CN104934584B - 一种多孔空心壳wo3/ws2纳米材料及其制备方法 - Google Patents

一种多孔空心壳wo3/ws2纳米材料及其制备方法 Download PDF

Info

Publication number
CN104934584B
CN104934584B CN201510243715.4A CN201510243715A CN104934584B CN 104934584 B CN104934584 B CN 104934584B CN 201510243715 A CN201510243715 A CN 201510243715A CN 104934584 B CN104934584 B CN 104934584B
Authority
CN
China
Prior art keywords
hollow shell
sol
porous hollow
preparation
nanocrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510243715.4A
Other languages
English (en)
Other versions
CN104934584A (zh
Inventor
黄剑锋
王鑫
曹丽云
李嘉胤
欧阳海波
李翠艳
郝巍
许占位
费杰
姚春燕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangxi Free Trade Zone Jianju Technology Co.,Ltd.
Guangxi Qinbao Real Estate Co., Ltd
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN201510243715.4A priority Critical patent/CN104934584B/zh
Priority to PCT/CN2015/080765 priority patent/WO2016179865A1/zh
Priority to US15/531,708 priority patent/US10183863B2/en
Publication of CN104934584A publication Critical patent/CN104934584A/zh
Application granted granted Critical
Publication of CN104934584B publication Critical patent/CN104934584B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0008Sols of inorganic materials in water
    • B01J13/0017Sols of inorganic materials in water by extraction of ions from aqueous solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0021Preparation of sols containing a solid organic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0039Post treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0047Preparation of sols containing a metal oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/04Making microcapsules or microballoons by physical processes, e.g. drying, spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种多孔空心壳WO3/WS2纳米材料及其制备方法,所述制备方法包括:1)将六价钨盐加至包含中间相碳微球的溶胶A,搅拌制得溶胶B;2)将步骤1)制备的溶胶B,先经干燥、研磨,再在200‑500℃下保温0.5~2小时得到多孔空心壳WO3纳米晶;以及3)将步骤2)制备的多孔空心壳WO3纳米晶和硫粉分开放置在真空管式炉中、控制真空度为‑0.01~‑0.1MPa,温度为200‑500℃,反应0.5~3小时,得到WO3/WS2多孔空心壳纳米晶。

Description

一种多孔空心壳WO3/WS2纳米材料及其制备方法
技术领域
本发明涉及一种制备WO3/WS2多孔核壳纳米材料的方法,特别涉及一种采用中间相碳微球(MCMB)辅助溶胶-低温真空热还原法制备WO3/WS2多孔空心壳纳米负极材料的方法。
背景技术
WS2的晶体结构和MoS2类似,也是密排六方的层状结构。钨原子和硫原子间有强的化学键相连接,而层间硫原子与硫原子之间由弱的分子键相连接。层与层之间的结合力仍为范德华力,与MoS2相比,WS2的层间距较大。WS2的热稳定性也较好,其在大气中的分解温度为510℃,539℃迅速氧化,真空中分解温度为1150℃。所以其可以用于高温、高压、高真空、高负荷,有辐射及有腐蚀性介质等苛刻的工作环境。
WS2作为锂离子电池和钠离子电池电极材料引起人们的广泛关注。目前已报道的制备WS2材料的方法主要有热分解法[朱雅君,张学斌,冀翼等.纳米二硫化钨和二硫化钼的制备方法及应用[J].广州化工,2012,3(40):4-6.],固-气硫化法[Yan-Hui Li,Yi MinZhao,Ren Zhi Ma,Yan Qiu Zhu,Niles Fisher,Yi Zheng Jin,Xin Ping Zhang.NovelRoute to WOx Nanorods and WS2Nanotubes from WS2Inorganic Fullerenes[J].J.Phys.Chem.B.2006,110:18191-18195.],原位蒸发合成法[A Margolin,F L Deepak,RPopovitz-Biro,M Bar-Sadan1,Y Feldman,R Tenne.Fullerene-like WS2nanoparticlesand nanotubes by the vapor-phase synthesis of WCln and H2S[J].Nanotechnology.2008,19:95601-95611.],喷雾热解法[Seung Ho Choi,Yun ChanKang.Sodium ion storage properties of WS2-decorated three-dimensional reducedgraphene oxide microspheres[J].Nanoscale.2015,7:3965–3970],还有沉淀还原法[郑遗凡,宋旭春,刘波,韩贵,徐铸德.嵌套球形层状封闭结构纳米二硫化钨的合成与机理探讨[J].无机材料学报,2004,3(19):653-656.],化学气相沉积法(CVD)[ArunvinayPrabakaran,Frank Dillon,Jodie Melbourne,et al.WS22D nanosheets in 3Dnanoflowers[J].Chem.Commun.2014,50:12360-12362]。另外,采用水热法制备了WS2-石墨烯复合钠离子电池正极材料[Dawei Su,Shixue Dou,Guoxiu Wang.WS2@graphenenanocomposites as anode materials for Na-ion batteries with enhancedelectrochemical performances[J].Chem.Comm.,2014,50:4192-4195.]和超声球磨法制备了WS2/MoS2复合材料[毛大恒,石琛,毛向辉,毛艳,李登伶.一种纳米WS2/MoS2颗粒的制备方法[P].ZL 201010200269.6]。
同时,三氧化钨(WO3)是一种重要功能材料,是常温下钨的最稳定氧化物,环境 友好,价格低廉,理论比容量高(693mAh·g-1),是一种有发展潜力的锂离子电池负极材料。然而,块体WO3的电导率低,充放电过程中体积变化大,导致其倍率性能和循环稳定性差。目前改进方法之一是控制合成具有各种形貌的WO3纳米材料,以此提高材料的储锂动力学性能。目前已报道的纳米WO3的相关研究有:微乳液法制备了颗粒状纳米的WO3[侯长军,刁显珍,唐一科,霍丹群,韦立凡.微型反应器法纳米WO3粉体的合成及表征[J].稀有金属材料与工程,2007,36(3):60-63];水热法制备了WO3纳米晶[Tianming Li,Wen Zeng,Bin Miao,Shuoqing Zhao,Yanqiong Li,He Zhang.Urchinlike hex-WO3microspheres:Hydrothermal synthesis and gas-sensing properties[J].Materials Letters,2015,144:106-109]以及水热法制备了六角花球状WO3[Li Jiayin,Huang Jianfeng,WuJianpeng,Cao Liyun,Kazumichi Yanagisawa.Morphology-controlled synthesis oftungsten oxide hydrates crystallites via a facile,additive-free hydrothermalprocess[J].Ceramics International,2012,38:4495-4500];钨粉和双氧水过氧聚钨酸法制备了纳米WO3[叶爱玲,贺蕴秋.氧化钨及其水合物光催化性质研究[J].2014,12(45):12042-12046]和[黄剑锋,李嘉胤,曹丽云,胡宝云,吴建鹏.一种六边形雪花状WO3纳米盘的制备方法[P].ZL 200910218869.2];喷雾干燥-热处理法制备了空心介孔WO3球[刘柏雄,王金淑,李洪义,吴俊书,李志飞.空心介孔WO3球的制备及光催化性能[J].无机化学学报,2012,28(3):465-470];酸化沉淀法[Chong Wang,Xin Li,Changhao Feng,Yanfeng Sun,Geyu L.Nanosheets assembled hierarchical flower-like WO3nanostructures:Synthesis,characterization and their gas sensing properties[J].Sensors andActuators B,2015,210:75-81];化学气相沉积法(CVD)[Jianzhe Liu,Mianzeng Zhong,Jingbo Li,Anlian Pan,Xiaoli Zhu.Few-layer WO3nanosheets for high-performanceUV-photodetectors[J].Materials Letters,2015,148:184-187]。
基于此,沉淀还原法、热分解法和固相硫化法均在高温气氛条件下合成的粉体易团聚并且工艺条件难以控制,对制备所需的原料的利用率很小;并且固相法在还原性气氛条件下烧结或者发生硫化反应,也会引起纳米晶的团聚,晶粒异常长大,材料的微观结构难以调控。同时,原位蒸发法和化学气相沉积法对设备要求高并且反应物的配比难以控制,另外,所制备的纳米材料中容易引入杂质,且粉体易团聚。但是,有关WS2与WO3复合材料的研究、作为钠离子电池负极材料、以及将MCMB辅助溶胶技术与低温热还原法相结合制备WO3/WS2多孔空心壳纳米材料的硬模板辅助溶胶-低温真空热还原技术,相关报道较少。
发明内容
本发明旨在克服制备WO3/WS2多孔空心壳纳米材料的技术问题,本发明提供了一种WO3/WS2多孔空心壳纳米材料的制备方法以及由该方法制备得到具有优异性能的WO3/WS2多孔空心壳纳米材料。
本发明提供了一种WO3/WS2多孔空心壳纳米材料的制备方法,包括:
1)将六价钨盐加至包含中间相碳微球的溶胶A,搅拌制得溶胶B,其中溶胶A中,中间相微球的浓度为0.002~0.2g/mL,溶胶B中W6+的浓度为0.01~2.0mol/L;
2)将步骤1)制备的溶胶B,先经干燥、研磨,再在200-500℃下保温0.5~2小时得到多孔空心壳WO3纳米晶;以及
3)将步骤2)制备的多孔空心壳WO3纳米晶和硫粉分开放置在真空管式炉中、控制真空度为-0.01~-0.1MPa,温度为200-500℃,反应0.5~3小时以将多孔空心壳WO3纳米晶的WO3部分硫化为WS2,得到WO3/WS2多孔空心壳纳米晶。
本发明的方法先采用间相碳微球(MCMB)辅助溶胶制备得到多孔空心壳WO3纳米晶,由该多孔空心壳WO3纳米晶再进行部分硫化,可使后续硫化反应生成硫化钨的反应容易进行(温度低(200-500℃),所需单质硫少),且制得的WO3/WS2多孔空心壳纳米晶结晶性好,形貌均一,充放电循环稳定性好,适合作为电池的电极材料。
较佳地,所述溶胶A的溶剂为无水乙醇、异丙醇、乙二醇和/或蒸馏水,所述溶胶A还包括分散剂,所述分散剂为聚乙烯醇、羧甲基纤维素钠、十二烷基硫酸钠和/或聚乙二醇,所述溶胶A中,分散剂的浓度为0.006~0.25g/mL。
将分散剂溶于溶剂中并搅拌使得分散剂溶解后加入所述中间相微球,搅拌、分散、放入300~1000W的超声波清洗器中超声振荡20~60分钟,得到溶胶A。
向溶胶A加入六价钨盐并搅拌,然后放入300~1000W的超声波发生器中超声振荡陈化60~180分钟得到溶胶B。
较佳地,步骤2)中,溶胶B置于40~70℃的真空干燥箱内干燥2~6小时后研磨。
较佳地,多孔空心壳WO3纳米晶与硫粉的质量比为(0.1~10g)∶(0.1~4.0g)。通过控制WO3纳米晶与硫粉的质量比可以得到不同含硫量的WO3/WS2多孔空心壳纳米材料。
本发明中,六价钨盐可包括六氯化钨、钨酸钠、钨酸铵、聚钨酸钠。
本发明还提供一种上述方法制备的WO3/WS2多孔空心壳纳米材料,所述WO3/WS2多孔空心壳纳米材料中,多孔空心壳呈现蜂窝状结构,其孔径为0.2~2.0μm,壳壁的厚度为40-150nm,同时其表面吸附的纳米颗粒的粒径为30-100nm。
较佳地,所述WO3/WS2多孔空心壳纳米材料中,WO3与WS2的质量比为1∶9~9∶1。
较佳地,所述WO3/WS2多孔空心壳纳米材料的比表面积为300~700m2/g。
本发明的有益效果:本发明制备WO3/WS2多孔空心壳钠离子电池负极材料,采用了MCMB辅助溶胶技术-低温热还原相结合,完成制备复合电极材料,该工艺设备简单。可以有效实现调控材料的结构,与MCMB模板辅助提高材料的比表面积,从而避免复合材料在热处理过程中可能导致的结构变化以及气氛反应引入杂质等缺陷。同时,团聚程度较轻,可以使用较便宜的原料得到合适的化学计量比,晶粒均匀且形貌单一的WO3/WS2多孔空心壳复合材料。更重要的是,低温热处理与真空热还原可以高效快速地制备出的结晶性较好,并且MCMB的热氧化可以制备出多孔的复合材料,粒径较小且分布均匀。采用真空热还原法,可以通过调节硫粉的加入量,进而控制硫化程度,清洁,无害且更利于获得不同比例的WO3/WS2复合材料。此外,溶胶辅助技术进一步降低了材料的合成活化能,以此降低体系的热处理温度,所以此方法更为高效、经济、可行且所制备的WO3/WS2多孔空心壳复合材料具有较好的电化学性能。
附图说明
图1示出了本发明实施例1中制备的WO3/WS2复合材料的XRD图;
图2示出了本发明实施例1中制备的WO3/WS2复合材料的SEM图;
图3示出了本发明实施例1中制备的WO3/WS2复合负极材料的循环性能图(电流密度:100mA g-1;电压:0~3V)。
具体实施方式
以下结合附图和下述实施方式进一步说明本发明,应理解,附图及下述实施方式仅用于说明本发明,而非限制本发明。
本发明涉及一种制备WO3/WS2多孔核壳纳米材料的方法,特别涉及一种中间相碳微球(MCMB)辅助溶胶-低温真空热还原法制备WO3/WS2多孔空心壳纳米负极材料的方法。
本发明目的在于提供一种可以简单、绿色、高效可控、纯度高,而且可以通过控制溶胶配比、MCMB的加入量以及热还原剂的用量等调控产物的形貌和组分的方法,且比高温固相法和热分解法高效快速,经济环保;比水热法以及溶剂热法安全可靠且在常压低温下实现结构调控。并且本发明的MCMB辅助溶胶-低温热还原法制成的WO3/WS2多孔核壳纳米负极材料结晶性较好,形貌均一,长循环稳定性。
为达到上述目的,本发明采用的技术方案是:
步骤一:将分散剂(例如分析纯的聚乙烯醇(PVA)、分析纯的羧甲基纤维素钠(CMC)、分析纯的十二烷基硫酸钠和分析纯的聚乙二醇(PEG 4000))0.5~5.0g溶于20~80mL溶剂中(例如无水乙醇、异丙醇、乙二醇、蒸馏水)中并不断搅拌,使得分散剂充分溶解,再向其 中加入0.2~4.0g中间相碳微球(市售的,球径为2~5μm,MCMB)并且不断搅拌使其分散后放入300~1000W的超声波清洗器中超声振荡20~60min,得到溶胶记为A;
步骤二:再向溶胶A中加入分析纯的六价钨盐(例如六氯化钨(WCl6)),控制W6+的浓度为0.01~2.0mol/L,并不断搅拌使其充分溶解,放入300~1000W的超声波发生器中超声振荡陈化60~180min,得到溶胶B;
步骤三:将溶胶B置于40~70℃的真空干燥箱内干燥2~6h后研磨,然后放入箱式电炉中,控制温度为200~500℃,保温0.5~2h,反应结束后自然冷却到室温,即获得多孔空心壳WO3纳米晶,多孔空心壳WO3纳米晶前驱体呈现蜂窝状结构,其孔径为0.2~1.5μm,壳壁厚度为30~120nm,其表面吸附的纳米颗粒的粒径为20-80nm,所得多孔空心壳WO3纳米晶的比表面积为400~800m2·g-1
步骤四:将上述WO3纳米晶和硫粉分开放入真空管式炉中,控制其加入量为m三氧化钨∶m硫粉=(0.1~10g)∶(0.1~4.0g),控制其真空度为-0.01~-0.1MPa,温度为200~500℃,反应0.5~3h,反应结束后自然冷却到室温,取出产物即获得WO3/WS2多孔空心壳纳米晶,所得产物中WO3和WS2的质量比为mWO3∶mWS2=1∶9~9∶1。制得的WO3/WS2多孔空心壳纳米晶保持前述WO3纳米晶前驱体的多孔空心壳结构,即多孔空心壳呈现蜂窝状结构,其孔径为0.2~2.0μm,壳壁的厚度为40-150nm,同时其表面吸附的纳米颗粒的粒径为30-100nm,并且所得的WO3/WS2多孔空心壳纳米晶的比表面积为300~700m2·g-1
所述步骤一的搅拌采用梅特勒-托利多仪器(上海)有限公司生产的型号:RCT BS25的磁力搅拌器。
所述步骤一的超声波清洗器采用高功率数控超声波清洗器采用昆山市超声仪器有限公司生产的型号:KQ-1000KDB。
所述步骤三的电热真空干燥箱采用天津市泰斯特仪器有公司制造的DZ-3BCⅡ型真空干燥箱。
所述步骤三的箱式电炉采用合肥科晶材料技术有限公司制造的型号:KSL-1500X。
所述步骤四的真空管式炉采用合肥科晶材料技术有限公司的型号:OTF-1200X。
本发明制备WO3/WS2多孔空心壳钠离子电池负极材料,采用了MCMB辅助溶胶技术-低温热还原相结合,完成制备复合电极材料,工艺设备简单,可以有效实现两步法调控材料的结构,与MCMB模板辅助提高材料的比表面积,从而避免复合材料在热处理过程中可能导致的结构变化以及气氛反应引入杂质等缺陷。同时,团聚程度较轻,可以使用较便宜的原料得到合适的化学计量比,制备得到晶粒均匀且形貌单一的WO3/WS2多孔空心壳复合 材料。更重要的是,低温热处理与真空热还原可以高效快速地制备出的结晶性较好,并且MCMB的热氧化可以制备出多孔的复合材料,粒径较小且分布均匀。采用真空热还原法,可以通过调节硫粉的加入量,进而控制硫化程度,清洁,无害且更利于获得不同比例的WO3/WS2复合材料。此外,溶胶辅助技术进一步降低了材料的合成活化能,以此降低体系的热处理温度,所以此方法更为高效、经济、可行且所制备的WO3/WS2多孔空心壳复合材料具有较好的电化学性能。
由图1可看出本发明所制备的WO3/WS2复合负极材料存在两种晶相,即WS2和WO3,并且衍射峰强度较强,分别与标准的卡片PDF 84-1399Hexagonal WS2和PDF 43-1053Monoclinic WO3相吻合。
由图2可看出本发明所制备的WO3/WS2复合材料结构均匀,尺寸分布均匀,呈现空心壳蜂窝状结构,其孔径为0.8μm,壳壁的厚度为85nm,同时其表面吸附的纳米颗粒的粒径为40nm。
由图3可以得出本发明所制备的WO3/WS2复合钠离子电池负极材料在电压为0~3V,电流密度为100mA g-1条件下的充放电循环性能图,经过500次循环后,所制备的材料仍保持有223mAh g-1的容量,循环性能及容量保持率较好。
下面进一步例举实施例以详细说明本发明。同样应理解,以下实施例只用于对本发明进行进一步说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容作出的一些非本质的改进和调整均属于本发明的保护范围。下述示例具体的工艺参数等也仅是合适范围中的一个示例,即本领域技术人员可以通过本文的说明做合适的范围内选择,而并非要限定于下文示例的具体数值。
实施例1:
步骤一:将分析纯的聚乙烯醇(PVA)1.0g溶于30mL无水乙醇中并不断搅拌,使得PVA充分溶解,再向其中加入0.8g中间相碳微球(市售的,球径为2~5μm,MCMB)并且不断搅拌使其分散后放入300W的超声波清洗器中超声振荡30min,得到溶胶记为A;
步骤二:再向溶胶A中加入分析纯的六氯化钨(WCl6),控制W6+的浓度为0.08mol·L-1,并不断搅拌使其充分溶解,放入300W的超声波发生器中超声振荡陈化60min,得到溶胶B;
步骤三:将溶胶B置于50℃的真空干燥箱内干燥5h后研磨,然后放入箱式电炉中,控制温度为260℃,保温2h,反应结束后自然冷却到室温,即获得多孔空心壳WO3纳米晶,所得WO3纳米晶前驱体的比表面积为500m2·g-1,壳壁的厚度为60nm,孔径为0.6μm;
步骤四:将上述WO3纳米晶和硫粉分开放入真空管式炉中,控制其加入量为m三氧化钨∶m硫粉=0.15g∶0.3g,控制其真空度为-0.05MPa,温度为300℃,反应2.5h,反应结束后自然冷却到室温,取出产物即获得WO3/WS2多孔空心壳纳米晶,所得产物中WO3和WS2的质量比为mWO3∶mWS2=1∶9;
所述WO3/WS2多孔空心壳蜂窝状纳米材料中,其孔径为0.8μm,壳壁的厚度为85nm,同时其表面吸附的纳米颗粒的粒径为40nm;
所述WO3/WS2多孔空心壳纳米材料的比表面积为450m2/g。
实施例2:
步骤一:将分析纯的聚乙烯醇(PVA)2.0g溶于40mL无水乙醇中并不断搅拌,使得PVA充分溶解,再向其中加入0.4g中间相碳微球(市售的,球径为2~5μm,MCMB)并且不断搅拌使其分散后放入400W的超声波清洗器中超声振荡40min,得到溶胶记为A;
步骤二:再向溶胶A中加入分析纯的六氯化钨(WCl6),控制W6+的浓度为0.1mol·L-1,并不断搅拌使其充分溶解,放入400W的超声波发生器中超声振荡陈化80min,得到溶胶B;
步骤三:将溶胶B置于55℃的真空干燥箱内干燥4h后研磨,然后放入箱式电炉中,控制温度为300℃,保温1.5h,反应结束后自然冷却到室温,即获得多孔空心壳WO3纳米晶,所得WO3纳米晶前驱体的比表面积为400m2·g-1,壳壁的厚度为85nm,孔径为0.8μm;
步骤四:将上述WO3纳米晶和硫粉分开放入真空管式炉中,控制其加入量为m三氧化钨∶m硫粉=2.0g∶2.0g,控制其真空度为-0.02MPa,温度为350℃,反应2h,反应结束后自然冷却到室温,取出产物即获得WO3/WS2多孔空心壳纳米晶,所得产物中WO3和WS2的质量比为m WO3∶mWS2=1∶4;
所述WO3/WS2多孔空心壳蜂窝状纳米材料的比表面积为360m2/g,壳壁的厚度为100nm,孔径为1.0μm,同时其表面吸附的纳米颗粒的粒径为50nm。
实施例3:
步骤一:将分析纯的聚乙烯醇(PVA)3.0g溶于70mL无水乙醇中并不断搅拌,使得PVA充分溶解,再向其中加入2.0g中间相碳微球(市售的,球径为5~9μm,MCMB)并且不断搅拌使其分散后放入600W的超声波清洗器中超声振荡30min,得到溶胶记为A;
步骤二:再向溶胶A中加入分析纯的六氯化钨(WCl6),控制W6+的浓度为0.4mol·L-1,并不断搅拌使其充分溶解,放入600W的超声波发生器中超声振荡陈化120min,得到溶胶B;
步骤三:将溶胶B置于60℃的真空干燥箱内干燥3h后研磨,然后放入箱式电炉中,控制温 度为350℃,保温1h,反应结束后自然冷却到室温,即获得多孔空心壳WO3纳米晶,所得WO3纳米晶前驱体的比表面积为600m2·g-1,其壳壁的厚度为60nm,孔径为0.4μm;
步骤四:将上述WO3纳米晶和硫粉分开放入真空管式炉中,控制其加入量为m三氧化钨∶m硫粉=7.0g∶3.0g,控制其真空度为-0.1MPa,温度为400℃,反应1.5h,反应结束后自然冷却到室温,取出产物即获得WO3/WS2多孔空心壳纳米晶,所得产物中WO3和WS2的质量比为mWO3∶mWS2=3∶7;
所述WO3/WS2多孔空心壳蜂窝状纳米材料的比表面积为550m2/g,壳壁的厚度为70nm,孔径为0.6μm,同时其表面吸附的纳米颗粒的粒径为50nm。
实施例4:
步骤一:将分析纯的聚乙烯醇(PVA)5.0g溶于80mL无水乙醇中并不断搅拌,使得PVA充分溶解,再向其中加入4.0g中间相碳微球(市售的,球径为2~5μm,MCMB)并且不断搅拌使其分散后放入800W的超声波清洗器中超声振荡20min,得到溶胶记为A;
步骤二:再向溶胶A中加入分析纯的六氯化钨(WCl6),控制W6+的浓度为2.0mol·L-1,并不断搅拌使其充分溶解,放入800W的超声波发生器中超声振荡陈化60min,得到溶胶B;
步骤三:将溶胶B置于70℃的真空干燥箱内干燥2h后研磨,然后放入箱式电炉中,控制温度为400℃,保温0.5h,反应结束后自然冷却到室温,即获得多孔空心壳WO3纳米晶,所得WO3纳米晶前驱体的比表面积为800m2·g-1,壳壁的厚度为40nm,孔径为0.2μm;
步骤四:将上述WO3纳米晶和硫粉分开放入真空管式炉中,控制其加入量为m三氧化钨∶m硫粉=9.0g∶4.0g,控制其真空度为-0.06MPa,温度为450℃,反应1h,反应结束后自然冷却到室温,取出产物即获得WO3/WS2多孔空心壳纳米晶,所得产物中WO3和WS2的质量比为m WO3∶mWS2=2∶3;
所述WO3/WS2多孔空心壳蜂窝状纳米材料的比表面积为700m2/g,壳壁的厚度为50nm,孔径为0.4μm,同时其表面吸附的纳米颗粒的粒径为30nm。

Claims (9)

1.一种WO3/WS2多孔空心壳纳米材料的制备方法,其特征在于,包括:
1)将六价钨盐加至包含中间相碳微球的溶胶A,搅拌制得溶胶B,其中溶胶A中,中间相微球的浓度为0.002~0.2g/mL,溶剂为无水乙醇、异丙醇、乙二醇和/或蒸馏水,所述溶胶A还包括分散剂,所述分散剂为聚乙烯醇、羧甲基纤维素钠、十二烷基硫酸钠和/或聚乙二醇,所述溶胶A中,分散剂的浓度为0.006~0.25g/mL,溶胶B中W6+的浓度为 0.01~2.0mol/L;
2)将步骤1)制备的溶胶B,先经干燥、研磨,再在200-500℃下保温0.5~2小时得到多孔空心壳WO3纳米晶;以及
3)将步骤2)制备的多孔空心壳WO3纳米晶和硫粉分开放置在真空管式炉中、控制真空度为-0.01~-0.1MPa ,温度为200-500℃,反应0.5~3小时以将多孔空心壳WO3纳米晶的WO3部分硫化为WS2,得到WO3/WS2多孔空心壳纳米晶。
2.根据权利要求1所述的制备方法,其特征在于,将分散剂溶于溶剂中并搅拌使得分散剂溶解后加入所述中间相碳微球,搅拌、分散、放入300-1000 W的超声波清洗器中超声振荡20-60 分钟,得到溶胶A。
3.根据权利要求2所述的制备方法,其特征在于,向溶胶A加入六价钨盐并搅拌,然后放入300-1000 W的超声波发生器中超声振荡陈化60-180 分钟得到溶胶B。
4.根据权利要求1所述的制备方法,其特征在于,步骤2)中,溶胶B置于40~70℃的真空干燥箱内干燥2~6小时后研磨。
5.根据权利要求1所述的制备方法,其特征在于,多孔空心壳WO3纳米晶与硫粉的质量比为(0.1~10g)∶(0.1~4.0g)。
6.根据权利要求1所述的制备方法,其特征在于,所述六价钨盐包括六氯化钨、钨酸钠、钨酸铵、聚钨酸钠。
7.一种根据权利要求1~6中任一项所述的制备方法制备的WO3/WS2多孔空心壳纳米材料,其特征在于,所述WO3/WS2多孔空心壳纳米材料中,多孔空心壳呈现蜂窝状结构,其孔径为0.2-2.0μm,壳壁的厚度为40-150nm,同时其表面吸附的纳米颗粒的粒径为30-100nm。
8.根据权利要求7所述的WO3/WS2多孔空心壳纳米材料,其特征在于,所述WO3/WS2多孔空心壳纳米材料中,WO3与WS2的质量比为1∶9~9∶1。
9.根据权利要求7或8所述的WO3/WS2多孔空心壳纳米材料,其特征在于,所述WO3/WS2多孔空心壳纳米材料的比表面积为300~700m2/g。
CN201510243715.4A 2015-05-13 2015-05-13 一种多孔空心壳wo3/ws2纳米材料及其制备方法 Active CN104934584B (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201510243715.4A CN104934584B (zh) 2015-05-13 2015-05-13 一种多孔空心壳wo3/ws2纳米材料及其制备方法
PCT/CN2015/080765 WO2016179865A1 (zh) 2015-05-13 2015-06-04 一种多孔空心壳wo3/ws2纳米材料及其制备方法
US15/531,708 US10183863B2 (en) 2015-05-13 2015-06-04 Porous hollow shell WO3/WS2 nanomaterial and method of preparing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510243715.4A CN104934584B (zh) 2015-05-13 2015-05-13 一种多孔空心壳wo3/ws2纳米材料及其制备方法

Publications (2)

Publication Number Publication Date
CN104934584A CN104934584A (zh) 2015-09-23
CN104934584B true CN104934584B (zh) 2017-04-05

Family

ID=54121647

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510243715.4A Active CN104934584B (zh) 2015-05-13 2015-05-13 一种多孔空心壳wo3/ws2纳米材料及其制备方法

Country Status (3)

Country Link
US (1) US10183863B2 (zh)
CN (1) CN104934584B (zh)
WO (1) WO2016179865A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105664836B (zh) * 2016-01-08 2017-11-10 长春理工大学 热处理水热前驱物获得ws2/wo3空心微球的方法
US10710895B2 (en) * 2016-02-04 2020-07-14 Nanotech Industrial Solutions, Inc. Nanolog and nanoparticles and method of formation
CN107240691B (zh) * 2017-06-21 2019-07-09 青岛科技大学 具有大层间距MoS2@C空心球高性能锂离子负极材料的制备方法
CN108565434B (zh) * 2018-05-02 2020-10-23 南昌大学 一种二硫化钨/氮硫共掺杂石墨烯复合物的制备方法
CN109794267A (zh) * 2019-02-28 2019-05-24 陕西科技大学 一种WO3/NaSO4复合材料的制备方法
CN112038540B (zh) * 2019-06-04 2023-05-12 湖北大学 一种高循环稳定性的锂硫电池隔膜
CN110408953B (zh) * 2019-08-13 2020-12-04 哈尔滨理工大学 一种磷掺杂硫化钨@氧化钨多孔核壳纳米线柔性阵列电极及其制备方法
CN110711587A (zh) * 2019-10-12 2020-01-21 山东科技大学 一种中空结构钨酸镍基甲烷化催化剂
CN110970607A (zh) * 2019-12-10 2020-04-07 肇庆市华师大光电产业研究院 一种钴掺杂三氧化钨/CNTs钠离子电池负极材料的制备方法
CN111477847B (zh) * 2020-04-08 2022-07-19 扬州大学 盒状项链多级结构Fe7S8/WS2@C-CNFs锂离子电池负极材料及其制备方法
CN111661877B (zh) * 2020-07-01 2022-10-21 松山湖材料实验室 二硫化钨/碳复合纳米棒的制备方法及其制品、应用
CN112331834B (zh) * 2020-11-12 2021-07-16 郑州轻工业大学 一种灯泡状O-MXn/C纳米反应器及其制备方法和应用
CN112973669B (zh) * 2021-02-25 2022-08-19 南京大学 三氧化钨包覆金刚石的制备方法及其在染料废水光降解中的应用
CN112811469B (zh) * 2021-03-15 2022-10-14 陕西科技大学 一种单层或少层二硫化钨纳米材料的制备方法
CN114014303B (zh) * 2021-11-03 2023-06-20 电子科技大学 氮化钨纳米针复合氮掺杂石墨烯纳米片及制备方法和应用
CN114062443B (zh) * 2021-11-10 2023-10-03 北京印刷学院 一种用于包装顶空湿度监测的柔性传感器
CN114214604A (zh) * 2021-12-03 2022-03-22 河北大学 一种大面积纳米管薄膜及其制备方法
CN116514170A (zh) * 2022-01-21 2023-08-01 湘潭大学 一种中空花球结构二硫化钼及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103301832A (zh) * 2013-07-08 2013-09-18 西北师范大学 多孔结构三氧化钨光催化剂的制备及在污水处理中的应用
CN103498191A (zh) * 2013-09-16 2014-01-08 中国地质大学(北京) 高纯度短棒状结晶FeWO4/FeS核壳纳米结构的制备方法
CN103741224A (zh) * 2014-01-17 2014-04-23 中国地质大学(北京) 高纯度高密度ws2层片状纳米结构的制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7708974B2 (en) * 2002-12-10 2010-05-04 Ppg Industries Ohio, Inc. Tungsten comprising nanomaterials and related nanotechnology
CN101767826B (zh) 2009-10-30 2011-09-14 陕西科技大学 一种六边形雪花状wo3纳米盘的制备方法
CN101723464A (zh) * 2009-12-11 2010-06-09 中南大学 一种单分散二硫化钨纳米片的制备方法
CN101857274B (zh) 2010-06-13 2012-01-04 中南大学 一种纳米WS2或MoS2颗粒的制备方法
JP5682151B2 (ja) * 2010-06-17 2015-03-11 住友化学株式会社 遷移金属複合水酸化物およびリチウム複合金属酸化物
CN103469155B (zh) * 2013-09-16 2016-03-23 中国地质大学(北京) 高纯度高密度wo3/s核壳结构纳米颗粒的制备方法
CN104128612B (zh) * 2014-08-20 2017-01-11 武汉科技大学 一种w@ws2核/壳纳米粉体及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103301832A (zh) * 2013-07-08 2013-09-18 西北师范大学 多孔结构三氧化钨光催化剂的制备及在污水处理中的应用
CN103498191A (zh) * 2013-09-16 2014-01-08 中国地质大学(北京) 高纯度短棒状结晶FeWO4/FeS核壳纳米结构的制备方法
CN103741224A (zh) * 2014-01-17 2014-04-23 中国地质大学(北京) 高纯度高密度ws2层片状纳米结构的制备方法

Also Published As

Publication number Publication date
CN104934584A (zh) 2015-09-23
US10183863B2 (en) 2019-01-22
WO2016179865A1 (zh) 2016-11-17
US20170341935A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
CN104934584B (zh) 一种多孔空心壳wo3/ws2纳米材料及其制备方法
Wu et al. Synthesis and electrochemical properties of V 2 C MXene by etching in opened/closed environments
Shen et al. Facile synthesis of hierarchically porous Li 4 Ti 5 O 12 microspheres for high rate lithium ion batteries
Lu et al. Synthesis of nickel chalcogenide hollow spheres using an l-cysteine-assisted hydrothermal process for efficient supercapacitor electrodes
Wang et al. Controllable synthesis of SnO 2@ C yolk–shell nanospheres as a high-performance anode material for lithium ion batteries
Zhu et al. Scalable synthesis of hierarchical hollow Li4Ti5O12 microspheres assembled by zigzag-like nanosheets for high rate lithium-ion batteries
CN105047862B (zh) 一种ws2‑原位生物碳复合负极材料的制备方法
Fu et al. TiO2 nanorods anchor on reduced graphene oxide (R-TiO2/rGO) composite as anode for high performance lithium-ion batteries
Bi et al. Recent advances in LiFePO 4 nanoparticles with different morphology for high-performance lithium-ion batteries
Su et al. Facile template-free synthesis of 3D porous MnO/C microspheres with controllable pore size for high-performance lithium-ion battery anodes
Han et al. Molten-salt chemical exfoliation process for preparing two-dimensional mesoporous Si nanosheets as high-rate Li-storage anode
Rosaiah et al. Graphenothermal reduction synthesis of MnO/RGO composite with excellent anodic behaviour in lithium ion batteries
Si et al. Carbon-coated MoO 2 nanoclusters anchored on RGO sheets as high-performance electrodes for symmetric supercapacitors
Lu et al. Fluoride-assisted coaxial growth of SnO 2 over-layers on multiwall carbon nanotubes with controlled thickness for lithium ion batteries
Zhao et al. Synthesis of carbon-TiO2 nanocomposites with enhanced reversible capacity and cyclic performance as anodes for lithium-ion batteries
Zhang et al. Nano-particle assembled porous core–shell ZnMn2O4 microspheres with superb performance for lithium batteries
Mehraeen et al. Homogeneous growth of TiO2-based nanotubes on nitrogen-doped reduced graphene oxide and its enhanced performance as a Li-ion battery anode
Wang et al. Fabrication of nest-like TiO2 hollow microspheres and its application for lithium ion batteries with high-rate performance
Wang et al. Densely-stacked N-doped mesoporous TiO2/carbon microsphere derived from outdated milk as high-performance electrode material for energy storages
Hong et al. Synthesis of 3D-structured Li4Ti5O12 from titanium (IV) oxysulfate (TiOSO4) solution as a highly sustainable anode material for lithium-ion batteries
Huang et al. Enhancing the high-rate performance of Li4Ti5O12 anode material for lithium-ion battery by a wet ball milling assisted solid-state reaction and ultra-high speed nano-pulverization
Zhu et al. Fast synthesis of uniform mesoporous titania submicrospheres with high tap densities for high-volumetric performance Li-ion batteries
Ma et al. Converting micro-sized kerf-loss silicon waste to high-performance hollow-structured silicon/carbon composite anodes for lithium-ion batteries
Guo et al. Synthesis and electrochemical performance of lithium iron phosphate/carbon composites based on controlling the secondary morphology of precursors
Wen et al. Graphene aerogel encapsulated Co3O4 microcubes derived from prussian blue analog as integrated anode with enhanced Li-ion storage properties

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20201210

Address after: 233000 Room 1402, Ziyang Building, Pearl Plaza, Huaishang District, Bengbu City, Anhui Province

Patentee after: Anhui Hanbang Technology Consulting Co., Ltd

Address before: 710021 Shaanxi city of Xi'an province Weiyang University Park

Patentee before: SHAANXI University OF SCIENCE & TECHNOLOGY

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220111

Address after: 535008 room A107, public service center, No. 1, Zhongma street, Zhongma Qinzhou Industrial Park, Qinzhou port area, China (Guangxi) pilot Free Trade Zone, Qinzhou City, Guangxi Zhuang Autonomous Region

Patentee after: Guangxi Free Trade Zone Jianju Technology Co.,Ltd.

Patentee after: Guangxi Qinbao Real Estate Co., Ltd

Address before: 233000 Room 1402, Ziyang Building, Pearl Plaza, Huaishang District, Bengbu City, Anhui Province

Patentee before: Anhui Hanbang Technology Consulting Co., Ltd