CN104968897A - 用于灵活地运行发电站设备的方法 - Google Patents

用于灵活地运行发电站设备的方法 Download PDF

Info

Publication number
CN104968897A
CN104968897A CN201380053385.1A CN201380053385A CN104968897A CN 104968897 A CN104968897 A CN 104968897A CN 201380053385 A CN201380053385 A CN 201380053385A CN 104968897 A CN104968897 A CN 104968897A
Authority
CN
China
Prior art keywords
waste heat
steam generator
heat steam
additional combustion
heating surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380053385.1A
Other languages
English (en)
Other versions
CN104968897B (zh
Inventor
J.布鲁克纳
G.施伦德
F.托马斯
B.维森伯格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens Energy Global GmbH and Co KG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of CN104968897A publication Critical patent/CN104968897A/zh
Application granted granted Critical
Publication of CN104968897B publication Critical patent/CN104968897B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/101Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
    • F01K23/105Regulating means specially adapted therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1861Waste heat boilers with supplementary firing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/08Control systems for steam boilers for steam boilers of forced-flow type of forced-circulation type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/08Control systems for steam boilers for steam boilers of forced-flow type of forced-circulation type
    • F22B35/083Control systems for steam boilers for steam boilers of forced-flow type of forced-circulation type without drum, i.e. without hot water storage in the boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/06Control systems for steam boilers for steam boilers of forced-flow type
    • F22B35/10Control systems for steam boilers for steam boilers of forced-flow type of once-through type
    • F22B35/107Control systems with auxiliary heating surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

一种用于灵活地运行具有按照强制直流原理工作的废热蒸汽发生器(1)的发电站设备的方法,所述废热蒸汽发生器具有设置在烟气通道(K)中的不同的废热蒸汽发生器(1)级(V,D,U)的加热面,其中,为了提高功率,几乎与设置在废热蒸汽发生器(1)的烟气通道(K)中的附加燃烧装置(F)的启动同时地增大流过加热面的给水(W)的给水质量流量。

Description

用于灵活地运行发电站设备的方法
本发明涉及一种用于灵活地运行具有按照强制直流原理工作的废热蒸汽发生器的发电站设备的方法。
对现代发电站设备不仅要求高效率而且也要求尽可能灵活的工作方式。属于所述灵活工作方式的例如有非常短的启动时间和较高的载荷改变速度,以及例如能够补偿电网中的频率干扰。根据不同国家的各个电网的要求情况以及所属的偿付模式,在组合式的燃气和蒸汽发电站设备中尤其意义重大的是,在峰值载荷范围中通过附加燃烧为电网提供尽可能迅速的附加功率(通过水-蒸汽-循环回路)。这种具有附加燃烧的燃气和蒸汽发电站设备例如由专利DE102010060064A1,EP1050667A1和US3980100已知。
在当前已知的具有附加燃烧的发电站设备中,在各种情况下使用汽包锅炉。在启动附加燃烧之后,在蒸发器中产生的蒸汽量在经历显著的时间延迟之后才上升。因此受影响的加热面蒸发管的蒸汽冷却(其直接与蒸汽生产的瞬时表现相关)也仅能时间延时地改善。这具体意味着,在开启附加燃烧时过热器加热面和再热器加热面首先必须以几乎相同的蒸汽质量流量经受得起在烟气侧的增加的加热。但是反过来这也意味着,仅能通过限制附加燃烧的功率提高使得流体温度和因而这些加热面的壁温度保持在可靠的极限内。然而这种要求明显限制了设备灵活性。
本发明所要解决的技术问题在于,提供一种能够克服前述缺点的方法。
所述技术问题通过具有权利要求1的特征的、用于灵活地运行发电站设备的方法解决。
通过使用附加燃烧装置,其尤其设置在废热蒸汽发生器的烟气通道的过热器/再热器区域中,则向水-蒸汽-循环回路中传递的热功率增加,由此所产生的蒸汽量增加并且最终结果是通过蒸汽轮机产出的机械功率增加了。但是其中要注意的是,在烟气通道中、在开启的附加燃烧装置的周围烟气温度升高。沿烟气方向位于附加燃烧装置下游的加热面(通常是高压过热器加热面)在这种情况下恰好承受了很高的热载荷。然而所述加热面的充分的管冷却为了保证安全的持续运行是必不可少的。若想要避免使用其他部件,例如附加的喷射冷却器时(其用于在烟气通道中的相应的加热面的充分的管冷却),所述管冷却到头来还是通过在蒸发器中产生的蒸汽量保证。因为在蒸发器中的蒸汽产出在开启附加燃烧装置之后经过明显的时间延迟才会增加,所以过热器至少紧接在开启附加燃烧装置之后、在管冷却特性大致相同的情况承受明显更大的加热以及所有由此导致的后果。
因此按照本发明规定,为了灵活地运行具有按照强制直流原理(Zwangsdurchlaufprinzip:强制直通原理)工作的废热蒸汽发生器的发电站设备,所述废热蒸汽发生器具有设置在烟气通道中的不同的废热蒸汽发生器压力级的加热面,为了提高功率,几乎在启动设置在废热蒸汽发生器的烟气通道中的附加燃烧装置的启动同时,增大流过加热面的给水的给水质量流量。
本发明的核心构思在于充分利用强制直流系统相对汽包系统的技术-物理优点。按照本发明,强制直流系统的系统特性被利用,该系统特性是具有汽包蒸发器的系统所不具备的。所述系统特性为发电站设备(其具有配备集成在烟气通道中的附加燃烧装置的废热蒸汽发生器)提供了明显的优点,因为通过调节给水可以主动地干预对于过高受热的过热器加热面的冷却。因此与汽包锅炉相比,反正可以灵活调整的强制直流系统通过附加燃烧装置和与此协调的同时的给水调节导致了更高的设备灵活性。此外,通过提高蒸汽质量流量、对于过热器的结构设计而言很重要的最大温度被降低。因此设置在附加燃烧装置下游的过热器的结构设计还可以借助更廉价的材料实现。
本发明一种优选的扩展设计目的在于蒸发器的自我保护。通过在启动附加燃烧装置时主动降低在蒸发器出口处的过热基础理论值,蒸发器管还可以更好地经受由附加燃烧装置导致的更大的加热。在此,通过蒸发器的流量的提高导致了更好的管冷却。对此特别适用的调节如何进行可以参照EP2194320A1。
当在启动附加燃烧装置之后在蒸发器出口处的实际过热应该更快地降低,或者蒸汽质量流量所需的提高没有足够快地导致尤其过热器的更好的冷却,则可以提供附加的预控制信号,使得给水质量流量的提高被加强。为此优选通过DT1-微分元件评估附加燃烧装置的功率提高,并且作为附加的因数接入给水质量流量信号。通过由于这种DT1-微分元件的特性导致的、仅在附加燃烧的瞬时过程或瞬变过程中形成附加的信号,该附加信号连同给水质量流量信号在附加燃烧装置关闭时或附加燃烧功率恒定时不会改变。
以下结合附图示范性地阐述本发明。在附图中非常示意性表示的废热蒸汽发生器1按照强制直流原理工作。这种废热蒸汽发生器常规地具有一个或多个预热级V,一个或多个蒸发器级D和一个或多个过热器级U。各级的加热面在此这样设置在烟气通道K中,使得例如从燃气轮机流出的热的烟气R首先流过过热器级U的加热面、然后蒸发器级D的加热面,并且接下来预热器级V的加热面。在每个级中进行烟气R向流过加热面的介质的热传递。在流体介质侧,给水泵连接在预热器级V的加热面之前并且蒸发器级D的加热面连接在预热器级V的加热面之后。在出口侧,蒸发器级D的加热面在流动介质侧通过未详细示出的水分离器与后接的过热器加热面U相连,过热器加热面自身为了调节离开过热器加热面的蒸汽的温度可以配备喷射冷却器。
废热蒸汽发生器1在此设计用于可调节地加载给水W。为此给水泵P通过给水量调节设备SP这样调节,使得通过适当的控制可以调节由给水泵P朝向预热器V输送的给水量或者给水质量流量。这种给水量调节设备SP如何工作例如参照EP2194320A1。在所示实施例中,附加燃烧装置F设置在烟气通道K中、在过热器U的加热面或可能的再热器加热面的区域中。附加燃烧装置F通过相应的附加燃烧功率调节设备SF调节,尤其也可以被开启和关闭。为了实施按照本发明的方法,用于附加燃烧装置F的附加燃烧功率调节设备SF以及用于给水泵P的给水量调节设备SP通过控制设备S(例如发电站设备的中央控制技术装置)相应地控制和监测。
强制直流系统相对循环蒸发器的决定性的优点在于,流动介质在蒸发器的出口处在正常运行中就已经被过热。当按照本发明的方法在启动附加燃烧装置时就已经同步地提高给水质量流量,则这在强制直流蒸发器中直接导致蒸汽质量流量的同步提高。这体现为过热的负载通过这种措施被降低。随着蒸汽质量流量的增加同时也改善了过热器中的管冷却特性。因此借助强制直流系统,在启动附加燃烧装置时过热器就已经利用增大的蒸汽质量流量被更好地冷却。需要考虑的是,蒸汽质量流量的增加理论上仅这样长时间地通过给水量的增加实现,即只要流动介质在蒸发器出口处还未到达饱和温度。若达到饱和温度,则给水质量流量的任何继续的增加会导致容器中的水生成的增加。因为在一定的时间延迟之后,附加燃烧装置的更多加热在蒸发器中也才可觉察到,从这一方面而言自然也抑制饱和温度的到达。
本发明申请的构思精确地针对强制直流系统的技术物理优点。附加燃烧装置由于其减弱整体设备效率的特性通常仅当设备功率已经到达100%、并且应该提供相对较高的偿付条件的附加功率时才被启动。在100%设备负载时由系统导致在具有BENSON蒸发器的废热蒸汽发生器的蒸发器出口处出现极高的过热。其在通常的结构设计中在约40K至50K之间。若此时在启动附加燃烧装置F时,在这种强制直流废热蒸汽发生器的给水理论值测算中将蒸发器D的过热基础理论值同时降低至其最小值(通常是10K),则通过这种措施可提高通过蒸发器的给水流量。给水调节装置尝试通过提高供给来设定新的过热理论值。离开蒸发器的蒸汽质量流量同时也提高,其能够在通过附加燃烧而承受高热负载的过热器级U中用于改善冷却特性。通过借助此时已经变大的给水量降低在蒸发器出口处的过热,在过热器中的冷却效果甚至被进一步加强。由于以10K的最小的过热基础理论值仍然可以保持相对沸点线有足够的距离,则即使在蒸发器出口处的实际过热略微负振动或略微低于下限时也不用担心在水分离器中会有水生成。这一点还由此被支持,即通过附加燃烧装置F对于蒸发器增加的加热,在蒸发器出口处的实际过热倾向于再次升高。

Claims (3)

1.一种用于灵活地运行发电站设备的方法,该发电站设备具有按照强制直流原理工作的废热蒸汽发生器(1),所述废热蒸汽发生器具有设置在烟气通道(K)中的不同废热蒸汽发生器(1)级(V,D,U)的加热面,其中,为了提高功率,几乎在启动设置在废热蒸汽发生器(1)的烟气通道(K)中的附加燃烧装置(F)的同时,增大流过加热面的给水(W)的给水质量流量。
2.按照权利要求1所述的方法,其特征在于,给水质量流量的增大通过降低在废热蒸汽发生器的蒸发器级(V)的出口处的过热基础理论值实现。
3.按照权利要求1或2所述的方法,其特征在于,评估所述附加燃烧装置(F)的功率改变并且将其作为用于增大给水质量流量的修正因数。
CN201380053385.1A 2012-10-11 2013-10-02 用于灵活地运行发电站设备的方法 Active CN104968897B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012218542.9A DE102012218542B4 (de) 2012-10-11 2012-10-11 Verfahren zum flexiblen Betrieb einer Kraftwerksanlage
DE102012218542.9 2012-10-11
PCT/EP2013/070510 WO2014056772A1 (de) 2012-10-11 2013-10-02 Verfahren zum flexiblen betrieb einer kraftwerksanlage

Publications (2)

Publication Number Publication Date
CN104968897A true CN104968897A (zh) 2015-10-07
CN104968897B CN104968897B (zh) 2017-10-10

Family

ID=49301491

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380053385.1A Active CN104968897B (zh) 2012-10-11 2013-10-02 用于灵活地运行发电站设备的方法

Country Status (10)

Country Link
US (1) US10487696B2 (zh)
EP (1) EP2900945B1 (zh)
JP (1) JP6092402B2 (zh)
KR (1) KR102075556B1 (zh)
CN (1) CN104968897B (zh)
CA (1) CA2887796C (zh)
DE (1) DE102012218542B4 (zh)
ES (1) ES2869178T3 (zh)
PL (1) PL2900945T3 (zh)
WO (1) WO2014056772A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3192908A (en) * 1962-11-15 1965-07-06 Combustion Eng Method and apparatus for controlling the temperature of vapor created in a vapor generator
JPH0783005A (ja) * 1993-09-10 1995-03-28 Kawasaki Heavy Ind Ltd 複合ごみ発電プラント
WO2002101205A1 (de) * 2001-05-19 2002-12-19 Alstom (Switzerland) Ltd Verfahren zum betrieb eines kombikraftwerkes
CN101469617A (zh) * 2007-12-27 2009-07-01 蓟县尤古庄镇初级中学 一种节能发电设备
CN101988697A (zh) * 2009-08-07 2011-03-23 华东电力试验研究院有限公司 火电机组智能化的协调控制方法
CN102057218A (zh) * 2008-06-12 2011-05-11 西门子公司 直流式锅炉的运行方法和强制直流式锅炉
CN102072481A (zh) * 2009-11-02 2011-05-25 通用电气公司 选择操作期内增加联合循环发电成套设备的动力输出的方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3134368A (en) * 1958-06-25 1964-05-26 Vincent James F De Boiler
US3818699A (en) * 1971-04-30 1974-06-25 E Pritchard Feed and injection water control for steam generators
US3980100A (en) * 1974-10-23 1976-09-14 General Electric Company Fluid flow control system
GB1591108A (en) * 1977-01-21 1981-06-17 Green & Son Ltd Boilers
JPS5985404A (ja) * 1982-11-04 1984-05-17 Hitachi Ltd 複合型発電設備の燃料流量制御装置
JPS63172803A (ja) 1987-01-12 1988-07-16 石川島播磨重工業株式会社 排熱回収ボイラ
JP2686264B2 (ja) 1987-12-15 1997-12-08 三菱重工業株式会社 排熱回収ボイラ
DE19545668A1 (de) * 1995-12-07 1997-06-12 Asea Brown Boveri Verfahren zum Betrieb einer mit einem Abhitzedampferzeuger und einem Dampfverbraucher kombinierten Gasturbogruppe
DE19920097A1 (de) 1999-05-03 2000-11-09 Bayerische Motoren Werke Ag Verfahren zum Herstellen eines geteilten Maschinengehäuses
EP1050667A1 (de) * 1999-05-05 2000-11-08 Asea Brown Boveri AG Kombianlage mit Zusatzfeuerung
US6442924B1 (en) 2000-06-13 2002-09-03 General Electric Company Optimized steam turbine peaking cycles utilizing steam bypass and related process
DE10155508C5 (de) * 2000-11-28 2008-10-30 Man Turbo Ag Verfahren und Vorrichtung zur Erzeugung von elektrischer Energie
DE10115131A1 (de) * 2001-03-27 2002-10-17 Alstom Switzerland Ltd Verfahren zur sofortigen, schnellen und temporären Erhöhung der Leistung eines Kombikraftwerkes
DE10127830B4 (de) * 2001-06-08 2007-01-11 Siemens Ag Dampferzeuger
US6958887B2 (en) * 2002-03-28 2005-10-25 Fuji Photo Film Co., Ltd. Recording media cartridge having a memory accessible from multiple directions
EP1443268A1 (de) * 2003-01-31 2004-08-04 Siemens Aktiengesellschaft Dampferzeuger
CA2430088A1 (en) * 2003-05-23 2004-11-23 Acs Engineering Technologies Inc. Steam generation apparatus and method
US7404844B2 (en) 2004-02-26 2008-07-29 National University Of Singapore Method for making carbon membranes for fluid separation
DE102004020753A1 (de) * 2004-04-27 2005-12-29 Man Turbo Ag Vorrichtung zur Ausnutzung der Abwärme von Verdichtern
JP4718333B2 (ja) 2006-01-10 2011-07-06 バブコック日立株式会社 貫流式排熱回収ボイラ
JP4842071B2 (ja) 2006-09-26 2011-12-21 バブコック日立株式会社 貫流式排熱回収ボイラの運転方法、ならびに発電設備の運転方法
AT506876B1 (de) 2008-06-03 2011-03-15 Voestalpine Tubulars Gmbh & Co Kg Rohrverbindung
US8943836B2 (en) * 2009-07-10 2015-02-03 Nrg Energy, Inc. Combined cycle power plant
NL2003596C2 (en) * 2009-10-06 2011-04-07 Nem Bv Cascading once through evaporator.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3192908A (en) * 1962-11-15 1965-07-06 Combustion Eng Method and apparatus for controlling the temperature of vapor created in a vapor generator
JPH0783005A (ja) * 1993-09-10 1995-03-28 Kawasaki Heavy Ind Ltd 複合ごみ発電プラント
WO2002101205A1 (de) * 2001-05-19 2002-12-19 Alstom (Switzerland) Ltd Verfahren zum betrieb eines kombikraftwerkes
CN101469617A (zh) * 2007-12-27 2009-07-01 蓟县尤古庄镇初级中学 一种节能发电设备
CN102057218A (zh) * 2008-06-12 2011-05-11 西门子公司 直流式锅炉的运行方法和强制直流式锅炉
CN101988697A (zh) * 2009-08-07 2011-03-23 华东电力试验研究院有限公司 火电机组智能化的协调控制方法
CN102072481A (zh) * 2009-11-02 2011-05-25 通用电气公司 选择操作期内增加联合循环发电成套设备的动力输出的方法

Also Published As

Publication number Publication date
EP2900945B1 (de) 2021-02-24
DE102012218542B4 (de) 2016-07-07
US20150275704A1 (en) 2015-10-01
WO2014056772A1 (de) 2014-04-17
CN104968897B (zh) 2017-10-10
JP2015534633A (ja) 2015-12-03
DE102012218542A1 (de) 2014-04-17
ES2869178T3 (es) 2021-10-25
CA2887796C (en) 2020-09-22
KR20150067185A (ko) 2015-06-17
CA2887796A1 (en) 2014-04-17
PL2900945T3 (pl) 2021-08-30
KR102075556B1 (ko) 2020-02-10
US10487696B2 (en) 2019-11-26
EP2900945A1 (de) 2015-08-05
JP6092402B2 (ja) 2017-03-08

Similar Documents

Publication Publication Date Title
EP2067936B1 (en) Steam temperature control in a boiler system using reheater variables
US9593844B2 (en) Method for operating a waste heat steam generator
JP5595595B2 (ja) 複合型ガス・蒸気タービン設備の運転方法並びにこの方法を実施するためのガス・蒸気タービン設備および対応する調節装置
CA2868093C (en) Steam temperature control using model-based temperature balancing
CN105804809A (zh) 一种提升机组agc和一次调频品质的装置及方法
CN102374518A (zh) 使用动态矩阵控制的蒸汽温度控制
CN103791485A (zh) 一种火电机组给水系统优化控制方法
KR20130139240A (ko) 폐열 증기 발생기
KR101841316B1 (ko) 증기 터빈의 단기간 출력 상승을 조절하기 위한 방법
CN110259522A (zh) 一种快速提升汽轮机组负荷响应速度的方法
JP2013164195A (ja) 蒸気圧力制御方法
US10196939B2 (en) Method for low load operation of a power plant with a once-through boiler
JP2013245684A (ja) 蒸気ランキンプラント
JP5276973B2 (ja) 貫流式排熱回収ボイラ
KR20160043107A (ko) 폐열 증기 발생기 및 연료 예열부를 갖는 복합 화력 발전소
CN104968897A (zh) 用于灵活地运行发电站设备的方法
JP7465641B2 (ja) 貫流ボイラの制御装置、発電プラント、及び、貫流ボイラの制御方法
US10422251B2 (en) Method for cooling a steam turbine
JP2008304264A (ja) 原子力プラント及びその運転方法
JP4431512B2 (ja) 原子力発電プラント
CN103620166A (zh) 具有作为附加的频率调节措施以及初级和/或次级调节措施的辅助蒸汽生成器的蒸汽发电设备及方法
JP5183714B2 (ja) 蒸気供給設備

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20211223

Address after: Munich, Germany

Patentee after: Siemens energy Global Ltd.

Address before: Munich, Germany

Patentee before: SIEMENS AG

TR01 Transfer of patent right