Haizhuqu District

Patentee before: SUN YAT-SEN University