CN104956590B - 多功能频率控制装置 - Google Patents

多功能频率控制装置 Download PDF

Info

Publication number
CN104956590B
CN104956590B CN201380063183.5A CN201380063183A CN104956590B CN 104956590 B CN104956590 B CN 104956590B CN 201380063183 A CN201380063183 A CN 201380063183A CN 104956590 B CN104956590 B CN 104956590B
Authority
CN
China
Prior art keywords
frequency
resonant element
control apparatus
frequency control
temperature sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380063183.5A
Other languages
English (en)
Other versions
CN104956590A (zh
Inventor
B·J·罗宾逊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rakon Ltd
Original Assignee
Rakon Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rakon Ltd filed Critical Rakon Ltd
Publication of CN104956590A publication Critical patent/CN104956590A/zh
Application granted granted Critical
Publication of CN104956590B publication Critical patent/CN104956590B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/08Holders with means for regulating temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K1/00Details of thermometers not specially adapted for particular types of thermometer
    • G01K1/14Supports; Fastening devices; Arrangements for mounting thermometers in particular locations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/22Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects
    • G01K11/26Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of acoustic effects of resonant frequencies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/22Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a non-linear resistance, e.g. thermistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/30Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator
    • H03B5/32Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator
    • H03B5/326Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element being electromechanical resonator being a piezoelectric resonator the resonator being an acoustic wave device, e.g. SAW or BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/0538Constructional combinations of supports or holders with electromechanical or other electronic elements
    • H03H9/0547Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement
    • H03H9/0552Constructional combinations of supports or holders with electromechanical or other electronic elements consisting of a vertical arrangement the device and the other elements being mounted on opposite sides of a common substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/205Constructional features of resonators consisting of piezoelectric or electrostrictive material having multiple resonators
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1014Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device
    • H03H9/1021Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the BAW device the BAW device being of the cantilever type
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1057Mounting in enclosures for microelectro-mechanical devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures
    • H03H9/1064Mounting in enclosures for surface acoustic wave [SAW] devices
    • H03H9/1071Mounting in enclosures for surface acoustic wave [SAW] devices the enclosure being defined by a frame built on a substrate and a cap, the frame having no mechanical contact with the SAW device

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

一种单一频率控制装置包含高频谐振器、低频谐振器和温度感测元件,后者紧密地热耦合到所述谐振器,以便于以较高分辨率和精度感测温度。该结构提供的额外益处包括较小的尺寸和较低的成本。

Description

多功能频率控制装置
技术领域
本发明一般涉及频率控制装置,以及具体而言,涉及配置有高频和低频谐振器及温度感测元件的频率控制装置。
背景技术
当代的电子装置采用若干频率参考组件,其被部署以利于多种通信功能,例如蜂窝通信、GPS、WI-FI、蓝牙等。所述频率参考组件通常包括高频谐振器和实时时钟(RTC)谐振器。
为了使由环境温度变化引起的频率不稳定最小化,常常将高频谐振器与温度感测组件(例如,热敏电阻或二极管)封装在一起,后者用于感测高频谐振器的温度,并计算出在该温度的实际的谐振器的频率。这种计算频率校正的方法需要高分辨率的昂贵的模数转换器来转换温度感测电压。在尝试使用温度感测和计算校正方法来使RTC频率不稳定最小化时,会遇到由于在RTC谐振器的温度与温度感测元件的温度之间的差而造成的额外困难。
发明内容
本发明提供了一种单一结构,其包含三个元件-高频谐振器、低频谐振器和温度感测元件,其中,全部三个元件紧密地热耦合,以便进一步减小在三个元件的任意元件之间的温度差。该结构提供了以下优点:
它有利于改进温度感测精度和改进温度感测分辨率,
它无需昂贵的高分辨率模数转换器;
它提供了物理尺寸的减小和成本的降低。
附图说明
在附图中:
图1是由本发明提供的频率控制装置的横截面图,其中,高频谐振器、低频谐振器和温度感测元件位于相同的密封腔内。
图2是由本发明提供的频率控制装置的横截面图,其中,高频谐振器和低频谐振器位于相同的密封腔内,而温度感测元件放置在该结构的非密封部分中。
图3是由本发明提供的频率控制装置的横截面图,其中,高频谐振器、低频谐振器和温度感测元件容纳在单独的封装中,后者随后组装为单一组件。
具体实施方式
在此提出的实施例是本发明可能的实现方式的例子。公开的实施例不限制本发明的范围,在本公开的权利要求部分中描述所述范围。
参考图1,本发明提出的装置显示为使用单一的多层陶瓷封装来实施,其容纳三个元件-高频谐振元件1、低频谐振元件2和温度感测元件3-全部三个元件都位于相同的密封腔内,所述密封腔包括陶瓷封装4和盖子5。优选地,谐振元件1是AT切型石英晶体,谐振元件2是32.768kHz音叉型晶体,以及温度感测元件3是热敏电阻。可替换地,可以代之以使用其他类型的高低频谐振器,例如SC切型晶体、声表面波(SAW)谐振元件或者MEMS谐振器;此外,温度感测元件可以可替换地实施为二极管、专用温度感测集成电路、或者其谐振频率对于温度敏感的谐振元件(例如Y切型石英晶体)。
参考图2,通过将三个元件放置在陶瓷封装4的单独的腔中来实施所示的装置:高频和低频谐振元件1和2位于由盖子5封闭的密封腔中,而温度感测元件3位于封装4的下部中的非密封腔中。
在一些情况下,使用易于获得的“标准”的封装的高和/或低频谐振器可能更为方便,如图3中所示的实施例中那样。在此,高和低频谐振元件(对应于1和2)装入由盖子7和8封闭的单独的密封陶瓷封装4和5中;温度感测元件3放置在陶瓷封装6的腔中,以及通过将封装的谐振元件焊接在陶瓷封装6上来装配整个装置。
其他结构变型当然是可能的,在不脱离本发明的范围的情况下,本领域技术人员能够开发出其他结构。
在三个元件之间紧密的空间邻近以及所得到的热耦合允许两个谐振元件1和2的更准确且更有效的温度感测,因为温度感测是通过使用单一温度感测元件3和单一测量(或者与谐振元件1和2都有关的单一系列测量)来完成的。将单一温度感测测量用于两个谐振元件的能力减小了应用系统中的功耗。
在三个元件之间紧密的空间邻近与所得到的热耦合提供了额外的优点:本发明提出的结构促进了更高的分辨率和更便宜的温度感测方法,从而将低频谐振元件(例如音叉型晶体)的频率用作装置的温度的指示。在该方法中,使用高频谐振元件的信号(AT切型晶体的频率)作为参考频率来测量低频谐振元件(例如音叉型晶体)的频率。在这个方案中,无需使用热敏电阻的温度感测所需的高分辨率模数转换器,因为热敏电阻将仅用于温度的近似确定,以便确定当前温度点“属于”音叉型谐振器的抛物线F(T)曲线的哪一半。

Claims (30)

1.一种频率控制装置,被构造作为单一组件,包括至少三个热耦合的元件:
第一谐振元件,其谐振频率在HF频带内或更高,
第二谐振元件,其谐振频率在LF频带内或更低,和
温度感测元件,
其中所述温度感测元件的输出和第二低频谐振元件的输出频率二者都能够用于对由于温度变化引起的第一高频谐振元件的输出频率中的偏差的校正,或者所述温度感测元件的输出和第二低频谐振元件的输出频率二者都能够用于对由于温度变化引起的第二低频谐振元件的输出频率中的偏差的校正。
2.根据权利要求1所述的频率控制装置,其中,所述第一谐振元件和所述第二谐振元件位于共同的密封的腔中。
3.根据权利要求1所述的频率控制装置,其中,所述第一谐振元件和所述第二谐振元件位于单独的密封的腔中。
4.根据权利要求2所述的频率控制装置,其中,所述温度感测元件位于单独的腔中。
5.根据权利要求3所述的频率控制装置,其中,所述温度感测元件位于单独的腔中。
6.根据权利要求1所述的频率控制装置,其中,所述第一谐振元件、所述第二谐振元件和所述温度感测元件位于共同的密封的腔中。
7.根据权利要求1至6中任意一个所述的频率控制装置,其中,所述单一组件包括多层陶瓷封装。
8.根据权利要求1至6中任意一个所述的频率控制装置,其中,所述第一谐振元件是石英晶体谐振元件。
9.根据权利要求1至6中任意一个所述的频率控制装置,其中,所述第一谐振元件是体声波谐振元件。
10.根据权利要求1至6中任意一个所述的频率控制装置,其中,所述第一谐振元件是AT切型晶体谐振元件。
11.根据权利要求1至6中任意一个所述的频率控制装置,其中,所述第一谐振元件是SC切型晶体谐振元件。
12.根据权利要求1至6中任意一个所述的频率控制装置,其中,所述第一谐振元件是声表面波谐振元件。
13.根据权利要求1至6中任意一个所述的频率控制装置,其中,所述第一谐振元件是MEMS谐振元件。
14.根据权利要求1至6中任意一个所述的频率控制装置,其中,所述第二谐振元件是石英晶体谐振元件。
15.根据权利要求1至6中任意一个所述的频率控制装置,其中,所述第二谐振元件是音叉型晶体谐振元件。
16.根据权利要求1至6中任意一个所述的频率控制装置,其中,所述第二谐振元件是MEMS谐振元件。
17.根据权利要求1至6中任意一个所述的频率控制装置,其中,所述温度感测元件包括热敏电阻。
18.根据权利要求1至6中任意一个所述的频率控制装置,其中,所述温度感测元件包括至少一个半导体二极管。
19.根据权利要求1至6中任意一个所述的频率控制装置,其中,所述温度感测元件包括至少一个半导体晶体管。
20.根据权利要求1至6中任意一个所述的频率控制装置,其中,所述温度感测元件包括半导体温度感测电路。
21.根据权利要求1至6中任意一个所述的频率控制装置,其中,所述温度感测元件是其谐振频率对于温度敏感的谐振元件。
22.一种电子装置,包括根据权利要求1至21中任意一个所述的频率控制装置。
23.根据权利要求22所述的电子装置,被设置为使用所述第一高频谐振元件的输出频率作为频率测量参考,来确定所述第二低频谐振元件的输出频率。
24.根据权利要求22所述的电子装置,所述电子装置是蜂窝通信装置。
25.根据权利要求22所述的电子装置,所述电子装置是卫星导航系统接收器。
26.根据权利要求22所述的电子装置,所述电子装置是有Wi-Fi功能的装置。
27.根据权利要求22所述的电子装置,所述电子装置是有蓝牙功能的装置。
28.一种在电子装置中实现的提高有效频率稳定性的方法,所述电子装置包括具有在HF频带内或更高的谐振频率的第一谐振元件、具有在LF频带内或更低的谐振频率的第二谐振元件、以及温度感测元件,所述方法包括使用所述温度感测元件的输出和第二低频谐振元件的输出二者来校正由于温度变化引起的所述第一谐振元件的输出频率中的偏差,或者使用所述温度感测元件的输出和第二低频谐振元件的输出二者来校正由于温度变化引起的所述第二低频谐振元件的输出频率中的偏差。
29.根据权利要求28所述的方法,所述方法包括使用第一高频谐振元件的输出频率作为频率测量参考,来确定所述第二低频谐振元件的输出频率。
30.一种频率控制装置的温度的高分辨率感测方法,所述频率控制装置被构造作为单一组件并包括至少三个热耦合的元件:
其谐振频率在HF频带内或更高的第一谐振元件,其谐振频率在LF频带内或更低的第二谐振元件,以及温度感测元件,
所述方法包括以下步骤:
使用所述第一谐振元件的频率作为频率测量参考来测量所述第二谐振元件的频率,
测量所述温度感测元件的输出,
将在以上步骤中测量的值组合以得到所述装置的温度的高分辨率指示。
CN201380063183.5A 2012-10-08 2013-10-08 多功能频率控制装置 Active CN104956590B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261710938P 2012-10-08 2012-10-08
US61/710,938 2012-10-08
PCT/NZ2013/000186 WO2014058328A1 (en) 2012-10-08 2013-10-08 A multi-function frequency control device

Publications (2)

Publication Number Publication Date
CN104956590A CN104956590A (zh) 2015-09-30
CN104956590B true CN104956590B (zh) 2019-08-13

Family

ID=50477676

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380063183.5A Active CN104956590B (zh) 2012-10-08 2013-10-08 多功能频率控制装置

Country Status (3)

Country Link
US (2) US10116282B2 (zh)
CN (1) CN104956590B (zh)
WO (1) WO2014058328A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102163413B1 (ko) * 2015-04-20 2020-10-08 삼성전기주식회사 수정 디바이스
US11099078B1 (en) * 2017-08-25 2021-08-24 Vesper Technologies, Inc. Acoustic sensor with temperature structure
CN114200223A (zh) * 2021-12-07 2022-03-18 浙江大学 一种基于1:3频率比非线性静电耦合的mems谐振式静电计

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5368154A (en) * 1976-11-30 1978-06-17 Fujitsu Ltd Highly stable crystal oscillator
FR2562349B1 (fr) * 1984-03-27 1986-06-27 Cepe Oscillateur piezo-electrique fonctionnant en mode aperiodique
US6664864B2 (en) * 2001-10-31 2003-12-16 Cts Corporation Cavity design printed circuit board for a temperature compensated crystal oscillator and a temperature compensated crystal oscillator employing the same
WO2004091100A1 (en) 2003-04-11 2004-10-21 Philips Intellectual Property & Standards Gmbh Device for detecting the temperature of an oscillator crystal
JP2005012813A (ja) * 2003-06-19 2005-01-13 Rakon Ltd 低電力水晶発振器
US7728685B2 (en) * 2005-11-07 2010-06-01 Citizen Holdings Co., Ltd. Temperature compensation oscillator and method for manufacturing the same
US7982550B1 (en) * 2008-07-01 2011-07-19 Silicon Laboratories Highly accurate temperature stable clock based on differential frequency discrimination of oscillators
US8629673B1 (en) * 2010-12-22 2014-01-14 Rockwell Collins, Inc. Power detection for high power amplifier applications
US20120187983A1 (en) * 2011-01-20 2012-07-26 Taiwan Semiconductor Manufacturing Company, Ltd. Frequency generator
US9093752B2 (en) * 2013-03-08 2015-07-28 Apple Inc. Electronic device with capacitively loaded antenna
JP6728652B2 (ja) * 2015-11-30 2020-07-22 セイコーエプソン株式会社 回路装置、発振器、電子機器、移動体及び発振器の製造方法
JP6750320B2 (ja) * 2016-06-07 2020-09-02 セイコーエプソン株式会社 温度補償型発振回路、発振器、電子機器、移動体及び発振器の製造方法

Also Published As

Publication number Publication date
US11309863B2 (en) 2022-04-19
US10116282B2 (en) 2018-10-30
US20190052243A1 (en) 2019-02-14
CN104956590A (zh) 2015-09-30
US20150280686A1 (en) 2015-10-01
WO2014058328A1 (en) 2014-04-17

Similar Documents

Publication Publication Date Title
US20170067790A1 (en) Sensor device, portable apparatus, electronic apparatus, and moving object
US9054604B2 (en) Piezoelectric device and electronic apparatus
US8410868B2 (en) Methods and apparatus for temperature control of devices and mechanical resonating structures
US11309863B2 (en) Multi-function frequency control device
US8427244B2 (en) Oscillation circuit and frequency-correcting oscillation circuit
US9879997B1 (en) Quartz resonator with plasma etched tethers for stress isolation from the mounting contacts
Chen et al. Ovenized dual-mode clock (ODMC) based on highly doped single crystal silicon resonators
EP2866102A2 (en) Systems and methods for a wafer scale atomic clock
JP2012124549A (ja) 温度制御型水晶振動子及び水晶発振器
WO2014112951A1 (en) Dual mode resonator
US20150381184A1 (en) Composite electronic component, oscillator, electronic apparatus, and mobile object
Melamud et al. MEMS enables oscillators with sub-ppm frequency stability and sub-ps jitter
Prikhodko et al. Achieving long-term bias stability in high-Q inertial MEMS by temperature self-sensing with a 0.5 millicelcius precision
JP2010206443A (ja) 温度補償型圧電発振器
US8174331B2 (en) Temperature compensated crystal oscillator, printed-circuit board, and electronic device
JP2009027451A (ja) 表面実装用の水晶発振器
JP2004320417A (ja) 温度補償圧電発振器
Tabrizian et al. Acoustically-engineered multi-port AlN-on-silicon resonators for accurate temperature sensing
Levy et al. An integrated resonator-based thermal compensation for Vibrating Beam Accelerometers
JP2008141347A (ja) 温度補償型発振器
JP6376681B2 (ja) 表面実装型の圧電デバイス
JP5854769B2 (ja) 温度補償型発振器および温度補償型発振器の温度補償方法
RU2623182C1 (ru) Пьезорезонансный чувствительный элемент абсолютного давления
JP2003258554A (ja) 温度補償型圧電発振器
US9618399B1 (en) Frequency correction of oscillators and related apparatus and methods

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant