CN105039770A - 一种利用定向凝固技术制备多孔金属材料的方法 - Google Patents

一种利用定向凝固技术制备多孔金属材料的方法 Download PDF

Info

Publication number
CN105039770A
CN105039770A CN201510374204.6A CN201510374204A CN105039770A CN 105039770 A CN105039770 A CN 105039770A CN 201510374204 A CN201510374204 A CN 201510374204A CN 105039770 A CN105039770 A CN 105039770A
Authority
CN
China
Prior art keywords
metal
powder
chlorate
solidified
porous metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510374204.6A
Other languages
English (en)
Other versions
CN105039770B (zh
Inventor
汤玉斐
邱沙
赵康
吴聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian University of Technology
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201510374204.6A priority Critical patent/CN105039770B/zh
Publication of CN105039770A publication Critical patent/CN105039770A/zh
Application granted granted Critical
Publication of CN105039770B publication Critical patent/CN105039770B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明提供了一种利用定向凝固技术制备多孔金属材料的方法,具体为:将添加有增稠剂的金属粉末和氯化盐粉末熔融混合为金属浆料,将金属浆料在模具中经定向凝固、快速冷却,得到凝固的金属和凝固的氯化盐的混合体;去除混合体中的氯化盐,并烘干得到多孔金属材料。本发明通过定向凝固技术和铸造成型的结合,获得孔隙呈定向排列、具有一定孔径大小的多孔结构的多孔金属材料,其孔隙大小可控,且均匀,定向的多孔结构提高了多孔金属的机械强度,金属从液态到固态的相变成型,使得孔壁更加密实,赋予了多孔金属更优的力学性能,同时制备工艺简单,生产效率高,在航空航天、过滤材料、催化剂载体、多孔电极、换热器和阻燃器等领域有广阔的应用前景。

Description

一种利用定向凝固技术制备多孔金属材料的方法
技术领域
本发明属于多孔材料制备技术领域,涉及一种利用定向凝固技术制备多孔金属材料的方法。
背景技术
多孔金属材料是一种具有优异物理特性和良好力学性能的新型工程材料,即各种形貌的孔洞分布于金属基体中,将金属相分割成为小单元。它兼有连续金属相和分散气体相的特点。多孔金属材料具有低的密度,高的孔隙率,大的比表面积,并且可有选择地透过流体,还有优良的吸声、吸能性能,优异的热物理性能及高的阻尼性能。因而它的应用遍及汽车、建筑、化学、航空航天、军事工业等领域,可被用作减震器、缓冲器、吸能器、过滤器、流体透过器、热交换器、灭火器、发动机的排气消声器、催化剂载体、多孔金属电极、火箭鼻锥及尾翼的冷却发汗材料、水下潜艇的消音器等。所以,研发出有特定孔形、孔径、孔隙的新型多孔金属材料具有广泛的应用前景和重要的意义。
中国专利《一种无需增粘熔体发泡法制备小孔径泡沫铝的工艺》(申请号:201410015998.2,公开号:103757459,公开日:2014-04-30)公开了一种熔体发泡法制备小孔径泡沫铝的新工艺,以碳酸钙为发泡剂,通过Mg、Al和CaCO3三者之间的反应生成的气体来使熔体发泡,反应生成的氧化物可提高熔体的粘度,获得孔隙率为50.0%-85.0%,平均孔径在1.0-2.0mm左右的泡沫铝样品。该工艺无需增粘,简化了生产过程,但是生产的泡沫铝材料纯度低,且形成大量闭孔。
中国专利《多孔金属材料及制备方法》(申请号:201110051386.5,公开号:102094225A,公开日:2011-06-15)公开了一种多孔金属,主要是在基体导电化后和电沉积前对基体进行纵横双向拉伸,随后在硫酸盐体系中进行电沉积和热处理,得到由金属构成骨架,具有三维网状通孔结构的多孔金属材料。该方法有效改善金属沉积均匀性、抗拉强度及延伸率,但是存在制备工艺相对复杂,成本较高,后续还原烧结过程样品翘曲大等缺点。
中国专利《藕状多孔铝的定向凝固制备方法》(申请号:201510030049.6,公开号:104593630A,公开日:2015-05-06)公开了一种藕状多孔铝的定向凝固制备方法,基于金属气体共晶定向凝固技术,将高纯度的电解铝放入真空定向凝固炉中,经过抽真空,再将电解铝加热至全部熔化。然后关掉真空,充入氢气或氢气和氩气混合气体到设定压力,保温一段时间,开始向下拉铸,制备出藕状多孔铝。制备出的多孔铝的孔率及孔径可由氢气压力和冷却速度来控制,孔隙可定向排列。但若工艺参数控制不严格,气泡会从液相中逸出;若温度和压力不协调,冷却将不经过低共熔点,会有不均匀细结构的副共熔相产生,导致多孔结构的均匀性较差。
中国专利《一种采用粉末冶金法制备多孔金属钼的方法》(申请号:201010532845.7,公开号:101988162A,公开日:2011-03-23)公开了一种采用粉末冶金法制备多孔金属钼的方法,将钼粉与造孔剂混合均匀,进行压制成型、粉末烧结,最后用去离子水清洗后,即制得多孔金属钼。获得的材料孔隙分布均匀,孔隙率可控,但是强度较低,同时难以控制烧结过程中造孔剂分解逸出对材料结构的影响。
发明内容
本发明的目的是提供一种利用定向凝固技术制备多孔金属材料的方法,解决了现有多孔金属材料孔隙尺寸和分布不均匀、强度不高,其制备方法难控制多孔金属材料孔隙的尺寸及分布、且工艺复杂、成本较高的问题。
本发明所采用的技术方案是,一种利用定向凝固技术制备多孔金属材料的方法,具体按以下步骤实施:
步骤1,制备金属浆料:
取金属粉末和氯化盐粉末,将增稠剂加入金属粉末和氯化盐粉末中,加热金属粉末和氯化盐粉末至熔融态,均匀混合,得到金属浆料;
步骤2,定向凝固:
将步骤1得到的金属浆料注入模具中,将模具底部置于冷却平台上进行冷却,得到熔融态的金属和凝固的氯化盐的混合体;
步骤3,快速冷却:
将步骤2中装有熔融态的金属和凝固的氯化盐的混合体的模具放置于烘箱中快速冷却,金属经冷却凝固,得到凝固的金属和凝固的氯化盐的混合体;
步骤4,去除氯化盐:
将步骤3得到的凝固的金属和凝固的氯化盐的混合体用去离子水进行清洗,去除氯化盐,然后烘干,即得多孔金属材料。
本发明的特点还在于,
步骤1中金属粉末和氯化盐粉末的体积百分比为:金属粉末10%~40%,氯化盐粉末90%~60%,上述组分体积百分比之和为100%,增稠剂的用量占金属粉末和氯化盐粉末两者总质量的4%~16%。
步骤1中金属为铝、镁、锌、锡或它们的合金中的任意一种;氯化盐为氯化钠、氯化钾、氯化钙、氯化钡中的任意一种;增稠剂为CaO、MnO2、Al2O3颗粒、SiC颗粒、粉煤灰中的任意一种或任意几种的混合。
步骤1中加热温度为800℃~950℃,加热时间为2~4h。
步骤2中冷却温度为250℃~750℃,冷却时间为2~5h。
步骤2中模具为由传热耐高温材质组成、侧面包裹保温材料的圆柱形模具,冷却平台材质为铜板。
模具的传热耐高温材质为石墨,侧面包裹保温材料为酚醛泡沫。
步骤3中快速冷却温度为0℃~200℃,冷却时间为2~5h。
步骤4中清洗时间为30~60min,烘干温度为60℃~120℃,烘干时间为4~10h。
本发明的有益效果是,发明一种利用定向凝固技术制备多孔金属材料的方法,通过定向凝固技术和铸造成型的结合,获得孔隙呈定向排列、具有一定孔径大小的多孔结构的多孔金属材料,其孔隙大小可控,且均匀,定向的多孔结构提高了多孔金属的机械强度,金属从液态到固态的相变成型,使得孔壁更加密实,赋予了多孔金属更优的力学性能,同时制备工艺简单,生产效率高,在航空航天、过滤材料、催化剂载体、多孔电极、换热器和阻燃器等领域有广阔的应用前景。
附图说明
图1是本发明实施例1制备的多孔金属铝材料的纵截面形貌示意图。
图中,1.金属,2.由氯化盐留下的定向多孔。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
本发明一种利用定向凝固技术制备多孔金属材料的方法,具体按以下步骤实施:
步骤1,制备金属浆料:
按体积百分比分别取金属粉末10%~40%,氯化盐粉末90%~60%,上述组分体积百分比之和为100%。称取增稠剂加入金属粉末和氯化盐粉末中,增稠剂的用量占金属粉末和氯化盐粉末两者总质量的4%~16%。
在800~950℃下加热所有粉末2~4h至熔融态,均匀混合,得到金属浆料。
其中金属为铝、镁、锌、锡或它们的合金中的任意一种;氯化盐为氯化钠、氯化钾、氯化钙、氯化钡中的任意一种;增稠剂为CaO、MnO2、Al2O3颗粒、SiC颗粒、粉煤灰等中的任意一种或任意几种的混合。
步骤2,定向凝固:
将步骤1得到的金属浆料注入由传热耐高温材质组成、侧面包裹保温材料的圆柱形模具中,然后将注入浆料的模具底部置于温度为250℃~750℃的冷却平台上,冷却2~5h,使得氯化盐定向凝固,金属仍处于熔融态,得到熔融态的金属和凝固的氯化盐的混合体。
其中模具的传热耐高温材质为石墨,侧面包裹保温材料为酚醛泡沫。其中冷却平台材质为铜板
步骤3,快速冷却:
将步骤2中的模具侧面包裹的保温材料去掉,将装有熔融态的金属和凝固的氯化盐的混合体的模具放置于温度为0℃~200℃的烘箱中快速冷却2~5h,金属经冷却凝固,得到凝固的金属和凝固的氯化盐的混合体。
步骤4,去除氯化盐:
将步骤3得到的凝固的金属和凝固的氯化盐的混合体在超声波清洗器中用去离子水进行清洗,溶去氯化盐,清洗时间为30~60min,金属不溶于水,氯化盐得到去除,然后在60~120℃下烘干4~10h,即得多孔金属材料。
本发明一种利用定向凝固技术制备多孔金属材料的方法,通过定向凝固技术和铸造成型的结合,获得孔隙呈定向排列、具有一定孔径大小的多孔结构的多孔金属材料,其孔隙大小可控,且均匀,定向的多孔结构提高了多孔金属的机械强度,金属从液态到固态的相变成型,使得孔壁更加密实,赋予了多孔金属更优的力学性能,同时制备工艺简单,生产效率高,在航空航天、过滤材料、催化剂载体、多孔电极、换热器和阻燃器等领域有广阔的应用前景。
实施例1
制备定向多孔金属铝材料
按体积百分比分别取40%金属铝粉末和60%氯化钠粉末,称取金属铝粉末和氯化钠粉末总质量4%的CaO颗粒放入金属铝粉末和氯化钠粉末中,在850℃下加热2h金属铝粉末和氯化钠粉末至熔融态,均匀混合,得到金属铝浆料;
将上述金属铝浆料注入由石墨组成、侧面包裹酚醛泡沫的圆柱形模具中,然后将注入浆料的模具底部置于温度为700℃的冷却平台上2h进行冷却,使得氯化钠定向凝固,金属铝仍处于熔融态,得到熔融态的金属铝和凝固的氯化钠的混合体;
将上述模具侧面包裹的酚醛泡沫保温材料去掉,将装有熔融态的金属铝和凝固的氯化钠的混合体的模具放置于温度为100℃的烘箱中快速冷却3h,金属铝经冷却凝固,得到凝固的金属铝和凝固的氯化钠的混合体;
然后将得到的凝固的金属铝和凝固的氯化钠的混合体在超声波清洗器中用去离子水进行清洗,溶去氯化钠,清洗时间为30min,金属铝不溶于水,氯化钠得到去除,然后在60℃下烘干10h,即得多孔金属铝材料。
实施例2
制备定向多孔镁材料
按体积百分比分别取30%金属镁粉末和70%氯化钾粉末,称取金属镁粉末和氯化钾粉末总质量8%的MnO2颗粒放入金属镁粉末和氯化钾粉末中,在800℃下加热4h金属镁粉末和氯化钾粉末至熔融态,均匀混合,得到金属镁浆料;
将上述金属镁浆料注入由石墨组成、侧面包裹酚醛泡沫的圆柱形模具中,然后将注入浆料的模具底部置于温度为750℃的冷却平台上3h进行冷却,使得氯化钾定向凝固,金属镁仍处于熔融态,得到熔融态的金属镁和凝固的氯化钾的混合体;
将上述模具侧面包裹的酚醛泡沫保温材料去掉,将装有熔融态的金属镁和凝固的氯化钾的混合体的模具放置于温度为0℃的烘箱中快速冷却2h,金属镁经冷却凝固,得到凝固的金属镁和凝固的氯化钾的混合体;
然后将得到的凝固的金属镁和凝固的氯化钾的混合体在超声波清洗器中用去离子水进行清洗,溶去氯化钾,清洗时间为40min,金属镁不溶于水,氯化钾得到去除,然后在80℃下烘干8h,即得多孔金属镁材料。
实施例3
制备定向多孔金属锌材料
按体积百分比分别取20%金属锌粉末和80%氯化钠末,称取金属锌粉末和氯化钠粉末总质量12%的Al2O3颗粒放入金属铝粉末和氯化钠粉末中,在950℃下加热3h金属锌粉末和氯化钠粉末至熔融态,均匀混合,得到金属锌浆料;
将上述金属锌浆料注入由石墨组成、侧面包裹酚醛泡沫的圆柱形模具中,然后将注入浆料的模具底部置于温度为500℃的冷却平台上4h进行冷却,使得氯化钠定向凝固,金属锌仍处于熔融态,得到熔融态的金属锌和凝固的氯化钠的混合体;
将上述模具侧面包裹的酚醛泡沫保温材料去掉,将装有熔融态的金属锌和凝固的氯化钠的混合体的模具放置于温度为200℃的烘箱中快速冷却4h,金属锌经冷却凝固,得到凝固的金属锌和凝固的氯化钠的混合体;
然后将得到的凝固的金属锌和凝固的氯化钠的混合体在超声波清洗器中用去离子水进行清洗,溶去氯化钠,清洗时间为50min,金属锌不溶于水,氯化钠得到去除,然后在100℃下烘干6h,即得多孔金属锌材料。
实施例4
制备定向多孔铝镁合金材料
按体积百分比分别取10%铝镁合金粉末和90%氯化钠粉末,称取铝镁合金粉末和氯化钠粉末总质量16%的Al2O3颗粒放入金属铝粉末、金属镁粉末和氯化钠粉末中,在900℃下加热3h金属铝粉末、金属镁粉末和氯化钠粉末至熔融态,均匀混合,得到铝镁合金浆料(其中铝镁合金中,镁的质量分数为20%);
将上述铝镁合金浆料注入由石墨组成、侧面包裹酚醛泡沫的圆柱形模具中,然后将注入浆料的模具底部置于温度为250℃的冷却平台上5h进行冷却,使得氯化钠定向凝固,铝镁合金仍处于熔融态,得到熔融态的铝镁合金和凝固的氯化钠的混合体;
将上述模具侧面包裹的酚醛泡沫保温材料去掉,将装有熔融态的铝镁合金和凝固的氯化钠的混合体的模具放置于温度为100℃的烘箱中快速冷却5h,铝镁合金经冷却凝固,得到凝固的铝铝合金和凝固的氯化钠的混合体;
然后将得到的凝固的铝镁合金和凝固的氯化钠的混合体在超声波清洗器中用去离子水进行清洗,溶去氯化钠,清洗时间为60min,铝镁合金不溶于水,氯化钠得到去除,然后在120℃下烘干4h,即得多孔铝镁合金材料。
本发明方法通过控制金属浆料中氯化盐的体积比例来控制多孔金属材料的孔隙率大小,通过控制冷却平台的温度来控制多孔金属材料的孔径大小。采用定向凝固技术,氯化盐沿着冷却方向凝固,最终获得的定向多孔金属材料具有沿冷却方向的直通孔。本发明中金属浆料经过在冷却平台上的冷却过程,氯化盐沿着与温度梯度相反的方向定向凝固,金属经铸造成型,通过溶剂溶解氯化盐的特点去除定向凝固的氯化盐,从而获得定向多孔结构。相比于粉末冶金,金属颗粒间通过烧结连接在一起,颗粒与颗粒之间存在空隙,使得制备出的材料强度不高,而本发明中金属是从液态直接变为固态相变成型的,因此孔壁较密实,材料强度较高。图1是本发明实施例1制备出的多孔金属铝材料纵截面形貌示意图,从图1中可看出,定向排列的直通孔和周围密实的金属孔壁构成了多孔金属材料。
将本发明实施例1、2、3和4制备得到的定向多孔金属材料的孔隙分布情况、孔隙率大小和力学性能进行列表说明,结果如下:
由上表可以看出本发明一种定向多孔金属材料的孔隙分布呈定向排列;孔隙率范围在48.7%~78.1%,孔隙率由金属浆料中氯化盐的体积比例来控制;抗压强度较高,定向的多孔结构及密实的孔壁有利于多孔金属材料力学性能的改善,使得定向多孔金属材料在航空航天、过滤材料、催化剂载体、多孔电极、换热器和阻燃器等领域有广阔的应用前景。

Claims (9)

1.一种利用定向凝固技术制备多孔金属材料的方法,其特征在于,具体按以下步骤实施:
步骤1,制备金属浆料:
取金属粉末和氯化盐粉末,将增稠剂加入金属粉末和氯化盐粉末中,加热金属粉末和氯化盐粉末至熔融态,均匀混合,得到金属浆料;
步骤2,定向凝固:
将步骤1得到的金属浆料注入模具中,将模具底部置于冷却平台上进行冷却,得到熔融态的金属和凝固的氯化盐的混合体;
步骤3,快速冷却:
将步骤2中装有熔融态的金属和凝固的氯化盐的混合体的模具放置于烘箱中快速冷却,金属经冷却凝固,得到凝固的金属和凝固的氯化盐的混合体;
步骤4,去除氯化盐:
将步骤3得到的凝固的金属和凝固的氯化盐的混合体用去离子水进行清洗,去除氯化盐,然后烘干,即得多孔金属材料。
2.根据权利要求1所述的一种利用定向凝固技术制备多孔金属材料的方法,其特征在于,步骤1中所述金属粉末和氯化盐粉末的体积百分比为:金属粉末10%~40%,氯化盐粉末90%~60%,上述组分体积百分比之和为100%,增稠剂的用量占金属粉末和氯化盐粉末两者总质量的4%~16%。
3.根据权利要求1所述的一种利用定向凝固技术制备多孔金属材料的方法,其特征在于,步骤1中所述金属为铝、镁、锌、锡或它们的合金中的任意一种;氯化盐为氯化钠、氯化钾、氯化钙、氯化钡中的任意一种;增稠剂为CaO、MnO2、Al2O3颗粒、SiC颗粒、粉煤灰中的任意一种或任意几种的混合。
4.根据权利要求1所述的一种利用定向凝固技术制备多孔金属材料的方法,其特征在于,步骤1中所述加热温度为800℃~950℃,加热时间为2~4h。
5.根据权利要求1所述的一种利用定向凝固技术制备多孔金属材料的方法,其特征在于,步骤2中所述冷却温度为250℃~750℃,冷却时间为2~5h。
6.根据权利要求1所述的一种利用定向凝固技术制备多孔金属材料的方法,其特征在于,步骤2中所述模具为由传热耐高温材质组成、侧面包裹保温材料的圆柱形模具,冷却平台材质为铜板。
7.根据权利要求6所述的一种利用定向凝固技术制备多孔金属材料的方法,其特征在于,所述模具的传热耐高温材质为石墨,侧面包裹保温材料为酚醛泡沫。
8.根据权利要求1所述的一种利用定向凝固技术制备多孔金属材料的方法,其特征在于,步骤3中所述快速冷却温度为0℃~200℃,冷却时间为2~5h。
9.根据权利要求1所述的一种利用定向凝固技术制备多孔金属材料的方法,其特征在于,步骤4中所述清洗时间为30~60min,烘干温度为60℃~120℃,烘干时间为4~10h。
CN201510374204.6A 2015-06-30 2015-06-30 一种利用定向凝固技术制备多孔金属材料的方法 Expired - Fee Related CN105039770B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510374204.6A CN105039770B (zh) 2015-06-30 2015-06-30 一种利用定向凝固技术制备多孔金属材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510374204.6A CN105039770B (zh) 2015-06-30 2015-06-30 一种利用定向凝固技术制备多孔金属材料的方法

Publications (2)

Publication Number Publication Date
CN105039770A true CN105039770A (zh) 2015-11-11
CN105039770B CN105039770B (zh) 2017-03-29

Family

ID=54446739

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510374204.6A Expired - Fee Related CN105039770B (zh) 2015-06-30 2015-06-30 一种利用定向凝固技术制备多孔金属材料的方法

Country Status (1)

Country Link
CN (1) CN105039770B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106676308A (zh) * 2017-01-21 2017-05-17 杨林 一种膜层式发泡铝的制备方法
CN106735001A (zh) * 2016-11-30 2017-05-31 华北电力大学(保定) 一种改进的介孔材料生产设备
CN107552797A (zh) * 2017-09-26 2018-01-09 成都新柯力化工科技有限公司 一种采用冷冻拉丝工艺制备泡沫金属的方法
CN110057262A (zh) * 2019-04-24 2019-07-26 常州大学 基于填充有超细粉体抑爆剂的泡沫金属的复合抑爆体
CN110385437A (zh) * 2019-07-03 2019-10-29 西安理工大学 一种定向纤维原位增强钛及其合金支架的制备方法
CN112652782A (zh) * 2020-12-09 2021-04-13 广东至道先进土木工程材料技术研究有限公司 环保地聚物电池及其制备方法
CN113209366A (zh) * 2021-04-23 2021-08-06 常州市第二人民医院 一种可降解局部万古霉素缓释系统及其制备方法
CN113278824A (zh) * 2021-04-29 2021-08-20 西安理工大学 一种高锡含量高塑性Cu-Sn-Ti合金的制备方法
CN114806516A (zh) * 2022-04-19 2022-07-29 西安交通大学 一种多孔金属装载硝酸盐自发汗复合材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3926245A (en) * 1973-09-28 1975-12-16 Gen Motors Corp Method for producing directionally solidified cast alloy articles and apparatus therefor
GB1423165A (en) * 1972-04-07 1976-01-28 Ass Elect Ind Vacuum switch contact material
JPS51119616A (en) * 1975-03-25 1976-10-20 United Technologies Corp Combined shell mold for manufacturing superralloy cast article and method of making the mold
CN103747659A (zh) * 2014-01-08 2014-04-23 中国科学院金属研究所 一种多孔铜散热片及其制备方法
CN104593630A (zh) * 2015-01-22 2015-05-06 江西理工大学 藕状多孔铝的定向凝固制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1423165A (en) * 1972-04-07 1976-01-28 Ass Elect Ind Vacuum switch contact material
US3926245A (en) * 1973-09-28 1975-12-16 Gen Motors Corp Method for producing directionally solidified cast alloy articles and apparatus therefor
JPS51119616A (en) * 1975-03-25 1976-10-20 United Technologies Corp Combined shell mold for manufacturing superralloy cast article and method of making the mold
CN103747659A (zh) * 2014-01-08 2014-04-23 中国科学院金属研究所 一种多孔铜散热片及其制备方法
CN104593630A (zh) * 2015-01-22 2015-05-06 江西理工大学 藕状多孔铝的定向凝固制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LI ZAIJIU: "A Thermodynamic model for directional solidification of metal hydrogen eutectic", 《ACTA METALLURGICA SINICA》 *
YUAN LIU等: "Effect of melt superheat on structural uniformity of lotus-type porous metals prepared by unidirectional solidification", 《TRANSACTIONS OF NONFERROUS METAL SOCIETY OF CHINA》 *
张际帆等: "镁基储氢合金的制备方法研究进展", 《热加工工艺》 *
陈宗民等: "《铸造金属凝固原理》", 31 January 2014 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106735001A (zh) * 2016-11-30 2017-05-31 华北电力大学(保定) 一种改进的介孔材料生产设备
CN106676308A (zh) * 2017-01-21 2017-05-17 杨林 一种膜层式发泡铝的制备方法
CN107552797A (zh) * 2017-09-26 2018-01-09 成都新柯力化工科技有限公司 一种采用冷冻拉丝工艺制备泡沫金属的方法
CN110057262A (zh) * 2019-04-24 2019-07-26 常州大学 基于填充有超细粉体抑爆剂的泡沫金属的复合抑爆体
CN110385437A (zh) * 2019-07-03 2019-10-29 西安理工大学 一种定向纤维原位增强钛及其合金支架的制备方法
CN110385437B (zh) * 2019-07-03 2021-09-10 西安理工大学 一种定向纤维原位增强钛及其合金支架的制备方法
CN112652782A (zh) * 2020-12-09 2021-04-13 广东至道先进土木工程材料技术研究有限公司 环保地聚物电池及其制备方法
CN113209366A (zh) * 2021-04-23 2021-08-06 常州市第二人民医院 一种可降解局部万古霉素缓释系统及其制备方法
CN113278824A (zh) * 2021-04-29 2021-08-20 西安理工大学 一种高锡含量高塑性Cu-Sn-Ti合金的制备方法
CN113278824B (zh) * 2021-04-29 2021-12-17 西安理工大学 一种高锡含量高塑性Cu-Sn-Ti合金的制备方法
CN114806516A (zh) * 2022-04-19 2022-07-29 西安交通大学 一种多孔金属装载硝酸盐自发汗复合材料及其制备方法
CN114806516B (zh) * 2022-04-19 2023-08-15 西安交通大学 一种多孔金属装载硝酸盐自发汗复合材料及其制备方法

Also Published As

Publication number Publication date
CN105039770B (zh) 2017-03-29

Similar Documents

Publication Publication Date Title
CN105039770A (zh) 一种利用定向凝固技术制备多孔金属材料的方法
CN106623782A (zh) 熔模铸造制备通孔泡沫铝的方法
CN104046877B (zh) 电子封装用定向多孔SiC-Cu复合材料及制备方法
CN105177339A (zh) 一种三维空间有序孔结构泡沫铝及其制备方法
CN112872355B (zh) 一种具有多级孔结构的金属吸液芯材料及其制备方法
CN109482882A (zh) 具有微观定向孔结构的泡沫金属及其制备方法
CN109252062B (zh) 一种基于p曲面空间结构的泡沫镍的制备方法
CN103747659A (zh) 一种多孔铜散热片及其制备方法
CN1219089C (zh) 一种高强轻质泡沫铝复合材料及其制备方法
CN101463434B (zh) 泡沫镁合金的制备方法
CN104942269A (zh) 一种提高泡沫铝发泡均匀度的装置及发泡工艺
CN104593630B (zh) 藕状多孔铝的定向凝固制备方法
CN107460385B (zh) 一种轻质泡沫Mn-Cu合金高阻尼材料及其制备方法
CN109317690A (zh) 一种石墨烯增强铝基复合泡沫材料的制备方法
CN112899513B (zh) 一种开闭孔共存结构的泡沫铝及其制备方法
CN101988162B (zh) 一种采用粉末冶金法制备多孔金属钼的方法
CN105568032B (zh) 一种注塑型通孔泡沫金属及其制备方法
CN107552797B (zh) 一种采用冷冻拉丝工艺制备泡沫金属的方法
CN101220424A (zh) 一种制作泡沫镁合金的方法
CN103555984B (zh) 梯密度通孔金属泡沫及其制备方法
CN109338144A (zh) 一种二十四面螺旋体结构泡沫铜的制备方法
CN105039751B (zh) 锆合金用接触材料、采用该材料的过滤介质和浇道的制备方法
CN107986811A (zh) 一种低温凝固结合定向退火所得的多孔材料及其制备方法
CN102443715A (zh) 泡沫铜型材的制备工艺
CN103343254A (zh) 一种孔结构可控的多孔镁-钙合金的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170329

Termination date: 20210630

CF01 Termination of patent right due to non-payment of annual fee