CN105023769B - 一种NiCo2S4/碳纳米管复合电极材料的制备方法 - Google Patents

一种NiCo2S4/碳纳米管复合电极材料的制备方法 Download PDF

Info

Publication number
CN105023769B
CN105023769B CN201510473332.6A CN201510473332A CN105023769B CN 105023769 B CN105023769 B CN 105023769B CN 201510473332 A CN201510473332 A CN 201510473332A CN 105023769 B CN105023769 B CN 105023769B
Authority
CN
China
Prior art keywords
cnt
nico
nickel foam
electrode
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201510473332.6A
Other languages
English (en)
Other versions
CN105023769A (zh
Inventor
徐靖才
王攀峰
王新庆
彭晓领
洪波
金顶峰
金红晓
李静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN201510473332.6A priority Critical patent/CN105023769B/zh
Publication of CN105023769A publication Critical patent/CN105023769A/zh
Application granted granted Critical
Publication of CN105023769B publication Critical patent/CN105023769B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

一种NiCo2S4/碳纳米管复合电极材料的制备方法,它涉及一种NiCo2S4纳米晶包覆碳纳米管的电化学沉积复合的制备方法。首先制备碳纳米管/泡沫镍基体:将碳纳米管、60wt%的聚四氟乙烯、乙醇按一定的比例搅拌均匀后涂覆在泡沫镍的表面,80℃真空烘干后得到碳纳米管/泡沫镍基体;然后配制电沉积液:将Ni(NO3)2·6H2O、Co(NO3)2·6H2O和硫代乙酰胺按比例溶于蒸馏水中搅拌均匀得到电沉积液;最后以碳纳米管/泡沫镍基体为工作电极,铂电极为对电极,饱和甘汞电极为参比电极,利用循环伏安法在电沉积液中电化学沉积得到NiCo2S4纳米晶包覆碳纳米管复合电极材料。本发明方法得到复合电极材料NiCo2S4与碳纳米管的结合力大,作为超级电容器电极时具有较高的比电容值和良好的电化学性能稳定性。

Description

一种NiCo2S4/碳纳米管复合电极材料的制备方法
技术领域
本发明涉及复合材料领域,具体涉及一种NiCo2S4纳米晶包覆碳纳米管电化学沉积复合的制备方法。
背景技术
近年来,超级电容器因其具有高功率密度、充电短时间和循环寿命长等诸多优点而受到广泛关注。电极材料是影响超级电容器性能的关键因素,以RuO2等贵金属氧化物因其赝电容原理有较大的比电容值,但昂贵的价格和毒性限制了其商业化应用。一些廉价金属硫化物代替贵金属作为超级电容器电极材料成为研究热点。NiCo2S4是一种典型的尖晶石结构复合金属硫化物,存在Co3+/Co2+及Ni3+/Ni2+氧化还原电对,可以获得较高的工作电压窗口和比电容值,同时因其廉价无毒表现为极具潜力的电极材料,因此不同结构、形态、尺寸的NiCo2S4的制备受到了众多研究人员的关注(如Chen等, Nanoscale, 2013,5(19),8879;Wan等, Crystengcomm, 2013,15(38),7649; Chen等, ACS Nano, 2014,8(9),9531;Zhang等, Nanoscale, 2014,6(16),9824; Pu等, ACS Sustain. Chem. Eng. 2014,2(4),809; Zhu等, J. Power. Sources. 2015,273,584)。然而NiCo2S4作为电极材料运用于超级电容器的时候,往往存在一个问题—材料的电阻过大,导电性偏低,导致超级电容器在大电流密度下充循环冲放电不够稳定。因而,需要以一定的方式将碳材料加入到NiCo2S4电极材料中,来提高电极材料的导电性,以达到增强其电化学性能的目的。如Peng等用原位法制备NiCo2S4/石墨烯复合材料(Chemical Communications, 2013,49(86),10178); Xiao等在碳纤维上生长NiCo2S4纳米管(Nano Letter, 2014,14(2), 831); Wu等一步合成了NiCo2S4/氧化石墨复合材料(J Mater. Chem. A, 2014,2(48),20990); Ding等制备了NiCo2S4/碳布复合材料(RSC Advances, 2015,5(60),48631)等。
碳纳米管(CNTs)具有特殊的一维中空的纳米结构,具有优良的导电性能。但CNTs单独作为超级电容器电极材料比电容值过低,一般只有40F/g。将碳纳米管与碳纳米管组成复合电极材料,两者可以取长补短,有望得到具有高比电容、高导电率、循环充放电稳定的超级电容器电极材料。
NiCo2S4与石墨烯、氧化石墨、碳纤维、碳布等碳材料的复合运用于超级电容器领域已有报道,但未见到NiCo2S4与碳纳米管形成复合电极材料应用于超级电容器领域的报道。
发明内容
本发明的目的是提供一种NiCo2S4/碳纳米管复合电极材料的制备方法,该方法制备得到复合电极材料NiCo2S4与碳纳米管的结合力大,可以提高超级电容器电极材料的比电容和循环充放电稳定性。
为了实现上述目的,本发明提供一种NiCo2S4/碳纳米管复合电极材料的制备方法,其特征在于,具体包括以下步骤。
一、制备碳纳米管/泡沫镍基体:首先将经稀盐酸、丙酮、无水乙醇超声清洗过的泡沫镍剪裁为1*2cm;然后按质量分数比为碳纳米管:聚四氟乙烯=95:5称取样品溶于无水乙醇中搅拌成浆状后均匀涂覆在1*2cm泡沫镍的表面,80℃真空烘干后得到碳纳米管/泡沫镍基体;其中碳纳米管涂覆在泡沫镍上的质量为2~4mg/cm3
二、配制电沉积液:将Ni(NO3)2·6H2O、Co(NO3)2·6H2O溶于蒸馏水中配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液,再加入过量的硫代乙酰胺,搅拌均匀得到电沉积液。
三、以碳纳米管/泡沫镍基体为工作电极,铂电极为对电极,饱和甘汞电极为参比电极,电沉积液在60~80℃水浴中利用循环伏安法进行电化学沉积,其中扫描速率为5~20mV/s,电压范围为-1.0~0V,扫描圈数为10~50圈,得到NiCo2S4纳米晶包覆碳纳米管复合电极材料。
本发明优点:本发明方法本发明方法得到复合电极材料NiCo2S4与碳纳米管的结合力大,作为超级电容器电极时具有较高的比电容值和良好的电化学性能稳定性。
本发明采用X射线衍射技术(XRD)分析本发明制备的NiCo2S4/碳纳米管复合电极材料的物相,采用透射电子显微镜(TEM)表征本发明制备的NiCo2S4/碳纳米管复合电极材料的微观结构,采用电化学工作站来测试本发明制备的NiCo2S4/碳纳米管复合电极材料的电化学性能,可知本发明成功制备出了具有较高的比电容值和良好的电化学性能稳定性的NiCo2S4/碳纳米管复合电极材料。
附图说明
图1是实施方式一制备的NiCo2S4/碳纳米管复合电极材料的XRD曲线图,证实制备的NiCo2S4/碳纳米管复合电极材料含有NiCo2S4物相、碳纳米管物相和泡沫镍。
图2是实施方式一制备的NiCo2S4/碳纳米管复合电极材料的TEM图,通过图2可知本发明制备的NiCo2S4/碳纳米管复合电极材料形成了NiCo2S4在碳纳米管上的有效包覆。
图3是实施方式一制备的NiCo2S4/碳纳米管复合电极材料的循环伏安曲线图,通过图3可知本发明制备的NiCo2S4/碳纳米管复合电极材料表现出良好的循环伏安特性和Co3+/Co2+及Ni3+/Ni2+氧化还原峰。
图4是实施方式一制备的NiCo2S4/碳纳米管复合电极材料的恒流充放电曲线图,通过图4可知本发明制备的NiCo2S4/碳纳米管复合电极材料在电流密度为1A/g、2A/g、4A/g、8A/g下的比电容值分别为1716.8F/g、1568F/g、1487.6F/g、1344.4F/g。
具体实施方式
面是结合具体实施例,进一步阐述本发明。这些实施例仅用于说明本发明,但不用来限制本发明的范围。
具体实施方式一:一种NiCo2S4/碳纳米管复合电极材料的制备方法,具体是按以下步骤完成的。
一、制备碳纳米管/泡沫镍基体:首先将经稀盐酸、丙酮、无水乙醇超声清洗过的泡沫镍剪裁为1*2cm;称取碳纳米管50mg、60wt%的聚四氟乙烯4.5mg溶于10ml无水乙醇中搅拌成浆状后均匀涂覆在1*2cm泡沫镍的表面,80℃真空烘干后得到碳纳米管/泡沫镍基体;其中碳纳米管涂覆在泡沫镍上的质量为2mg/cm3
二、配制电沉积液:将1mmol Ni(NO3)2·6H2O和2mmol Co(NO3)2·6H2O溶于100ml蒸馏水中配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液,再加入30mmol的硫代乙酰胺,搅拌均匀得到电沉积液。
三、以步骤一制得的碳纳米管/泡沫镍基体为工作电极,铂电极为对电极,饱和甘汞电极为参比电极,电沉积液在60℃水浴中利用循环伏安法进行电化学沉积,其中扫描速率为5mV/s,电压范围为-1.0~0V,扫描圈数为20圈,得到NiCo2S4纳米晶包覆碳纳米管复合电极材料。
具体实施方式二:一种NiCo2S4/碳纳米管复合电极材料的制备方法,具体是按以下步骤完成的。
一、制备碳纳米管/泡沫镍基体:首先将经稀盐酸、丙酮、无水乙醇超声清洗过的泡沫镍剪裁为1*2cm;称取碳纳米管50mg、60wt%的聚四氟乙烯4.5mg溶于10ml无水乙醇中搅拌成浆状后均匀涂覆在1*2cm泡沫镍的表面,80℃真空烘干后得到碳纳米管/泡沫镍基体;其中碳纳米管涂覆在泡沫镍上的质量为4mg/cm3
二、配制电沉积液:将2mmol Ni(NO3)2·6H2O和4mmol Co(NO3)2·6H2O溶于100ml蒸馏水中配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液,再加入100mmol的硫代乙酰胺,搅拌均匀得到电沉积液。
三、以步骤一制得的碳纳米管/泡沫镍基体为工作电极,铂电极为对电极,饱和甘汞电极为参比电极,电沉积液在80℃水浴中利用循环伏安法进行电化学沉积,其中扫描速率为20mV/s,电压范围为-1.0~0V,扫描圈数为50圈,得到NiCo2S4纳米晶包覆碳纳米管复合电极材料。

Claims (2)

1.一种NiCo2S4/碳纳米管复合电极材料的制备方法,其特征在于,由以下步骤组成:一、制备碳纳米管/泡沫镍基体:首先将经稀盐酸、丙酮、无水乙醇超声清洗过的泡沫镍剪裁为1*2cm;然后称取碳纳米管、60wt%的聚四氟乙烯溶于无水乙醇中搅拌均匀后涂覆在1*2cm泡沫镍的表面,80℃真空烘干后得到碳纳米管/泡沫镍基体;二、配制电沉积液:将Ni(NO3)2·6H2O、Co(NO3)2·6H2O溶于蒸馏水中配制成含Ni2+/Co2+摩尔比为1:2的混合金属溶液,再加入过量的硫代乙酰胺,搅拌均匀得到电沉积液;三、以碳纳米管/泡沫镍基体为工作电极,铂电极为对电极,饱和甘汞电极为参比电极,电沉积液在60~80℃水浴中利用循环伏安法进行电化学沉积得到NiCo2S4纳米晶包覆碳纳米管的复合电极材料。
2.根据权利要求1所述的制备方法,其特征在于,所述的碳纳米管/泡沫镍基体中,碳纳米管与聚四氟乙烯的质量分数比为95:5;碳纳米管涂覆在泡沫镍上的质量为2~4mg/cm3
CN201510473332.6A 2015-08-05 2015-08-05 一种NiCo2S4/碳纳米管复合电极材料的制备方法 Expired - Fee Related CN105023769B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510473332.6A CN105023769B (zh) 2015-08-05 2015-08-05 一种NiCo2S4/碳纳米管复合电极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510473332.6A CN105023769B (zh) 2015-08-05 2015-08-05 一种NiCo2S4/碳纳米管复合电极材料的制备方法

Publications (2)

Publication Number Publication Date
CN105023769A CN105023769A (zh) 2015-11-04
CN105023769B true CN105023769B (zh) 2017-08-25

Family

ID=54413660

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510473332.6A Expired - Fee Related CN105023769B (zh) 2015-08-05 2015-08-05 一种NiCo2S4/碳纳米管复合电极材料的制备方法

Country Status (1)

Country Link
CN (1) CN105023769B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106158403B (zh) * 2016-07-15 2020-10-23 中山大学 金属配位超分子网格与二维碳复合材料及其制备方法与应用
CN106158419A (zh) * 2016-07-27 2016-11-23 河南师范大学 硫化钴镍/泡沫镍超级电容器电极的制备方法
CN106098397B (zh) * 2016-08-11 2018-12-07 浙江大学 用于超级电容器的NiSe-Ni3Se2三维松叶状纳米材料及其制备方法
CN106252092B (zh) * 2016-09-14 2018-12-25 中国计量大学 聚吡咯包覆的硫化钴镍纳米管材料、制备方法及应用
CN107393723B (zh) * 2017-07-28 2018-10-19 中国计量大学 一种具有笼状结构的超级电容器电极材料及制备方法
CN110070993B (zh) * 2018-01-24 2021-06-22 南京大学 碳纳米管薄膜高负载Mn-Co硫化物柔性电极材料的制备方法
CN108615620B (zh) * 2018-06-20 2020-09-22 华南理工大学 一种以泡沫镍为基底的碳纳米管/金属硫化物复合电极及其制备方法
CN110033959B (zh) * 2019-03-29 2021-04-09 信阳师范学院 一种制备二硫化三镍杂化三维碳纳米管泡沫复合材料的方法
CN110120305A (zh) * 2019-05-08 2019-08-13 中南大学 镍钴双金属硫化物/rGO复合电极材料的制备方法
CN113793758A (zh) * 2021-08-19 2021-12-14 江苏工程职业技术学院 基于双金属硫化物与碳纤维布柔性复合电极的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113836A (en) * 1980-11-17 1982-07-15 Nat Res Dev Manufacture of electrolytic catalyst
CN101764213A (zh) * 2010-01-04 2010-06-30 北京航空航天大学 一种采用电沉积法在碳纳米管上制备二氧化锡电池正极材料的方法
CN104299797A (zh) * 2014-11-06 2015-01-21 中南大学 一种基于NiCo2S4及其复合材料的水系不对称型超级电容器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57113836A (en) * 1980-11-17 1982-07-15 Nat Res Dev Manufacture of electrolytic catalyst
CN101764213A (zh) * 2010-01-04 2010-06-30 北京航空航天大学 一种采用电沉积法在碳纳米管上制备二氧化锡电池正极材料的方法
CN104299797A (zh) * 2014-11-06 2015-01-21 中南大学 一种基于NiCo2S4及其复合材料的水系不对称型超级电容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
One step electrodeposited nickel cobalt sulfide nanosheet arrays for high performance asymmetric supercapacitors;Wei chen, et al;《ACS nano》;20140818;第8卷(第9期);文章第9532-9538页,图1、2 *

Also Published As

Publication number Publication date
CN105023769A (zh) 2015-11-04

Similar Documents

Publication Publication Date Title
CN105023769B (zh) 一种NiCo2S4/碳纳米管复合电极材料的制备方法
Li et al. Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability
Zeng et al. Carbonaceous mudstone and lignin-derived activated carbon and its application for supercapacitor electrode
He et al. Capacitive mechanism of oxygen functional groups on carbon surface in supercapacitors
Li et al. Novel dual-ion hybrid supercapacitor based on a NiCo2O4 nanowire cathode and MoO2–C nanofilm anode
Hou et al. Hierarchical core–shell structure of ZnO nanorod@ NiO/MoO2 composite nanosheet arrays for high-performance supercapacitors
Liu et al. Layered-MnO2 nanosheet grown on nitrogen-doped graphene template as a composite cathode for flexible solid-state asymmetric supercapacitor
Sun et al. One-step synthesis of 3D network-like Ni x Co1–x MoO4 porous Nanosheets for high performance battery-type hybrid supercapacitors
Li et al. Carbon/MnO2 double-walled nanotube arrays with fast ion and electron transmission for high-performance supercapacitors
Patil et al. Enhanced supercapacitive performance of chemically grown cobalt–nickel hydroxides on three-dimensional graphene foam electrodes
Yang et al. Hydrothermally formed three-dimensional nanoporous Ni (OH) 2 thin-film supercapacitors
Zhang et al. High performance asymmetric supercapacitor based on MnO 2 electrode in ionic liquid electrolyte
Lan et al. Mesoporous CoO nanocubes@ continuous 3D porous carbon skeleton of rose-based electrode for high-performance supercapacitor
Yu et al. Electrochemical supercapacitors from diamond
Patil et al. Cobalt cyclotetraphosphate (Co2P4O12): a new high-performance electrode material for supercapacitors
Lu et al. Interfacial deposition of three-dimensional nickel hydroxide nanosheet-graphene aerogel on Ni wire for flexible fiber asymmetric supercapacitors
Wu et al. High-performance asymmetric supercapacitors based on cobalt chloride carbonate hydroxide nanowire arrays and activated carbon
Shinde et al. Facile chemical synthesis and potential supercapattery energy storage application of hydrangea-type Bi2MoO6
Salunkhe et al. Rational design of coaxial structured carbon nanotube–manganese oxide (CNT–MnO2) for energy storage application
Cui et al. Boron-doped graphene directly grown on boron-doped diamond for high-voltage aqueous supercapacitors
Jiang et al. Super-conductive silver nanoparticles functioned three-dimensional CuxO foams as a high-pseudocapacitive electrode for flexible asymmetric supercapacitors
Zhang et al. Tunable electrode morphology used for high performance supercapacitor: polypyrrole nanomaterials as model materials
Zhang et al. Graphene–MnO2 nanocomposite for high-performance asymmetrical electrochemical capacitor
KR101140367B1 (ko) 이산화망간/탄소나노튜브/종이를 기반으로 하는 수퍼캐패시터 전극 및 그 제조 방법
Wang et al. Novel three-dimensional polyaniline nanothorns vertically grown on buckypaper as high-performance supercapacitor electrode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20170802

Address after: 310018 China University of metrology, No. 258, Yuen Xue street, Hangzhou, Zhejiang, Jianggan District

Applicant after: China Jiliang University

Address before: 310018 China Jiliang University, Hangzhou, Zhejiang, Jianggan District, 258

Applicant before: Xu Jingcai

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170825

Termination date: 20210805