CN104956463B - 分析原油的方法 - Google Patents

分析原油的方法 Download PDF

Info

Publication number
CN104956463B
CN104956463B CN201480006840.7A CN201480006840A CN104956463B CN 104956463 B CN104956463 B CN 104956463B CN 201480006840 A CN201480006840 A CN 201480006840A CN 104956463 B CN104956463 B CN 104956463B
Authority
CN
China
Prior art keywords
crude oil
oil sample
mass
ammonium
paper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201480006840.7A
Other languages
English (en)
Other versions
CN104956463A (zh
Inventor
罗伯特·格雷厄姆·库克斯
F·P·M·杰占居
李安寅
I·S·罗肯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Purdue Research Foundation
Original Assignee
Purdue Research Foundation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Purdue Research Foundation filed Critical Purdue Research Foundation
Priority to CN201810173820.9A priority Critical patent/CN108287209B/zh
Publication of CN104956463A publication Critical patent/CN104956463A/zh
Application granted granted Critical
Publication of CN104956463B publication Critical patent/CN104956463B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2823Oils, i.e. hydrocarbon liquids raw oil, drilling fluid or polyphasic mixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • G01N30/724Nebulising, aerosol formation or ionisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • G01N30/7233Mass spectrometers interfaced to liquid or supercritical fluid chromatograph
    • G01N30/724Nebulising, aerosol formation or ionisation
    • G01N30/7266Nebulising, aerosol formation or ionisation by electric field, e.g. electrospray
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0031Step by step routines describing the use of the apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0431Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples
    • H01J49/0445Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components for liquid samples with means for introducing as a spray, a jet or an aerosol
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • H01J49/164Laser desorption/ionisation, e.g. matrix-assisted laser desorption/ionisation [MALDI]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/165Electrospray ionisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/168Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission field ionisation, e.g. corona discharge

Abstract

本发明大体上涉及分析原油的方法。在某些实施例中,本发明的方法包括获得原油样品,和对所述原油样品进行质谱分析。在某些实施例中,所述方法在无任何样品预纯化步骤的情况下进行。

Description

分析原油的方法
相关申请案
本申请案主张2013年1月31日提交的美国临时专利申请案第61/759,097号的益处和优先权,其内容以全文引用的方式并入本文中。
政府支持
本发明在由能源部奖励的DE-FG02-06ER15807下在政府支持下进行。政府具有本发明的某些权利。
技术领域
本发明大体上涉及分析原油的方法。
背景技术
管道一般是在陆地上输送大量原油、精炼石油产品或天然气的最经济方式。通常使用钢管道,其可能经受内部和外部腐蚀。为确保管道可持续操作,腐蚀保护是关键的步骤。
石油传输管道的腐蚀可能导致泄漏和大规模漏油,其会破坏生态系统并且污染食水水源(萨斯特里(Sastri),腐蚀抑制剂:原理和应用(Corrosion Inhibitors:Principlesand applications),约翰威利父子公司(J.Wiley&Sons),纽约(New York),2001,第1章,第5-30页;萨赫(Sacher)等人,色谱杂志A(J.Chromatogr,A),1997,764,85-93;赵(Zhao)等人材料和腐蚀(Materials and Corrosion),2004,55,684-688;索恩(Son),NACE国际腐蚀会议系列(NACE International Corrosion Conference Series),2007,07618;瓦伦丁(Valentine)等人,科学(Science),2010,330208-211;库加温斯基(Kujawinski)等人,科学与技术(Science&Technology),2011,45,1298-1306;西伯德克斯(Thibodeaux)等人,环境工程改科学(Environmental Engineering Science),2011,28,87-93;比约恩达拉(Bjorndal)等人,科学,2011,331,537-538;以及阿特拉斯(Atlas)等人,环境科学与技术(Environmental Science&Technology),2011,45,6709-6715)。
一般地,可通过向原油(crude petroleum)添加油溶性杂环化合物,例如季铵盐和离子液体来抑制腐蚀(古莱希(Quraishi)等人,美国石油化学协会(Am.Oil Chem.Soc),2000,77,1107-1111,特雷比格(Treybig)等人,美国专利第4,957,640号;德里克(Derek)等人,美国专利第4,235,838号;以及杨(Young)等人,美国专利第6,645,399号)。抑制是否成功取决于抑制剂的量,并且因此原油中抑制剂含量的测量受到较大关注,尤其在长距离输送管道中(纽伯格(Nyborg)等人,NACE-国际腐蚀会议系列,2012,6,4582-4590;克瓦列克瓦尔(Kvarekval),NACE-国际腐蚀会议系列,2012,6,4329-4352;以及迪格斯塔(Dugstad)等人,NACE-国际腐蚀会议系列,2012,5,3573-3586)。
目前,不存在用于现场直接监测腐蚀抑制剂残余含量的标准方法。气相色谱或高效液相色谱与质谱组合(GC-MS或HPLC-MS)是用于非现场量化残余腐蚀抑制剂和其它石油成分的最广泛采用的方法。(萨赫等人,色谱杂志A,1997,764,85-93;索恩,NACE国际腐蚀会议系列,2007,07618;休恩(Huhn)等人,分析化学杂志(J.Anal.Chem.),1995,351,563-566;高夫(Gough)等人,NACE-国际腐蚀,98论文,第33期;施瓦兹(Schwartz)等人,分析化学(Anal.Chem.),1990,62,1809-1818;蒋(Chiang)等人,材料化学(Chemistry ofMaterials),1992,4,245-247;许(Hsu),分析化学,1993,65,767-771;马彻(March),质谱学杂志(J.Mass Spectrom.),1997,32,351-369;以及何(He)等人,能源与燃料(EnergyFuels.),2011,25,4770-4775)。尽管具有高度敏感和特异性,但这些方法耗费时间,在分析之前需要许多样品纯化和制备步骤。由于在分析之前所需的样品处理,样品需要送到实验室进行分析。
发明内容
本发明提供以质谱分析原油样品的方法,所述原油样品处于从其所获取处未经改性的状态。因此,本发明的方法可以在无任何样品预纯化步骤的情况下进行。本发明的多个方面使用了润湿多孔材料作为质谱分析的衬底来实现。将未经改性的原油样品(例如从石油传输管道提取的原油样品)直接引入到多孔衬底上。将溶剂和电压施用到衬底上以产生样品中被分析物的离子。那些离子被导引到质谱仪中并且通过质谱仪加以分析。以所述方式,本发明的方法提供用于分析原油,例如监测传输管道中原油中的腐蚀抑制剂的快速和高效现场质谱技术。
在某些方面中,本发明提供用于分析原油样品的方法,所述方法包括获得原油样品和对所述原油样品进行质谱分析。本发明的方法可以在无任何样品预纯化步骤的情况下进行,即,将样品直接从其来源取得并且在不对所述样品进行任何另外改性的情况下通过质谱直接分析。在某些实施例中,质谱分析在大气环境中进行。
在某些实施例中,所述质谱分析包括将原油样品引入到多孔衬底上,向所述衬底施用溶剂(例如,甲醇和乙腈的混合物)和电压以产生所述原油样品中被分析物的离子,以及使用质谱仪分析所述离子。许多不同类型的多孔衬底可以与本发明的方法一起使用,并且下文更详细地描述此类衬底。例示性多孔衬底是纸,例如滤纸。质谱仪可以是台式质谱仪或小型质谱仪。在某些实施例中,质谱仪或小型质谱仪耦接到不连续大气压力接口。
本发明的方法可以用于分析原油中许多不同类型的被分析物。在某些实施例中,原油中的被分析物是腐蚀抑制剂。腐蚀抑制剂可以包括至少一种烷基铵盐,例如溴化四(十二烷基)铵、氯化苯甲基十六烷基二甲基铵或其组合。
本发明的其它方面提供用于量化原油中腐蚀抑制剂的方法。所述方法包括获得包含腐蚀抑制剂的原油样品,对所述原油样品进行质谱分析,以及基于所述质谱分析的结果来量化所述原油样品中的所述腐蚀抑制剂,其中所述方法在无任何样品预纯化步骤的情况下进行。
附图说明
图1是展示使用小型质谱仪当场分析石油中腐蚀抑制剂的纸喷雾质谱的示意图。
图2是使用商业离子阱质谱仪定量分析油性基质中铵盐的校准曲线。
图3A-B是质谱图,其展示使用台式离子阱仪器分析季铵腐蚀抑制剂模型化合物的阳离子模式纸喷雾质谱图。在滤纸上点样并且在空气中通过施加电势而电离的被分析物的绝对量是每种化合物在1μL石油中100pg,即100ppb。图3A展示处于m/z 466.6处的溴化四辛基铵。图3B展示处于m/z 242处的六氟磷酸四丁基铵。插图(i)展示被分析物离子的同位素分布,并且插图(ii)-(vi)展示所选择离子的MS/MS CID数据,其中亦是使用100pg被分析物在1μL石油中。
图4A是使用台式仪器分析的在真空泵油中混合的模型化合物的阳离子模式纸喷雾质谱图;溴化四丁基铵给出处于m/z 242处的完整阳离子,溴化十六烷基三甲基铵处于m/z 284处,氯化苯甲基十六烷基二甲基铵处于m/z 360处,溴化四辛基铵处于m/z 466.6处,并且溴化四(十二烷基)铵处于m/z 691处。图4B是使用台式离子阱质谱仪标准分析的氯化烷基二甲基苯甲基铵[C6H5CH2N(CH3)2R]Cl,其中R主要是n-C12H25(但也含有C14和C16同系物)的典型阳离子纸喷雾质谱图。插图i)、ⅱ)和iii)分别是以下的CID质谱图:m/z 304(C12)、m/z 332(C14)、m/z 360(C16)。
图5A-D是使用手持式小型仪器在石油(1μL)中分析季铵腐蚀抑制剂模型化合物的阳离子纸喷雾质谱图。在纸上点样的被分析物的绝对量是每种化合物100pg。图5A是溴化四辛基铵,图5B是真空泵油人工混合氯化苯甲基十六烷基二甲基铵,并且图5C-D分别是样品的CID质谱图。
图6A是使用手持式小型仪器分析的真空泵油中人工混合模型化合物的阳离子纸喷雾质谱图,在纸上点样的被分析物的绝对量是1ng/μL(绝对浓度);溴化四丁基铵在m/z242处,溴化十六烷基三甲基铵在m/z 284处,氯化苯甲基十六烷基二甲基铵在m/z 360处,溴化四辛基铵在m/z 466.6处,并且溴化四(十二烷基)铵在m/z 691处。图6B是使用台式离子阱质谱仪标准分析的氯化烷基二甲基苯甲基铵[C6H5CH2N(CH3)2R]Cl,其中R主要是n-C12H25(但也含有m/z 332(C14)和m/z 360(C16)同系物)的典型阳离子纸喷雾质谱图,并且图6C-D分别展示m/z 304(C12)和m/z 332(C14)混合物组分的CID MS/MS数据。
图7是溴化十六烷基三甲基铵的阳性纸喷雾-MS质谱图。插图(i)展示被分析物的同位素分布,m/z 284.0处十六烷基三甲基铵阳离子的串联质谱(MS/MS)未返回良好信号,因为所预期的主要碎片在仪器的低质量截止值以下。
图8是溴化四(十二烷基)铵的阳性纸喷雾-MS质谱图。插图(i)展示被分析物的同位素分布,(ii)-(iii)展示,m/z 691.0处四辛基铵阳离子串联质谱(MS/MS)给出m/z 522.0处具有烯烃损失112.0的主要碎片离子和520.0处具有烷烃损失114的次要碎片离子,其证实所述结构。另外,(iii)展示,m/z 522.0(主要)碎片处的主要碎片离子的MS/MS/MS进一步给出m/z 354.5处的离子和m/z 352.5处的离子,其分别具有中性损失-[112]和-[114],进一步证实所述化合物的身份。
图9是溴化四己基铵的阳性纸喷雾-MS质谱图。插入(i)展示被分析物离子的同位素分布,(ii)-(iii)展示,m/z 354.7处四己基铵阳离子的串联质谱(MS/MS)给出m/z 270.0处具有烯烃损失-[84]的主要碎片离子和268.5处具有烷烃损失-[86]的次要碎片离子,其证实所述结构。另外,(iii)展示,m/z 270.0碎片处的主要碎片离子的MS/MS/MS进一步给出m/z 186.0处的离子(主要)和m/z 184.0处的离子(次要),其分别具有中性损失-[84]和-[86],进一步证实所述化合物的身份。
图10是氯化苯甲基十六烷基二甲基铵的阳性纸喷雾-MS质谱图。插图(i)展示被分析物离子的同位素分布,(ii)展示,m/z 360处苯甲基十六烷基二甲基铵阳离子的串联质谱(MS/MS)给出m/z 268处具有烯烃损失-[92]的主要碎片离子,其证实所述结构。
图11是使用台式仪器分析的模型化合物人工混合物的阳离子模式纸喷雾质谱图。观测到溴化四丁基铵在m/z 242.0处,溴化十六烷基三甲基铵在m/z 284.0处,氯化苯甲基十六烷基二甲基铵在m/z 360.0处,溴化四辛基铵在m/z 466.6处,并且溴化四(十二烷基)铵在m/z 691.0处。
图12是使用台式离子阱质谱仪标准分析的氯化烷基二甲基苯甲基铵盐的混合物[C6H5CH2N(CH3)2R]Cl,其中R主要是n-C12H25(也含有少量m/z 332(C14)和m/z 360(C16)同系物)的典型阳离子纸喷雾质谱图。与混合物中的其它组分相比较,痕量C16同系物在相对丰度中明显。
图13展示氯化烷基二甲基苯甲基铵[C6H5CH2N(CH3)2R]Cl,其中R主要是n-C12H25的离子计时图;展示同系物C14(m/z)332、C12(m/z)304以及C16(m/z)360的数据。
图14A展示将样品溶液供给纸片以用于电喷雾电离的示意图。图14B展示将样品(例如原油)预点样到纸上并且随后将溶剂液滴供应到纸上以用于电喷雾电离的示意图。
图15展示示意图,其展示耦接在具有直线离子阱的小型质谱仪中的不连续大气压力接口。
具体实施方式
本发明大体上涉及用于分析原油的方法。原油是指天然存在的由烃沉积物(hydrocarbon deposit)构成的未精炼石油产品。原油经精炼以产生石油产品,例如汽油、柴油和各种形式的石化产品。本发明的方法可以分析原油内的任何被分析物。被分析物是指原油中可以被鉴别和/或测量的任何物质或化学品。被分析物可以是原油中天然存在的物质或化学品(例如,石蜡、环烷烃、芳香族化合物或沥青)。替代地,被分析物可以是在原油中找到的非天然存在的物质或化学品。在原油中找到的例示性非天然存在的物质或化学品包括腐蚀抑制剂、破乳剂(emulsion breaker)、硫化氢控制剂、石蜡控制添加剂、阻垢剂(scale inhibitor)、水合物抑制剂(例如,乙二醇和甲醇)、脱水剂(例如,二缩三乙二醇)、杀菌剂(例如,季胺盐、乙酸胺和戊二醛)以及消泡剂(例如,聚硅氧烷和聚乙二醇酯)。
腐蚀抑制剂是指当添加到液体或气体中时减小材料(典型地是金属或合金)腐蚀速率的化合物。腐蚀抑制剂进一步描述于例如以下中:索恩(“实验室评估腐蚀抑制剂的进展:综述(Developments In The Laboratory Evaluation Of Corrosion Inhibitors:AReview)”,NACE腐蚀2007会议与展会(NACE Corrosion 2007Conference and Expo),论文编号07618);索恩(腐蚀,2004,NACE国际会议,论文编号04373);巴克(Buck)等人(美国专利第5,152,177号);古莱希等人(美国石油化学协会,2000,77,1107-1111);特雷比格等人(美国专利第4,957,640号);德里克等人(美国专利第4,235,838号);以及杨等人(美国专利第6,645,399号),其中每一者的内容以全文引用的方式并入本文中。在某些实施例中,腐蚀抑制剂包括烷基铵盐,例如溴化四(十二烷基)铵和/或氯化苯甲基十六烷基二甲基铵。市售腐蚀抑制剂由威德福公司(Weatherford)出售,例如下表1中所描述的那些腐蚀抑制剂。
表1
原油含有天然表面活性剂,其在与水混合时可以将水乳化到石油中。较常见的乳液是分散在石油中的水,但“相反”乳液(水包油)也可能存在。乳液升高石油的底部沉降物和水(BS和W),并且常常极为粘稠。破乳剂是一类用于分离乳液(例如油包水)的化学品。其常用于原油(其典型地与大量盐水一起产生)加工中。这些水(和盐)必须在精炼之前从原油中去除。如果未去除大部分水和盐,那么在精炼工艺中可能出现明显腐蚀问题。破乳剂典型地基于以下化学品:酸催化的酚-醛树脂;碱催化的酚-醛树脂;环氧树脂;聚乙二亚胺;多元胺;二环氧化物;或多元醇。市售破乳剂由威德福公司出售,例如下表2中所描述的那些破乳剂。
表2
硫化氢(H2S)是在高浓度下致命并且在中等浓度下具有严重健康威胁的毒气。由H2S造成的操作问题可以包括重度腐蚀和结垢,以及注入井由硫化铁堵塞。硫化氢控制剂是一类与H2S反应以将H2S或硫醇转化为其它含硫化合物的化合物。例示性硫化氢控制剂是氧化剂(例如过氧化物)、胺中和剂、氢氧化钠或氢氧化钠与氢氧化钾的掺合物、三嗪类化学品、金属清除剂等。市售硫化氢控制剂由威德福公司出售,例如下表3中所描述的那些硫化氢控制剂。
表3
大多数原油在溶液中含有石蜡,并且冷却造成石蜡晶体在一起结块并且在生产设备上积聚。在不被处理的情况下,积聚将最终通过完全堵塞管和流动线而切断石油流动。石蜡控制添加剂是一类帮助防止形成石蜡沉积物或将其量减到最少的化合物。市售硫化氢控制剂由威德福公司出售,例如下表4中所描述的那些硫化氢控制剂。
表4
积垢出现是因为随着温度和压力变化,矿物质在生成水中超过其饱和极限。积垢在外观方面可以在硬结晶材料与软易碎材料之间变化,并且沉积物可能含有其它矿物质和杂质,例如石蜡、盐和铁。最常见的无机积垢是碳酸钙。其它常见矿物质沉积物包括硫酸钙(石膏)、硫酸锶和硫酸钡。阻垢剂用于防止这些沉积物形成。存在三种常见类型的出于此目的而使用的化合物,磷酸酯、膦酸酯和酸聚合物。市售硫化氢控制剂由威德福公司出售,例如下表5中所描述的那些硫化氢控制剂。
表5
本发明的多个方面使用了耦接到质谱仪(例如小型质谱仪)的多孔衬底喷雾电离探针来实现。在某些实施例中,小型质谱仪包括不连续大气压力接口(discontinuousatmospheric pressure interface;DAPI),下文更详细地对其加以论述。在某些实施例中,耦接到质谱仪的多孔衬底喷雾探针用于分析、鉴别以及量化原油中的被分析物(例如,腐蚀抑制剂)。多孔衬底喷雾允许分析在无任何样本制备或预纯化的情况下进行。在本发明的方法中,从来源(例如管道)取得原油,并且其呈未改性形式,将其定向点样到纸喷雾探针上。此类设定例示于图1中。施用溶剂,并且分析从纸探针产生的喷雾(图1)。
本发明的方法可以在大气环境中进行,并且允许原油样品的原位电离质谱,即,在空气中对未改性的样品进行电离。此方法提供几乎瞬时数据,同时排除或将样本制备或样品预纯化减到最少。因此,本发明的方法允许用于分析原油中的被分析物,例如监测传输管道中原油中的腐蚀抑制剂的快速和高效现场技术。原位电离于例如以下中被描述:内梅斯(Nemes)等人(分析化学趋势(Trends in Anal.Chem.),2012,34,22-34)、哈里斯(Harris)等人(分析化学,2011,83,4508-4538)、黄(Huang)等人(分析化学年鉴(Ann.Rev.Anal.Chem.),2010,3,43-65)、艾法(Ifa)等人(分析家(Analyst),2010,135,669-681)、库克斯(Cooks)等人(科学,2006,311,1566-1570)、库克斯等人(法拉弟论坛(Faraday Discussions),2011,149,247-267)、文特尔(Venter)等人(分析化学,2008,27,284-290)、哈里斯等人(分析家,2008,133,1297-1301)、塔卡兹(Takats)等人(科学,2004,306,471-473)、科迪(Cody)等人(分析化学,2005,77,2297-2901)以及拉特克利夫(Ratcliffe)等人(分析化学,2007,79,6094),其中每一者的内容以全文引用的方式并入本文中。
多孔衬底喷雾进一步被描述于欧阳(Ouyang)等人(美国专利申请案第2012/0119079号)中,其内容以全文引用的方式并入本文中。纸喷雾电离方法较软(其对离子存储很少内部能量)并且适用于分析从简单有机物到较大生物分子范围内的小分子与大分子(王(Wang)等人,应用化学-国际版(Angew Chemie-International Edition),2010,49,877-880;张(Zhang)等人,分析化学,2012,84(2)931-938;杨(Yang)等人,分析与生物化学(Anal&Bio.Chem.),2012,404,1389-1397以及张等人,分析家,2012,137,2556-2558)。
在多孔衬底喷雾实施例中,将样品点样到多孔衬底,例如纸(或其它固体介质)上。多孔衬底可以切割至一细点。在某些实施例中,多孔衬底逐渐变窄成细微端部,例如碳纳米管。用溶剂润湿多孔衬底,并且当施加高DC电压(±3.5kV)时,带电荷液滴从多孔衬底端部发射。在不受任何特定理论或作用机制限制的情况下,咸信液滴发射通过场发射来进行(埃斯皮(Espy)等人,国际质谱学杂志(Int.J.Mass Spectrom),2012,325-327,167-171)。之后来自带电荷液滴的离子产生被认为遵循电喷雾类机制(克劳迪(Crotti)等人,欧洲质谱学杂志(Euro.J.Mass Spectrom),2011,17,85-99)。下文更详细地描述多孔衬底电离。
在某些实施例中,多孔衬底喷雾电离与便携式质谱仪组合以用于快速当场分析石油中腐蚀抑制剂活性剂(即烷基铵盐)。咸信溴化四(十二烷基)铵和氯化苯甲基十六烷基二甲基铵是许多腐蚀抑制剂调配物中活性组分的代表(古莱希等人,美国石油化学协会,2000,77,1107-1111;特雷比格等人,美国专利第4,957,640号;德里克等人,美国专利第4,235,838号;以及杨等人,美国专利第6,645,399号)。两种化合物均含有允许其溶解在石油中的疏水性长烷基链。以下实例中的数据展示,放置到纸上的1μL油(例如,泵油)中的<1ng/μL四级铵盐可以容易地被商业台式或小型质谱仪检测。活性腐蚀抑制剂的此浓度(<100ppb)远低于所报导的这些抑制剂的最小有效浓度范围,即50-200ppm(维斯瓦纳坦(Viswanathan),腐蚀科学(Corrosion Science),2010,2,6-12;和鲍里斯(Boris)等人,NACE国际腐蚀会议和展会,2009,第09573号)。数据进一步表明可通过分析使用串联质谱(MS/MS)产生的腐蚀抑制剂碎片化模式来实现被分析物的当场鉴别(杰克逊(Jackson)等人欧洲质谱学(Eur.Mass Spectrom.),1997,3,113-120;杰克逊等人,国际质谱学杂志,2004,238,265-277;杰克逊等人,质谱学快报(Rapid Commun.Mass Spectrom.),2006,20,2717-2727;布施(Busch)等人,质谱/质谱:串联质谱的技术与应用(Mass Spectrometry/MassSpectrometry:Techniques and applications of Tandem Mass Spectrometry),VCH出版商公司(VCH Publishers Inc.),纽约,1988)。
小型质谱仪
如上文所提及,质谱仪可以是台式或实验室规模质谱仪或小型质谱仪。例示性小型质谱仪描述于例如高(Gao)等人(分析化学杂志(Z.Anal.Chem.2006,78,5994-6002)中,其内容以全文引用的方式并入本文中。与用于实验室规模仪器的具有数千瓦功率的泵送系统相比,小型质谱仪一般具有较小的泵送系统,例如用于在高等人所描述的系统中的仅具有5L/min(0.3m3/hr)隔膜泵和11L/s涡轮泵的18W泵送系统。其它例示性小型质谱仪描述于例如以下中:高等人(分析化学,80:7198-7205,2008)、侯(Hou)等人(分析化学,83:1857-1861,2011)以及索科尔(Sokol)等人(国际质谱学杂志,2011,306,187-195),其中每一者的内容以全文引用的方式并入本文中。小型质谱仪也描述于例如以下中:许(Xu)等人(JALA,2010,15,433-439);欧阳等人(分析化学,2009,81,2421-2425);欧阳等人(分析化学年鉴,2009,2,187-214);桑德斯(Sanders)等人(欧洲质谱学杂志,2009,16,11-20);高等人(分析化学,2006,78(17),5994-6002);马利根(Mulligan)等人(化学通讯(Chem.Com.),2006,1709-1711);以及菲科(Fico)等人(分析化学,2007,79,8076-8082),其中每一者的内容以全文引用的方式并入本文中。
使用润湿多孔材料的电离
由多孔材料组成、经润湿以产生离子的探针描述于欧阳等人(美国专利申请案第2012/0119079号和PCT申请案第PCT/US10/32881号)中,其中每一者的内容以全文引用的方式并入本文中。例示性探针展示于图14A-B中。多孔材料,例如纸(例如滤纸或层析纸)或其它类似材料用于固定和转移液体和固体,并且当将高电压施加到材料上时,从材料边缘直接产生离子。多孔材料保持与溶剂流(例如连续溶剂流)分开(即,分离或断开)。取而代之,将样品点样到多孔材料上或从包含样品的表面涂抹样品到多孔材料上。随后将点样或涂抹的样品连接到高压源上以产生样品离子,随后对所述样品离子进行质量分析。通过多孔材料在不需要独立溶剂流的情况下输送样品。输送被分析物不需要气动帮助;相反,简单地将电压施加到固定于质谱仪前方的多孔材料上。
在某些实施例中,多孔材料是任何纤维素类材料。在其它实施例中,多孔材料是非金属多孔材料,例如棉花、亚麻、羊毛、合成纺织物或植物组织。在再其它实施例中,多孔材料是纸。纸的优势包括:成本(纸较便宜);其是完全商品化的并且其物理和化学特性可以调整;其可以过滤来自液体样品的颗粒(细胞和灰尘);其容易成形(例如,易于切割、撕开或折叠);液体在毛细作用下在其中流动(例如,无外部泵送和/或电力供应);和其是抛弃式的。
在某些实施例中,多孔材料与具有针对喷雾优化的宏观角度的固体端部整合到一起。在这些实施例中,多孔材料用于过滤、预浓缩和芯吸含有被分析物的溶剂以在固体类型情况下喷雾。
在特定实施例中,多孔材料是滤纸。例示性滤纸包括纤维素滤纸、无灰滤纸、硝化纤维纸、玻璃微纤维滤纸和聚乙烯纸。可以使用具有任何孔径的滤纸。例示性孔径包括级别1(11μm)、级别2(8μm)、级别595(4-7μm)以及级别6(3μm)。孔径不仅将影响喷雾材料内部的液体输送,而且可以影响端部处泰勒锥(Taylor cone)的形成。最优孔径将产生稳定的泰勒锥并且减少液体蒸发。滤纸孔径也是过滤中的重要参数,即,纸充当线上预处理装置。孔径在低nm范围中的市售再生纤维素超滤膜被设计成用于保留小到1000Da的粒子。可以商业地获得分子量截止值在1000Da到100,000Da范围内的超滤膜。
本发明的探针对简单地基于使用在多孔材料边缘处产生的高电场来产生微米级液滴而言工作良好。在特定实施例中,将多孔材料成形为具有宏观上尖锐点(例如三角形的尖点)以用于离子产生。本发明的探针可以具有不同端部宽度。在某些实施例中,探针端部的宽度是至少约5μm或更宽,至少约10μm或更宽,至少约50μm或更宽,至少约150μm或更宽,至少约250μm或更宽,至少约350μm或更宽,至少约400μm或更宽,至少约450μm或更宽等。在特定实施例中,端部宽度是至少350μm或更宽。在其它实施例中,探针端部宽度是约400μm。在其它实施例中,本发明的探针具有三维形状,例如圆锥形状。
如上文所提及,输送液滴不需要气动帮助。被分析物的原位电离基于这些带电荷的液滴来实现,提供用于液相样品质量分析的简单而便利方法。将样品溶液在无任何预处理的情况下直接施用于固定在质谱仪入口前方的多孔材料上。随后通过将高压施加到润湿多孔材料上来进行原位电离。在某些实施例中,多孔材料是纸,其是一类含有用于液体输送的大量孔隙和微通道的多孔材料。孔隙和微通道还允许纸充当过滤装置,其有益于分析物理上较脏或被污染的样品。在其它实施例中,多孔材料经处理以在所述多孔材料中产生微通道或增强材料特性以用作本发明的探针。举例来说,纸可以经历图案化硅烷化工艺以在所述纸上产生微通道或结构。此类工艺涉及例如将纸表面暴露于十三氟-1,1,2,2-四氢辛基-1-三氯硅烷中以导致纸的硅烷化。
在其它实施例中,使用软光刻工艺以在多孔材料中产生微通道或增强材料特性以用作本发明的探针。在其它实施例中,在纸中产生疏水性捕获区以预浓缩亲水性较小的化合物。疏水区可以通过使用光刻、印刷方法或等离子体处理而图案化到纸上,以界定具有200-1000μm横向特征的亲水性通道。参见马丁尼兹(Martinez)等人(应用化学国际版(Angew.Chem.Int.Ed.)2007,46,1318-1320);马丁尼兹等人(美国国家科学协会公报(Proc.Natl Acad.Sci.USA)2008,105,19606-19611);亚伯(Abe)等人(分析化学2008,80,6928-6934);布鲁兹维茨(Bruzewicz)等人(分析化学2008,80,3387-3392);马丁尼兹等人(实验室芯片(Lab Chip)2008,8,2146-2150);以及李(Li)等人(分析化学2008,80,9131-9134),其中每一者的内容以全文引用的方式并入本文中。负载到此类纸类装置上的液体样品可以通过毛细作用驱动而沿亲水性通道行进。
经改性表面的另一个应用是根据化合物与表面和与溶液的不同亲和力来对化合物进行分离或浓缩。一些化合物优选地吸收在表面上,而基质中的其它化学品则更倾向于停留在水相内。通过洗涤,可以去除样品基质,同时所关注的化合物保留在表面上。所关注的化合物可以在较晚时间点处由其它高亲和力溶剂从表面去除。重复所述工艺帮助使原始样品脱盐并且也浓缩。
在某些实施例中,将化学品施用到多孔材料以改变所述多孔材料的化学特性。举例来说,可以施用允许具有不同化学特性的样品组分不同滞留的化学品。另外,可以施用将盐和基质作用减到最少的化学品。在其它实施例中,将酸性或碱性化合物添加到多孔材料以调整经点样样品的pH值。调整pH值可以尤其适用于生物学流体(例如血液)的改良分析。另外,可以施用允许将被选择的被分析物线上化学衍生化的化学品,例如将非极性化合物转化为盐,以获得高效电喷雾电离的。
在某些实施例中,为使多孔材料改性而施用的化学品是内标。内标可以并入到材料中,并且在溶剂流期间以已知速率释放,以提供用于定量分析的内标。在其它实施例中,在质谱分析之前用允许预分离和预浓缩被分析物的化学品使多孔材料改性。
可以使用与质谱分析相容的任何溶剂。在特定实施例中,有利溶剂将是也用于电喷雾电离的那些溶剂。例示性溶剂包括水、甲醇、乙腈以及THF的组合。有机物含量(甲醇、乙腈等与水的比例)、pH值和挥发性盐(例如乙酸铵)可以取决于待分析的样品而变化。举例来说,碱性分子(如药物伊马替尼(imatinib))的在较低pH值下更高效地提取和电离。不具有可电离基团但具有多个羰基的分子(如西罗莫司(sirolimus))在溶剂中与铵盐一起由于加合物形成而较好电离。
不连续大气压力接口(DAPI)
在某些实施例中,不连续大气压力接口(DAPI)与台式或小型质谱仪一起使用。不连续大气接口描述于欧阳等人(美国专利第8,304,718号和PCT申请案第PCT/US2008/065245号)中,其中每一者的内容以全文引用的方式并入本文中。
例示性DAPI展示于图15中。DAPI的概念是在离子引入期间打开其通道并且随后在每一扫描期间关闭其通道以用于后续质量分析。DAPI可以允许与传统连续API相比具有大得多的流导(flow conductance)的离子迁移通道。歧管内部的压力在通道打开以得到最大离子引入时暂时明显增加。可以切断所有高电压,并且经开启弱电RF以用于在此时间段期间捕获离子。在离子引入之后,关闭通道并且压力可以在一段时间内降低,以到达当高电压可能接通并且RF可能在高电压下扫描以用于质量分析时用于进一步离子操控或质量分析的最优压力。
DAPI以受控方式打开和关闭气流。真空歧管内部的压力在DAPI打开时增大,并且在其闭合时减小。DAPI与捕获装置(其可以是质量分析仪或中间阶段的存储装置)的组合允许以给定的泵送能力最大限度地将离子封装引入到系统中。
在新的不连续引入模式中,大得多的开口可以用于DAPI中的压力限制性组件。在DAPI打开的较短时间段期间,在较低RF电压下以捕获模式操作离子捕获装置以存储进入离子;同时切断其它组件(例如转化打拿极(conversion dynode)或电子倍增管)上的高电压以避免在较高压力下破坏那些装置和电子元件。随后可以关闭DAPI以允许歧管内部的压力下降回到用于质量分析的最优值,此时在阱中对离子进行质量分析或将离子迁移到真空系统内的另一个质量分析仪以用于质量分析。通过以不连续方式操作DAPI而实现的此双压操作模式在给定的泵送能力下使离子引入最大化以及优化用于质量分析的条件。
设计目标是在保持质量分析仪最优真空压力的同时具有最大开口,所述最优真空压力取决于质量分析仪的类型而介于10-3到10-10托之间。在大气压力接口中的开口越大,则传递到真空系统及至质量分析仪中的离子电流越高。
本文描述DAPI的一个例示性实施例。DAPI包括用于打开和切断连接在大气压力和在真空的区域的聚硅氧烷管中路径的夹管阀。通常关闭的夹管阀(390NC24330,ASCO阀公司(ASCO Valve Inc.),新泽西州弗洛勒姆帕克(Florham Park,NJ))用于控制真空歧管到大气压力区中的开口。两个不锈钢毛细管连接到聚硅氧烷塑料管上,其中打开/关闭状态受到夹管阀控制。连接到大气的不锈钢毛细管是流动限制性元件,并且其ID是250μm,OD是1.6mm(1/16")并且长度是10cm。真空侧的不锈钢毛细管的ID是1.0,OD是1.6mm(1/16")并且长度是5.0cm。塑料管的ID是1/16",OD是1/8"并且长度是5.0cm。两个不锈钢毛细管均接地。小型10的泵送系统由泵送速度为5L/min(0.3m3/hr)的两级隔膜泵1091-N84.0-8.99(KNF纽博格公司(KNF Neuberger Inc.),新泽西州特伦顿(Trenton,NJ))和泵送速度为11L/s的TPD011混合动力涡轮分子泵(菲弗真空公司(Pfeiffer Vacuum Inc.),新罕布什尔州纳舒厄(Nashua,NH))组成。
当一直向夹管阀提供能量并且塑料管一直打开时,流导高到使真空歧管中的压力在隔膜泵操作的情况下超过30托。离子迁移效率测量为0.2%,其与具有连续API的实验室规模质谱仪相当。然而,在这些条件下,TPD 011涡轮分子泵无法开启。当未向夹管阀提供能量时,塑料管受挤压关闭,并且随后可以开启涡轮泵以将歧管的最终压力抽吸到在1×105托范围内。
用于使用离子阱进行质量分析的操作顺序通常包括(但不限于)离子引入、离子冷却以及RF扫描。在最初使歧管压力抽吸减小之后,实施扫描功能以在打开与关闭模式之间切换以进行离子引入和质量分析。在电离时间期间,使用24V DC来向夹管阀提供能量,并且DAPI打开。直线离子阱(RIT)端电极上的势能在此时间段期间也设定成接地。发现夹管阀的最小响应时间是10ms,并且使用介于15ms与30ms之间的电离时间来表征不连续DAPI。在DAPI关闭之后实施介于250ms与500ms之间的冷却时间来允许压力降低并且允许离子通过与背景空气分子碰撞来冷却。随后开启电子倍增管上的高电压,并且扫描RF电压以用于质量分析。在DAPI的操作期间,可以使用小型10上的微型皮拉尼真空计(MKS 925C,万机仪器公司(MKS Instruments,Inc.),马萨诸塞州威明顿(Wilmington,MA))来监测歧管中的压力变化。
以引用的方式并入
在本发明通篇中已经参考并且引用了其它文献,例如专利、专利申请案、专利公开案、杂志、书籍、论文、网络内容。所有此类文档在此出于所有目的以全文引用的方式并入本文中。
等效物
可以在不脱离本发明的精神或本质特征的情况下,以其它具体形式实施本发明。因此,前述实施例被视为在所有方面都是说明性的,而不是对本文所述的本发明进行限制。因此,本发明的范围是由所附的权利要求书而不是由前述描述来指明的,并且在所述权利要求书的等效性的含义和范围之内的所有变化因此均打算涵盖于其中。
实例
本文中的实例展示使用台式和便携式质谱仪来实施多孔衬底喷雾原位电离以用于检测复杂油性基质中的烷基季铵盐。这些盐常用作腐蚀抑制剂调配物中的活性组分。在石油中鉴别腐蚀抑制剂中的活性组分,并且由使用串联质谱(MS/MS)记录的其碎片化模式证实。经烷基和苯甲基取代的季铵盐的阳离子分别展示CnH2n(n=最长链碳数目)和C7H8的特征性中性损失。在较低浓度(<1ng/μL)下并且在约5ppb-500ppb的动态范围内检测到个别季铵化合物。在无事先样本制备或预浓缩的情况下,也使用小型质谱仪来表明对复杂石油样品中含量低于1ng/μL的这些化合物的直接检测。
实例1:化学品、试剂和材料
从西格玛-阿尔德里奇(Sigma-Aldrich)(密苏里州圣路易斯(St.Louis,MO))购得与季铵腐蚀抑制剂中活性剂特性类似的纯标准化合物,即溴化四辛基铵、溴化四(十二烷基)铵、溴化四己基铵、六氟磷酸四丁基铵、溴化十六烷基三甲基铵、氯化苯甲基十六烷基二甲基铵、溴化十六烷基三甲基铵以及氯化烷基二甲基苯甲基铵([C6H5CH2N(CH3)2R]Cl的混合物,其中烷基R主要是n-C12H25但也含有m/z 332(C14)和m/z 360(C16)同系物)。将样品溶解于甲醇中以制得1000ppm的储备溶液。通过用甲醇/乙腈(1:1,v/v)适当连续稀释来制备工作溶液。乙腈和甲醇(均为HPLC级)从马林克罗特贝克公司(Mallinckrodt Baker Inc.)(新泽西州菲利普斯堡(Phillipsburg,NJ))获得。制备由100ppb浓度的每一模型化合物组成的人工混合物以记录大致相同的离子丰度。为了模仿油田条件,使用真空泵油(内陆19石油润滑油,CAS编号:64742-65-0)将模型化合物储备溶液稀释到10ppb浓度,并且随后在无任何预浓缩或纯化的情况下分析此样品。用于纸喷雾的色谱滤纸购自惠特曼(Whatman)(惠特曼编号1,惠特曼国际有限公司(Whatman International.),英国梅德斯通(Maidstone,UK))。除非另行说明,否则使用甲醇/乙腈(1:1,v/v)作为用于所有纸喷雾实验的喷雾溶剂。
实例2:使用台式质谱仪的纸喷雾质谱(PS-MS)
首先使用为了进行所关注前驱物离子的最优检测而调谐的赛默LTQ线形离子阱质谱仪(赛默科技公司(Thermo Scientific),加利福尼亚州圣何塞(San Jose,CA))来进行实验。将仪器设定成以自动增益控制模式记录谱图以得到100ms的最大离子阱注入时间;每个谱图组合三个微扫描。所用主要实验参数如下:纸喷雾溶剂10μL甲醇/乙腈(1:1,v/v);除非另外指出,否则施加到纸上的电压在阳性模式中+3.5kV;毛细管温度,150℃;管镜片电压+65V;毛细管电压,+15V。使用碰撞诱导的解离(collision-induced dissociation;CID)进行串联质谱实验,以证实被分析物的存在和身份。使用1.5汤姆森(Th,即,m/z单位)的分离窗和8%-15%碰撞能量(制造商单位)进行这些实验,并且数据记录在产物离子扫描模式中(施瓦兹等人,分析化学,1990,62,1809-1818)。
实例3:使用小型质谱仪的纸喷雾质谱
如图1所示,将纸喷雾离子源接合到小型质谱仪小型12.0上(李等人,“个人质谱系统的发展和性能表征”,第61届质谱与联合论题ASMS会议(61st ASMS Conference on MassSpectrometry and Allied Topics),明尼苏达州明尼阿波利斯(Minneapolis,MN),2013年6月9-13日,MP 330)。小型质谱仪也描述于PCT/US10/32881和PCT/US2008/065245中,其中每一者的内容以全文引用的方式并入本文中。质量分析系统、真空系统、控制系统以及检测器均整合到鞋盒大小的铝盒中。总仪器使用65W平均功率,并且重量为15kg。质量分析仪是封闭在470cm3体积的不锈钢歧管(高等人,分析化学,2006,78(17),5994-6002)中,以1MHz频率操作的直线离子阱(rectilinear ion trap;RIT;索科尔等人,国际质谱学杂志,2011,306,187-195;和许等人,JALA,2010,15,433-439)。由于其简化几何结构和压力耐受性,RIT作为小型质量分析仪具有许多优势,如在早期应用中显而易见的(索科尔等人,国际质谱学杂志,2011,306,187-195;高等人,分析化学,2006,78(17),5994-6002;以及马彻等人,四极离子阱质谱(Quadrupole Ion Trap Mass Spectrometry)第二版,2005,第167-176页)。串联质谱的能力在增强混合物分析的敏感性和特异性中尤其有价值。操作压力范围在范围1×10-5托到大约5×10-2托中,其中质量分析扫描在较低压力范围中进行。
实例4:与小型12.0质谱仪的接口
为了实现充分真空,使用不连续大气压力接口(DAPI;欧阳等人,分析化学,76,4595-4605;高等人,分析化学,80,7198-7205;高等人,分析化学,2008,80,4026-4032;以及高等人,国际质谱学杂志,2009,283,30-34)来将离子和伴随的环境空气从大气环境直接引入到质量分析仪中。压力在样品引入时上升,并且随后在接口关闭时再次降低到适合于质量分析的水平。不同于常规连续离子引入技术,DAPI接收离子/空气混合物的离散脉冲以减少泵上的气体负载。在每一取样时间段中,在脉冲阀的控制下打开DAPI 10-20ms。在此时间段期间,将离子脉冲到真空系统中以用于后续分析。在DAPI关闭之后。泵送除去惰性气体以使得可以对所捕获离子进行质量分析。DAPI可以耦接到小型质谱仪上(黄等人,分析家,2010,135,705-711;和索帕拉瓦拉(Soparawalla)等人,分析家,2011,136,4392-4396)。
实例5:用于当场分析的纸喷雾电离
如图1所示,将纸喷雾离子发射极固定在小型12.0质谱仪的前方(林凡等人,“小型环境质量分析系统”,原稿准备中)以实现未经处理(即,未改性的)复杂混合物的快速当场分析。将来自使用小型质谱仪的当场实验的结果与来自在典型实验室背景下操作典型台式商业仪器的结果相比较。
实例6:串联质谱
在小型12.0仪器中使用碰撞诱发解离(CID)通过与惰性气体分子高能碰撞来使依质量选择的离子碎片化。在已经通过打开DAPI阀15ms来引入离子之后,提供850ms冷却时间以在离子分离之前恢复真空。将10KHz到500KHz的凹口在97KHz与105KHz之间的宽频带存储波形傅里叶逆变换(stored waveform inverse Fourier transform;SWIFT)信号以3.5Vp-p的幅度持续175ms施加到RIT的x电极上以分离所关注的前驱物离子(研究在所关注每一离子的马修参数(Mathieu parameter)qz值为0.185下进行,并且RF幅度恰当地设定成使每一离子处于此值(关(Guan)等人,国际质谱学杂志离子工艺,1996,157-158,5-37)。为了进行CID,随后将频率为102KHz的0.45V AC信号在分离步骤之后施加到RIT的x电极上持续40ms(索科尔等人,国际质谱学杂志,2011,306,187-195)。AC激发信号在1000mMHz下从1.3Vp-p逐渐上升到6.6Vp-p以用于共振排出,同时,RF幅度在采集时间区段中在1MHz下从1kVp-p逐渐上升到5kVp-p
实例7:半定量分析
在MS/MS模式中,较低检测限(LOD)确定为产生高于标准差3倍加空白平均值的信号的浓度。使用商业线形离子阱质谱仪,在纯溶液和油性基质两者中的四种模型化合物的检测限测定为在较低ppb水平。如在表1中所总结,在使用小型离子阱(小型12)的情况下,检测限大约是使用商业仪器所获得的那些检测限的10-50倍。
石油中的溴化四辛基铵盐的定量分析通过使用另一种铵盐(溴化四庚基铵,250ppb)作为内标校准来实现。发现最丰富MS/MS转变的信号强度比率在5ppb到500ppb的范围内为线性。如图2中所示,(y=0.0045x+0.00141,R2=0.9973)。当进行三次重复时,在此范围内的测量值具有<10%的相对标准差。
表1所分析季铵模型化合物的检测限(LOD)(以绝对pg为单位)
实例8:使用台式离子阱质谱仪的季铵盐分析
通过纸喷雾质谱研究两组不同含氮腐蚀抑制剂(均为季铵盐)。我们首先使用台式离子阱质谱仪优化纸喷雾电离条件以记录季铵腐蚀抑制剂化合物的阳离子数据。此通过向三角形纸上施用真空泵油中的0.1ng/μL腐蚀抑制剂溶液(1μL 100ppb溶液),随后添加乙腈/甲醇溶剂以及使用赛默LTQ记录数据来进行。这些质谱图展示具有极少或没有碎片化或来自油性基质的干扰的完整阳离子(图2)。石油组分信号的明显不存在与预先带电荷的有机盐的高电离效率相符合,这是许多不同类型电离方法的熟知特征。个别完整阳离子的表征通过串联质谱来实现;举例来说,图3A的插图(ii)展示处于m/z 466.6处完整四辛基铵阳离子的CID分别给出两个碎片离子(m/z 354.5处的主要产物和次要产物352.5,具有中性辛烯(MW 112)和辛烷(MW 114)损失(西格斯比(Sigsby)等人,有机质谱(Organic MassSpectrom.),1979,14,557)。产物离子的稳定性和丰度允许进行三级质谱(MS/MS/MS)实验。在此特定情况下,处于m/z 345.5处产物离子的CID通过依序损失辛烯(推测为1-辛烯,CH3-(CH2)5-CH=CH2,MW 112)和辛烷(推测为正辛烷,CH3-(CH2)5-CH-CH2,MW 114)而进一步得到m/z 242(主要)和m/z 240(次要)处的碎片离子。此类多级MS实验允许决定性证实被分析物的身份(杰克逊等人欧洲质谱学,1997,3,113-120;杰克逊等人,国际质谱学杂志,2004,238,265-277;杰克逊等人,质谱学快报,2006,20,2717-2727;以及布施等人,质谱/质谱:串联质谱的技术与应用,VCH出版商公司,纽约,1988)。
类似地,使用赛默LTQ商业仪器通过纸喷雾MS分析其它模型化合物,包括溴化十六烷基三甲基铵、溴化四(十二烷基)铵、溴化四己基铵以及氯化苯甲基十六烷基二甲基铵,参见图7-10。可获得具有不同抗衡离子的含氮腐蚀抑制剂,其是影响该盐的抑制性能的特性(特雷比格,美国专利第4,957,640号)。如通过分析六氟磷酸四丁基铵(图3B)所表明的,阳离子纸喷雾-MS方法对与季铵阳离子缔合的阴离子类型不敏感。也发现短链和长链阳离子两者均可以被有效分析。表2提供对所研究的所有模型化合物的数据总结,包括其CID碎片化模式。恰如在四辛基铵阳离子(图3A)的情况下,在CID期间对所研究的所有烷基季铵阳离子观测到中性烯烃(CnH2n)和烷烃(CnH2n+2)两者的消除(流程1A和B)。重要的是应注意,对长链和短链模型化合物也观测到碎片化模式。举例来说,短链四丁基铵阳离子通过连续消除丁烯(MW 56)和丁烷(MW 58)而在m/z 242和m/z 186处的MS2和MS3谱图在图3B插图(v)-(vi)中显而易见。
表2在油中分析的季铵化合物的结构和CID产物离子
流程1基于CID数据所提出的的经A)烷基和B)苯甲基取代的铵盐模型化合物的碎片化路径。
使用纸喷雾-MS的电离也用于分析季铵腐蚀抑制剂的混合物。首先,在乙腈/甲醇(1:1,v/v)中使用相等体积的季铵腐蚀化合物来制备人工混合物以形成活性腐蚀抑制剂组分的混合物。随后通过纸喷雾-MS在如上文所描述的相同条件下分析混合物:即,将10pg每种化合物(在1μL油中)的腐蚀抑制剂溶液加到三角形纸上,并且使用商业离子阱质谱仪分析,如图11中所示的典型质谱图中所示。随后通过在泵油中混合等量模型化合物来制备包括氯化烷基二甲基苯甲基铵盐的第二混合物。通过纸喷雾-MS对此混合物的分析再次在无任何样品预处理的情况下实现,并且所得质谱图展示在图4A-B中。两种混合物均给出相对稳定的纸喷雾信号,并且在全扫描质谱图中不产生可观测的离子碎片化。来自泵油中这些混合物的相对信号强度对应于被分析物混合物中的量。如图12中所描述,将喷雾溶剂从甲醇改变为甲醇/乙腈未展示对信噪比的离子信号强度的影响。应注意此标准样品(氯化烷基二甲基苯甲基铵)仅含有痕量的C16,这由此离子的此质谱信号与混合物中其它组分相比较的相对丰度(图12)以及在对应总离子计时图(TIC)中显而易见。在后一实验中,在5.5分钟处未观测到m/z 360(C16)离子信号,参见图13。
实例9:使用便携式离子阱质谱仪的腐蚀抑制剂分析
纸喷雾-MS在使用台式仪器分析来自油性基质的季铵盐中的成功促使到用小型离子阱仪器(小型12.0)分析原油。使用具有纸喷雾电离的小型12.0分析混合物以及个别烷基和苯甲基季铵盐。图5A-B展示施用到纸上的在1μL泵油中的1ng/μL溴化四辛基铵和氯化苯甲基十六烷基二甲基铵的数据。如所观测的,使用小型12.0的纸喷雾-MS甚至在此较低被分析物含量下得到高离子信噪比。LTQ和小型两者的信号均高到足以允许通过串联MS容易地证实这些化合物的身份。虽然小型12.0在与商业仪器相比较相对高的压力下操作,但在全扫描质谱图中观测到极少碎片化。然而,结构性信息可容易地从MS/MS获得(图5C-D)。另外,四辛基铵阳离子m/z 466在小型12.0仪器上通过依序损失辛烯(MW 112)而碎片化以得到m/z 354、244和130处的离子。与四烷基盐相比,在CID期间从苯甲基十六烷基二甲基铵这个三烷基芳基盐的完整阳离子m/z 360消除的最稳定中性物质是甲苯(MW 92),而非衍生自与季氮连接的烷基的烯烃。此碎片化路径产生m/z 268处的产物离子(图5D)。此类简单碎片化允许容易地量化泵油中具有不同烷基链长度的各种芳基三烷基盐(表3)。
表3通过使用台式和小型仪器的PS-MS在泵油中分析的盐[C6H5CH2N(CH3)2R]+Cl-的结构和CID产物离子
纸喷雾原位电离/小型12.0组合也用于混合物分析。为测试此能力,将从西格玛阿尔德里奇(密苏里州圣路易斯)获得的氯化烷基二甲基苯甲基铵的标准混合物(即,具有正烷基取代基C12(主要)、C14和C16的盐)溶解于泵油中。自身通过将等量的溴化四丁基铵、溴化十六烷基三甲基铵、氯化苯甲基十六烷基二甲基铵、溴化四辛基铵以及溴化四(十二烷基)铵混合在泵油中来制备由溶解于甲醇/乙腈(1:1,v/v)中的五种腐蚀抑制剂组成的第二混合物。当使用小型12.0仪器在纸上检测100pg/μL时,使用小型12.0所获得的两种不同混合物的典型质谱展示于图6A-B中。对于人工季铵盐混合物,在m/z 242、284、354、360以及466处观测到混合物中的组分。对于三烷基芳基铵盐的标准混合物,当将1ng/μL混合物加到纸上时,在使用台式商业或小型12.0仪器的全扫描模式中典型地仅观测到三个混合物组分中的两个(即,C12和C14)(图6B)。此简单地是因为m/z 360(C16)氯化苯甲基十六烷基二甲基铵盐在混合物中的量小于m/z 332(C14)的量,m/z 332(C14)的量又小于m/z 304(C12)的量。然而,如图3A、插图iii)和图4B中所示,m/z 360(C16)组分可以使用MS/MS实验在m/z 360处被鉴别和证实。使用小型12.0手持式小型质谱仪获得两种混合物每一成员的结构性信息,其实例提供于图6C-D中。
已经表明使用便携式手持式质谱仪使用纸喷雾电离直接分析复杂石油混合物中极低浓度(<1ng/μL)的腐蚀抑制剂活性组分。MS/MS实验提供定性分析的有力手段。小型离子阱仪器的分辨率对这些实验而言是充分的(在所关注质量范围内的单位分辨率),并且检测限仅是商业台式仪器中的大约10倍。此检测限对于直接检测腐蚀抑制剂浓度水平而言是充分的。因此,所示结果提供以下证据:所描述的技术可以用于分析含量适用于管理输送管道处理的腐蚀抑制剂浓度。

Claims (16)

1.一种用于分析原油样品的方法,所述方法包含:
获得原油样品,该原油样品中包含非天然存在物质;
将所述原油样品引入到多孔衬底中;
向所述衬底上的所述原油样品施用溶剂和电压,以从所述原油样品直接产生并仅从所述原油样品来产生所述非天然存在物质的离子,其中所述施用的步骤在没有外部热源的情况下执行;以及
使用质谱仪分析所述离子,
其中所述方法在无所述原油样品的预纯化的情况下进行。
2.根据权利要求1所述的方法,其中所述质谱仪选自由台式质谱仪和小型质谱仪组成的群组。
3.根据权利要求1所述的方法,其中所述多孔衬底是纸。
4.根据权利要求1所述的方法,其中所述原油样品中的所述非天然存在物质是腐蚀抑制剂。
5.根据权利要求4所述的方法,其中所述腐蚀抑制剂包含至少一种烷基铵盐。
6.根据权利要求5所述的方法,其中所述烷基铵盐选自由以下组成的群组:溴化四(十二烷基)铵、氯化苯甲基十六烷基二甲基铵以及其组合。
7.根据权利要求2所述的方法,其中所述质谱仪与不连续大气压力接口耦接。
8.根据权利要求1所述的方法,其中所述溶剂包含甲醇和乙腈的混合物。
9.一种用于量化原油中腐蚀抑制剂的方法,所述方法包含:
获得原油样品,该原油样品中包含腐蚀抑制剂;
将包含所述腐蚀抑制剂的所述原油样品引入到多孔衬底中;
向所述衬底上的包含所述腐蚀抑制剂的所述原油样品施用溶剂和电压,以从所述原油样品直接产生并仅从所述原油样品来产生所述腐蚀抑制剂的离子,其中所述施用的步骤在没有外部热源的情况下执行;
使用质谱仪对所述腐蚀抑制剂的离子进行质谱分析;以及
基于所述质谱分析的结果来量化所述原油样品中的所述腐蚀抑制剂,
其中所述方法在无任何样品预纯化步骤的情况下进行。
10.根据权利要求9所述的方法,其中所述质谱仪选自由台式质谱仪和小型质谱仪组成的群组。
11.根据权利要求9所述的方法,其中所述多孔衬底是纸。
12.根据权利要求11所述的方法,其中所述纸是滤纸。
13.根据权利要求9所述的方法,其中所述腐蚀抑制剂包含至少一种烷基铵盐。
14.根据权利要求13所述的方法,其中所述烷基铵盐选自由以下组成的群组:溴化四(十二烷基)铵、氯化苯甲基十六烷基二甲基铵以及其组合。
15.根据权利要求9所述的方法,其中所述质谱仪与不连续大气压力接口耦接。
16.根据权利要求9所述的方法,其中所述溶剂包含甲醇和乙腈的混合物。
CN201480006840.7A 2013-01-31 2014-01-23 分析原油的方法 Expired - Fee Related CN104956463B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810173820.9A CN108287209B (zh) 2013-01-31 2014-01-23 分析原油的方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361759097P 2013-01-31 2013-01-31
US61/759,097 2013-01-31
PCT/US2014/012746 WO2014120552A1 (en) 2013-01-31 2014-01-23 Methods of analyzing crude oil

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201810173820.9A Division CN108287209B (zh) 2013-01-31 2014-01-23 分析原油的方法

Publications (2)

Publication Number Publication Date
CN104956463A CN104956463A (zh) 2015-09-30
CN104956463B true CN104956463B (zh) 2018-04-06

Family

ID=51262852

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201480006840.7A Expired - Fee Related CN104956463B (zh) 2013-01-31 2014-01-23 分析原油的方法
CN201810173820.9A Expired - Fee Related CN108287209B (zh) 2013-01-31 2014-01-23 分析原油的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201810173820.9A Expired - Fee Related CN108287209B (zh) 2013-01-31 2014-01-23 分析原油的方法

Country Status (5)

Country Link
US (4) US9733228B2 (zh)
CN (2) CN104956463B (zh)
BR (1) BR112015018484A2 (zh)
CA (1) CA2888351A1 (zh)
WO (1) WO2014120552A1 (zh)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9500572B2 (en) 2009-04-30 2016-11-22 Purdue Research Foundation Sample dispenser including an internal standard and methods of use thereof
US8207497B2 (en) 2009-05-08 2012-06-26 Ionsense, Inc. Sampling of confined spaces
US8822949B2 (en) 2011-02-05 2014-09-02 Ionsense Inc. Apparatus and method for thermal assisted desorption ionization systems
US8901488B1 (en) 2011-04-18 2014-12-02 Ionsense, Inc. Robust, rapid, secure sample manipulation before during and after ionization for a spectroscopy system
BR112015018484A2 (pt) * 2013-01-31 2017-07-18 Purdue Research Foundation métodos de analisar o petróleo bruto
WO2014209474A1 (en) * 2013-06-25 2014-12-31 Purdue Research Foundation Mass spectrometry analysis of microorganisms in samples
CN106102873B (zh) 2013-12-30 2019-09-24 普度研究基金会 用于电离样品的质谱分析探针和系统
US9337007B2 (en) 2014-06-15 2016-05-10 Ionsense, Inc. Apparatus and method for generating chemical signatures using differential desorption
US10636640B2 (en) 2017-07-06 2020-04-28 Ionsense, Inc. Apparatus and method for chemical phase sampling analysis
US11124692B2 (en) 2017-12-08 2021-09-21 Baker Hughes Holdings Llc Methods of using ionic liquid based asphaltene inhibitors
US10825673B2 (en) 2018-06-01 2020-11-03 Ionsense Inc. Apparatus and method for reducing matrix effects
EA202091413A1 (ru) 2018-07-11 2020-09-24 Бейкер Хьюз Холдингз Ллк Скважинные ингибиторы асфальтенов на основе ионной жидкости и способы их применения
CN110412152B (zh) * 2019-06-25 2022-10-28 北京海新能源科技股份有限公司 一种废弃动植物油脂加氢产物组成分析方法
US11600481B2 (en) * 2019-07-11 2023-03-07 West Virginia University Devices and processes for mass spectrometry utilizing vibrating sharp-edge spray ionization
CN110470752B (zh) * 2019-07-22 2022-11-29 西安科技大学 一种缓蚀剂浓度的检测方法
WO2021086778A1 (en) 2019-10-28 2021-05-06 Ionsense Inc. Pulsatile flow atmospheric real time ionization
US11913861B2 (en) 2020-05-26 2024-02-27 Bruker Scientific Llc Electrostatic loading of powder samples for ionization
CN114078687B (zh) * 2020-08-20 2023-03-21 中国科学院化学研究所 一种毛细管纸喷雾离子源装置及离子生成方法
US20220317096A1 (en) * 2021-04-01 2022-10-06 Saudi Arabian Oil Company Residual corrosion inhibitor monitoring
CN113109416B (zh) * 2021-04-20 2022-06-14 清华大学 一种激素的快速高通量质谱检测装置及方法
CN115078598A (zh) * 2022-05-05 2022-09-20 天津国科医工科技发展有限公司 直接进样测试血药浓度样本的试剂盒及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820979A (zh) * 2007-06-01 2010-09-01 普度研究基金会 不连续的大气压接口
CN102414778A (zh) * 2009-04-30 2012-04-11 普度研究基金会 使用潮湿的多孔材料产生离子

Family Cites Families (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000836A (en) 1958-09-02 1961-09-19 Ginsburg Ben Stabilized whole blood standard and method of making the same
US3334233A (en) 1963-10-31 1967-08-01 Phillips Petroleum Co Internal standards uniformly dispersed in the walls of a container for activation analysis
US3997469A (en) * 1975-02-26 1976-12-14 Nalco Chemical Company Corrosion inhibition with oil soluble diamides
US4235838A (en) 1978-08-09 1980-11-25 Petrolite Corporation Use of benzazoles as corrosion inhibitors
US5141868A (en) 1984-06-13 1992-08-25 Internationale Octrooi Maatschappij "Octropa" Bv Device for use in chemical test procedures
DE3510378A1 (de) 1985-03-22 1986-10-02 Coulston International Corp., Albany, N.Y. Verfahren zur analytischen bestimmung von organischen stoffen
US4957640A (en) 1985-10-15 1990-09-18 The Dow Chemical Company Corrosion prevention with compositions prepared from organic fatty amines and nitrogen-containing aromatic heterocyclic compounds
US4755670A (en) 1986-10-01 1988-07-05 Finnigan Corporation Fourtier transform quadrupole mass spectrometer and method
US4885076A (en) 1987-04-06 1989-12-05 Battelle Memorial Institute Combined electrophoresis-electrospray interface and method
US4828547A (en) 1987-09-28 1989-05-09 Bio-Plexus, Inc. Self-blunting needle assembly and device including the same
DK163194C (da) 1988-12-22 1992-06-22 Radiometer As Fremgangsmaade ved fotometrisk in vitro bestemmelse af en blodgasparameter i en blodproeve
US5152177A (en) 1990-09-07 1992-10-06 Conoco Inc. Process for the detection and quantitation of corrosion and scale inhibitors in produced well fluids
US5223226A (en) 1992-04-14 1993-06-29 Millipore Corporation Insulated needle for forming an electrospray
US5583281A (en) 1995-07-07 1996-12-10 The Regents Of The University Of California Microminiature gas chromatograph
US6297499B1 (en) 1997-07-17 2001-10-02 John B Fenn Method and apparatus for electrospray ionization
FR2774768B1 (fr) * 1998-02-10 2000-03-24 Inst Francais Du Petrole Methode de determination d'au moins une propriete physicochimique d'une coupe petroliere
EP1876442A3 (en) 1998-09-17 2008-03-05 Advion BioSciences, Inc. Integrated monolithic microfabricated liquid chromatography system and method
US6215855B1 (en) 1999-01-21 2001-04-10 Bell Atlantic Network Services, Inc. Loop certification and measurement for ADSL
US6365067B1 (en) 1999-08-12 2002-04-02 Baker Hughes Incorporated Mercaptoalcohol corrosion inhibitors
US20020055184A1 (en) 1999-09-08 2002-05-09 Stephen Naylor Systems for detecting analytes
US6452168B1 (en) 1999-09-15 2002-09-17 Ut-Battelle, Llc Apparatus and methods for continuous beam fourier transform mass spectrometry
US7010096B1 (en) 1999-11-24 2006-03-07 Teletech Pty., Ltd. Remote testing of a communications line
EP1113269B1 (en) 1999-12-29 2006-10-18 PerkinElmer Life Sciences, Inc. Test tray, kit and methods for screening body fluids of newborns by tandem mass spectrometry
JP2003520962A (ja) 2000-01-18 2003-07-08 アドビオン バイオサイエンシーズ インコーポレーティッド 分離媒体、複式電気噴霧ノズルシステム、および方法
SE0004233D0 (sv) 2000-06-08 2000-11-17 Jonas Bergquist Jonas Electrospray emitter
US20020034827A1 (en) 2000-08-01 2002-03-21 Rajendra Singh Methods for solid phase nanoextraction and desorption
US6525313B1 (en) 2000-08-16 2003-02-25 Brucker Daltonics Inc. Method and apparatus for an electrospray needle for use in mass spectrometry
US6627881B1 (en) 2000-11-28 2003-09-30 Dephy Technolgies Inc. Time-of-flight bacteria analyser using metastable source ionization
EP1217643B1 (de) 2000-12-15 2008-09-10 V &amp; F Analyse- und Messtechnik G.m.b.H. Verfahren und Vorrichtung zur Beurteilung des Zustandes von Organismen und Naturprodukten sowie zur Analyse einer gasförmigen Mischung mit Haupt- und Nebenkomponenten
CN1481502A (zh) * 2000-12-15 2004-03-10 埃克森美孚研究工程公司 质谱仪的多变量分析
GB0103516D0 (en) 2001-02-13 2001-03-28 Cole Polytechnique Federale De Apparatus for dispensing a sample
MXPA03009111A (es) 2001-04-11 2004-11-22 Rapid Biosensor Systems Ltd Sistema de medicion biologica.
JP4047812B2 (ja) 2001-10-31 2008-02-13 イオンフィニティ エルエルシー ソフトイオン化装置およびその用途
AU2003208226A1 (en) 2002-03-11 2003-09-22 Janusz B. Pawliszyn Micro-devices and analytical procedures for investigation of biological systems
US7259019B2 (en) 2002-03-11 2007-08-21 Pawliszyn Janusz B Multiple sampling device and method for investigating biological systems
EP1495334A4 (en) 2002-03-25 2008-10-08 Farallon Medical Inc SYSTEM FOR PERFORMING BLOOD CREATION TESTS AND MEASURING BLOOD CREATION TIMES
US20040126890A1 (en) 2002-06-10 2004-07-01 Gjerde Douglas T. Biomolecule open channel solid phase extraction systems and methods
US7510880B2 (en) 2002-06-26 2009-03-31 Gross Richard W Multidimensional mass spectrometry of serum and cellular lipids directly from biologic extracts
WO2004046514A1 (en) 2002-11-15 2004-06-03 Catalytica Energy Systems, Inc. Devices and methods for reduction of nox emissions from lean burn engines
CA2508726A1 (en) 2002-12-06 2004-07-22 Isis Pharmaceuticals, Inc. Methods for rapid identification of pathogens in humans and animals
US7564027B2 (en) 2003-02-10 2009-07-21 Waters Investments Limited Adsorption, detection and identification of components of ambient air with desorption/ionization on silicon mass spectrometry (DIOS-MS)
US6952013B2 (en) 2003-06-06 2005-10-04 Esa Biosciences, Inc. Electrochemistry with porous flow cell
JP2007524844A (ja) 2003-09-22 2007-08-30 ベクトン・ディキンソン・アンド・カンパニー デンドリマー内部標準を使用する質量分析による生体分子検体の定量化
US7537807B2 (en) 2003-09-26 2009-05-26 Cornell University Scanned source oriented nanofiber formation
US7019288B2 (en) 2003-09-30 2006-03-28 Sequenom, Inc. Methods of making substrates for mass spectrometry analysis and related devices
CA2542869A1 (en) 2003-10-20 2005-05-12 Ionwerks, Inc. Ion mobility tof/maldi/ms using drift cell alternating high and low electrical field regions
US20050117864A1 (en) 2003-12-01 2005-06-02 Dziekan Michael E. Method of synthesis and delivery of complex pharmaceuticals, chemical substances and polymers through the process of electrospraying, electrospinning or extrusion utilizing holey fibers
US7005635B2 (en) 2004-02-05 2006-02-28 Metara, Inc. Nebulizer with plasma source
GB2410800B (en) * 2004-02-06 2007-12-12 Statoil Asa Fingerprinting of hydrocarbon containing mixtures
US7171193B2 (en) 2004-03-22 2007-01-30 The Hoffman Group Llc Telecommunications interruption and disconnection apparatus and methods
US7154088B1 (en) 2004-09-16 2006-12-26 Sandia Corporation Microfabricated ion trap array
CN101027554A (zh) * 2004-09-17 2007-08-29 英国石油国际有限公司 化验含烃原料的方法
US20060192107A1 (en) 2004-10-07 2006-08-31 Devoe Donald L Methods and apparatus for porous membrane electrospray and multiplexed coupling of microfluidic systems with mass spectrometry
US8312890B1 (en) 2004-10-18 2012-11-20 Applied Biosystems, Llc Dissolvable valve in a fluid processing device
JP4556645B2 (ja) 2004-12-02 2010-10-06 株式会社島津製作所 液体クロマトグラフ質量分析装置
US20060200316A1 (en) 2005-03-01 2006-09-07 Harin Kanani Data correction, normalization and validation for quantitative high-throughput metabolomic profiling
US20060249668A1 (en) 2005-05-05 2006-11-09 Palo Alto Research Center Incorporated Automatic detection of quality spectra
WO2007003344A2 (en) 2005-06-30 2007-01-11 Biocrates Life Sciences Ag Device for quantitative analysis of a metabolite profile
US7655188B2 (en) 2005-07-29 2010-02-02 Ut-Battelle, Llc Assembly for collecting samples for purposes of identification or analysis and method of use
US8890058B2 (en) 2005-11-16 2014-11-18 Shimadzu Corporation Mass spectrometer
GB0524979D0 (en) 2005-12-07 2006-01-18 Queen Mary & Westfield College An electrospray device and a method of electrospraying
US7544933B2 (en) 2006-01-17 2009-06-09 Purdue Research Foundation Method and system for desorption atmospheric pressure chemical ionization
GB0601302D0 (en) 2006-01-23 2006-03-01 Semikhodskii Andrei Diagnostic methods and apparatus
CN101454331A (zh) 2006-03-24 2009-06-10 菲诺梅诺米发现公司 有效用于诊断前列腺癌的生物标记,及其方法
US7960692B2 (en) 2006-05-24 2011-06-14 Stc.Unm Ion focusing and detection in a miniature linear ion trap for mass spectrometry
EP2035121A4 (en) 2006-05-26 2010-04-28 Ionsense Inc APPARATUS FOR SUPPORTING SOLIDS FOR USE WITH SURFACE IONIZATION TECHNOLOGY
US20080083873A1 (en) 2006-10-09 2008-04-10 Matthew Giardina Device and method for introducing multiple liquid samples at atmospheric pressure for mass spectrometry
US20080128608A1 (en) 2006-11-06 2008-06-05 The Scripps Research Institute Nanostructure-initiator mass spectrometry
GB0622780D0 (en) 2006-11-15 2006-12-27 Micromass Ltd Mass spectrometer
FI20065756A0 (fi) 2006-11-28 2006-11-28 Nokia Corp Ryhmäviestintä
WO2008089143A1 (en) 2007-01-12 2008-07-24 Board Of Regents, The University Of Texas System Interfacing low-flow separation techniques
WO2008087715A1 (ja) 2007-01-17 2008-07-24 Shimadzu Corporation イオン化用エミッタ、イオン化装置及びイオン化用エミッタの製造方法
US20080179511A1 (en) 2007-01-31 2008-07-31 Huanwen Chen Microspray liquid-liquid extractive ionization device
WO2008103733A2 (en) 2007-02-20 2008-08-28 Applied Nanotech, Inc. Gas ionizer
US7525105B2 (en) 2007-05-03 2009-04-28 Thermo Finnigan Llc Laser desorption—electrospray ion (ESI) source for mass spectrometers
WO2008150488A1 (en) 2007-06-01 2008-12-11 Laboratory Corporation Of America Holdings Methods and systems for quantification of peptides and other analytes
US20090071834A1 (en) 2007-06-08 2009-03-19 Protein Discovery, Inc. Methods and Devices for Concentration and Fractionation of Analytes for Chemical Analysis Including Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry (MS)
US7930924B2 (en) 2007-09-28 2011-04-26 Vancouver Island University System for the online measurement of volatile and semi-volatile compounds and use thereof
US8334505B2 (en) 2007-10-10 2012-12-18 Mks Instruments, Inc. Chemical ionization reaction or proton transfer reaction mass spectrometry
US8294892B2 (en) 2008-03-12 2012-10-23 Conocophillips Company On-line/at-line monitoring of residual chemical by surface enhanced Raman spectroscopy
US8324593B2 (en) 2008-05-06 2012-12-04 Massachusetts Institute Of Technology Method and apparatus for a porous metal electrospray emitter
US20090317916A1 (en) 2008-06-23 2009-12-24 Ewing Kenneth J Chemical sample collection and detection device using atmospheric pressure ionization
US8253098B2 (en) 2008-06-27 2012-08-28 University Of Yamanashi Ionization analysis method and apparatus
GB0813278D0 (en) 2008-07-18 2008-08-27 Lux Innovate Ltd Method for inhibiting corrosion
US7915579B2 (en) 2008-09-05 2011-03-29 Ohio University Method and apparatus of liquid sample-desorption electrospray ionization-mass specrometry (LS-DESI-MS)
US8110797B2 (en) 2009-02-06 2012-02-07 Florida State University Research Foundation, Inc. Electrospray ionization mass spectrometry methodology
US8330119B2 (en) 2009-04-10 2012-12-11 Ohio University On-line and off-line coupling of EC with DESI-MS
US9500572B2 (en) * 2009-04-30 2016-11-22 Purdue Research Foundation Sample dispenser including an internal standard and methods of use thereof
US8704167B2 (en) 2009-04-30 2014-04-22 Purdue Research Foundation Mass spectrometry analysis of microorganisms in samples
JP5475344B2 (ja) 2009-06-26 2014-04-16 株式会社日立ハイテクノロジーズ イオン源装置、イオン化プローブの製造方法及びイオン源装置の駆動方法
US8546752B2 (en) 2009-12-07 2013-10-01 Advion Inc. Solid-phase extraction (SPE) tips and methods of use
WO2011141826A1 (en) * 2010-05-12 2011-11-17 Schlumberger Canada Limited Method for analysis of the chemical composition of the heavy fraction petroleum
US8294087B2 (en) 2010-05-12 2012-10-23 Advion, Inc. Mechanical holder for surface analysis
JP5894078B2 (ja) 2010-10-29 2016-03-23 アトナープ株式会社 サンプリング装置
US20120153139A1 (en) 2010-12-16 2012-06-21 Exxonmobil Research And Engineering Company Generation of model-of-composition of petroleum by high resolution mass spectrometry and associated analytics
US8932875B2 (en) * 2011-01-05 2015-01-13 Purdue Research Foundation Systems and methods for sample analysis
US8822949B2 (en) 2011-02-05 2014-09-02 Ionsense Inc. Apparatus and method for thermal assisted desorption ionization systems
US9546979B2 (en) 2011-05-18 2017-01-17 Purdue Research Foundation Analyzing a metabolite level in a tissue sample using DESI
US8895918B2 (en) 2011-06-03 2014-11-25 Purdue Research Foundation Ion generation using modified wetted porous materials
WO2012170301A1 (en) 2011-06-04 2012-12-13 Purdue Research Foundation (Prf) Cassettes, systems, and methods for ion generation using wetted porous materials
US8648297B2 (en) 2011-07-21 2014-02-11 Ohio University Coupling of liquid chromatography with mass spectrometry by liquid sample desorption electrospray ionization (DESI)
EP2801103B1 (en) * 2012-01-06 2018-10-03 Ecole Polytechnique Federale de Lausanne (EPFL) Electrostatic spray ionization method
US9105458B2 (en) * 2012-05-21 2015-08-11 Sarah Trimpin System and methods for ionizing compounds using matrix-assistance for mass spectrometry and ion mobility spectrometry
US9052296B2 (en) * 2012-12-18 2015-06-09 Exxonmobil Research And Engineering Company Analysis of hydrocarbon liquid and solid samples
BR112015018484A2 (pt) * 2013-01-31 2017-07-18 Purdue Research Foundation métodos de analisar o petróleo bruto
WO2014209474A1 (en) * 2013-06-25 2014-12-31 Purdue Research Foundation Mass spectrometry analysis of microorganisms in samples

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820979A (zh) * 2007-06-01 2010-09-01 普度研究基金会 不连续的大气压接口
CN102414778A (zh) * 2009-04-30 2012-04-11 普度研究基金会 使用潮湿的多孔材料产生离子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOLECULAR MONITORING OF RESIDUAL CORROSION INHIBITOR ACTIVES IN OILFIELD FLUIDS: IMPLICATIONS FOR INHIBITOR PERFORMANCE;M. A. Gough et al.;《corrosion98》;19980131(第33期);摘要,33/2页第4段-33/5页第5段 *

Also Published As

Publication number Publication date
WO2014120552A1 (en) 2014-08-07
CN108287209B (zh) 2021-01-26
CN108287209A (zh) 2018-07-17
US11300555B2 (en) 2022-04-12
CN104956463A (zh) 2015-09-30
US20170343526A1 (en) 2017-11-30
US10571453B2 (en) 2020-02-25
US9733228B2 (en) 2017-08-15
US20190137473A1 (en) 2019-05-09
US10197547B2 (en) 2019-02-05
US20200173976A1 (en) 2020-06-04
CA2888351A1 (en) 2014-08-07
BR112015018484A2 (pt) 2017-07-18
US20150309001A1 (en) 2015-10-29

Similar Documents

Publication Publication Date Title
CN104956463B (zh) 分析原油的方法
EP2483910B1 (en) Analyte ionization by charge exchange for sample analysis under ambient conditions
Kauppila et al. Rapid analysis of metabolites and drugs of abuse from urine samples by desorption electrospray ionization-mass spectrometry
Slobodnik et al. Trace-level determination of pesticide residues using on-line solid-phase extraction-column liquid chromatography with atmospheric pressure ionization mass spectrometric and tandem mass spectrometric detection
DE112015004069T5 (de) Weiche Ionisation auf der Basis von konditionierter Glimmentladung für quantitative Analyse
Brophy et al. Clustering, methodology, and mechanistic insights into acetate chemical ionization using high-resolution time-of-flight mass spectrometry
CN105308713A (zh) 用于质谱仪的污染物过滤器
DE102015117365A1 (de) Verbesserte detektionsempfindlichkeit in elektrospray-ionisations-massenspektrometrie unter verwendung eines säulennachgeordneten modifizierers und einer mikrofluidischen vorrichtung
Creasy Postcolumn derivatization liquid chromatography/mass spectrometry for detection of chemical-weapons-related compounds
DE102007043722B4 (de) Vorrichtungen, Verfahren und Zusammensetzungen zur Ionisierung von Proben und Massenkalibriersubstanzen
Park et al. Effects of NOx on the molecular composition of secondary organic aerosol formed by the ozonolysis and photooxidation of α-pinene
Zhu et al. Arc plasma-based dissociation device: fingerprinting mass spectrometric analysis realized at atmospheric condition
DE112014002617T5 (de) Kompaktes Massenspektrometer
JP2016530517A (ja) イオン移動度の方法及び装置
Nindi et al. Electrospray liquid chromatography–mass spectrometry of the leaf extract of Rhamnus prinoides
Shen et al. Development of a low-power microwave atmospheric pressure molecular ionization source for mass spectrometry with direct introduction of gaseous and liquid organic samples
CN108604529B (zh) 离子化质谱法及利用其的质谱仪
Campana et al. Chemical ionization–fast-atom bombardment mass spectrometry: a novel ionization method
DE112014005915T5 (de) Massenauflösende Hochdruck-Ionenführung mit axialem Feld
JP2003217503A (ja) 質量分析装置及び質量分析方法
US20140103205A1 (en) Method and apparatus for analysis and ion source
Headley et al. Tandem Mass Spectrometry of Alkanolamines in Environmental Samples
Albrecht Development of a highly sensitive and versatile mass spectrometer system for laboratory and atmospheric measurements
Addison Combined gas chromatography-chemical-ionisation mass spectrometry of some phthalate esters
Razzazi‐Fazeli et al. Analytical specificity and optimization of particle‐beam measurements for some biopharmaceutical applications using a hildebrand nebulizer

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180406

Termination date: 20220123

CF01 Termination of patent right due to non-payment of annual fee