CN104931684A - 一种纳米荧光传感器及其制备方法和应用 - Google Patents

一种纳米荧光传感器及其制备方法和应用 Download PDF

Info

Publication number
CN104931684A
CN104931684A CN201510091552.2A CN201510091552A CN104931684A CN 104931684 A CN104931684 A CN 104931684A CN 201510091552 A CN201510091552 A CN 201510091552A CN 104931684 A CN104931684 A CN 104931684A
Authority
CN
China
Prior art keywords
atp
gold nanometer
fluorescent sensor
nanometer cage
nano fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510091552.2A
Other languages
English (en)
Other versions
CN104931684B (zh
Inventor
王卫
李筱筱
罗细亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Zundao Biotechnology Co ltd
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201510091552.2A priority Critical patent/CN104931684B/zh
Publication of CN104931684A publication Critical patent/CN104931684A/zh
Application granted granted Critical
Publication of CN104931684B publication Critical patent/CN104931684B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5308Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

本发明提供了一种可用于生物医学及生命科学领域的纳米荧光传感器及其制备方法和应用。本发明将金纳米笼与核酸适体及表面正电荷修饰技术结合在一起,提出一种全新的纳米荧光传感器。该传感器的特点是:以金纳米笼作为纳米容器,在其表面修饰了一层聚阳离子,将荧光染料填充到金纳米笼中,利用静电作用将核酸适体组装到金纳米笼表面,形成具有生物响应作用的分子门。一旦加入待检测的靶分子如ATP,则发生靶分子及其适体的特异性识别反应,导致适体链从金纳米笼表面脱离,使封堵笼孔的分子门被打开,孔内的荧光分子被释放出来。因此,利用该荧光传感器,能够实现对靶分子的高灵敏、高选择性检测,为癌症等重大疾病的早期诊断、治疗等提供新方法。

Description

一种纳米荧光传感器及其制备方法和应用
技术领域
本发明属于生物分析及生命科学领域,具体涉及一种检测ATP的纳米荧光传感器及其制备方法和应用。
背景技术
三磷酸腺苷(ATP)是广泛存在于生物细胞内的一种辅酶,由腺苷和三个磷酸基组成。作为细胞内能量传递的“分子通货”,ATP储存和传递化学能,是体内组织细胞所需能量的主要来源,参与蛋白质、脂肪、糖和核苷酸的合成,对细胞许多代谢过程均有重要的调节作用,ATP的含量变化可以反映细胞的变异和损伤。因此,ATP作为重大疾病的标志物之一得到了广泛的研究和关注。通过检测恶性肿瘤ATP浓度变化,可以了解其细胞代谢情况,为恶性肿瘤药敏的异质性和个体化疗提供可行性治疗方案。因此,建立快速、灵敏、准确的ATP分析方法不仅有助于癌症等重大疾病的早期诊断及治疗,同时对于临床医学、生命科学、食品卫生、环境监测、医药及化妆品等诸多领域也有着重要的实际意义。
目前,国内外ATP的检测方法除了作为主流技术的高效液相色谱法以外,其它还有电泳法、分光光度法和生物发光法等。这些方法在仪器设备、时间、灵敏度、准确性等方面都或多或少地存在不足,尤其是灵敏度和选择性尚待提高。为此,迫切需要开发高灵敏、高选择性的检测技术用于ATP的检测。
近几年来,金纳米笼作为一种新兴的纳米材料得到了广泛的关注。该纳米材料是一种中空多孔的结构,即笼状颗粒的内部为空心结构,光滑的笼壁表面上分布着小孔。与传统的球型金纳米颗粒相比,金纳米笼的局域表面等离子共振峰位于近红外区700~900nm,该波段对于生物医学意义重大,尤其是对于活体研究。将金纳米笼与核酸适体和金纳米笼表面正电荷修饰技术相结合的技术还未见文献报道。
发明内容
为了克服现有技术存在的不足,同时,也为了更加有效地利用具有特殊结构的纳米材料的显著优点,针对检测ATP的纳米荧光传感器少有报道,因此,本发明的第一目的:构建并制备一种新型的可用于检测ATP的纳米荧光传感器,即将金纳米笼与核酸适体和表面正电荷修饰技术结合在一起,使该纳米荧光传感器具有可生物响应的分子门,一旦加入需要检测的靶分子如ATP,则发生靶分子及其适体的特异性识别反应,导致适体链从金纳米笼表面脱离,使封堵笼孔的分子门被打开,并使孔内被封堵的荧光分子被释放出来,因此,利用该荧光传感器,能够实现对靶分子的高灵敏、高选择性检测,为癌症等重大疾病的早期诊断、治疗、理论研究等提供新方法;本发明的第二目的:提供一种该纳米荧光传感器的制备方法;本发明的第三目的:提供一种应用该纳米荧光传感器检测ATP的方法。将本发明提出的纳米荧光传感器用于ATP的荧光检测,能够显著地提高ATP检测的灵敏度和准确度。
本发明是通过以下技术方案实现发明目的的。本发明的纳米荧光传感器是以金纳米笼作为载体,利用其空心多孔的结构特性,在其内部装载荧光分子,为了防止荧光分子的外泄,通过在其表面组装核酸适体分子门,将金纳米笼表面的孔封堵;其中,所述的核酸适体可以通过静电作用被组装到金纳米笼表面,具体可以通过在金纳米笼表面修饰正电荷的方法而将其组装到金纳米笼表面,优选地采用聚二烯丙基二甲基氯化铵即PDDA作为正电荷修饰剂在金纳米笼表面修饰一层聚阳离子。
优选地,上述纳米荧光传感器,所述的荧光分子是罗丹明B。
一种制备上述纳米荧光传感器的制备方法,包括如下步骤:
(1)在磁珠-金纳米笼的复合物中加入PDDA溶液,室温振荡过夜;
(2)磁分离上述溶液后加入罗丹明B溶液,室温振荡过夜;
(3)向上述溶液中加入核酸适体溶液,室温振荡过夜,磁分离,用PBS缓冲溶液清洗后即制得荧光传感器;
其中,所述的磁珠-金纳米笼的复合物按如下方法制备而成:将磁珠与金纳米笼的混合溶液置于室温振荡反应10h,磁分离,用PBS缓冲溶液清洗,移除上清夜,即得。
一种利用本发明的纳米荧光传感器用于ATP的检测,方法如下:
(1)将ATP样品溶液加入到本发明的纳米荧光传感器的PBS悬浮液中,37℃恒温振荡反应1h,发生靶分子ATP与其适体的特异性结合,使ATP适体从金纳米笼表面脱离,分子门被打开;
(2)磁分离上述溶液,收集上清液,检测其荧光信号。
本发明的有益效果:本发明提出的纳米荧光传感器将纳米技术与适体分子生物门相结合,通过分子识别及特异性反应,使适体分子门被打开,释放出荧光分子,实现了荧光信号的检测,该方法使ATP的检测灵敏度得到显著提高,可实现对ATP高灵敏、高选择性的检测。本发明的纳米荧光传感器具有结构简单,稳定性好,可控性强,荧光信号灵敏等优点,同时,不受其它常见干扰物质影响,具有高的选择性,可应用于生物体系中ATP的荧光检测。实验结果表明,采用本发明提出的纳米荧光传感器可在1.0×10-10~8.0×10-9M范围内实现对ATP的高灵敏、高选择性检测。该传感器及其检测技术在生物医学、生命科学等领域具有较大的应用潜力和广阔的应用前景,可用于ATP的特异性检测,为癌症等重大疾病的早期诊断及治疗提供新的途径和方法。
附图说明
图1不同ATP浓度的荧光信号强度。
图2ATP浓度与荧光信号强度的线性关系。
具体实施方式
以下是本发明涉及的具体实施例,对本发明的技术方案做进一步描述,但是本发明的保护范围并不限于这些实施例。凡是不背离本发明构思的改变或等同替代均包括在本发明的保护范围之内。
下面通过实施例具体地说明本发明,但本发明不受下述实施例的限定。
实验仪器:磁性分离架(天津倍思乐色谱技术开发中心);F-4600荧光分光光度计(日立,日本);THZ-82A气浴恒温振荡器(金坛市医疗器械厂)。
实验试剂:3-4μm巯基修饰磁珠(天津市倍思乐色谱技术开发中心);罗丹明B(阿拉丁);三磷酸腺苷(ATP);ATP适体链:ACC TGG GGG AGT ATT GCG GAG GAA GGT,PBS溶液为0.01M(pH 7.4,Na2HPO4-NaH2PO4)。
实施例1:
一种制备本发明纳米荧光传感器的制备方法,包括如下步骤:
(1)在磁珠-金纳米笼的复合物中加入200μL浓度为5.832mg/mL的Pdda溶液,室温振荡过夜;
(2)磁分离上述溶液,用PBS缓冲溶液清洗后加入100μL1.0×10-5mol/L罗丹明B的PBS溶液,室温振荡过夜;
(3)向上述溶液加入10μL浓度为1.0×10-5M的ATP适体溶液,室温振荡过夜,磁分离,移除上清液,纳米荧光传感器制备完成;
其中,所述的磁珠-金纳米笼的复合物按如下方法制备而成:将10μL巯基磁珠与200μL金纳米笼均匀混合,室温振荡反应10h,磁分离,用PBS溶液清洗,移除上清液,即得;所述的巯基磁珠是购买的商品(天津市倍思乐色谱技术开发中心);所述的金纳米笼按文献方法获得(G.D.Moon,S.W.Choi,X.Cai,W.Y.Li,E.C.Cho,U.Jeong,L.V.Wang and Y.N.Xia.J.Am.Chem.Soc.2011,133,4762–4765)。
实施例2:
一种利用本发明的纳米荧光传感器用于ATP的检测,方法如下:
(1)将ATP样品溶液加入到本发明的纳米荧光传感器中,用PBS缓冲溶液(PH=7.4)稀释至200μL,37℃恒温振荡反应1h,发生靶分子ATP与其适体的特异性结合,使ATP适体从金纳米笼表面脱离,分子门被打开;
(2)磁分离上述溶液,收集上清液,检测其荧光信号,荧光检测条件:激发波长和发射波长分别为530、573nm。
图1为不同ATP浓度对应的荧光信号强度,ATP的浓度分别为(0,1.0×10-10,5.0×10-10,8.0×10-10,1.0×10-9,2.0×10-9,5.0×10-9,6.0×10-9,8.0×10-9,1.0×10-8,2.0×10-8,5.0×10-8mol/L);图2为ATP浓度与荧光信号强度的线性关系。结果表明,ATP浓度在1.0×10-10~8.0×10-9mol/L时,荧光信号强度与ATP的浓度呈现良好的线性关系,其线性方程为:FL=159.44257+20.13502×CATP(10-9mol/L),线性相关系数为0.9935。
本发明将纳米技术与分子生物技术相结合,通过分子识别及特异性反应,可实现对ATP高灵敏、高选择性的检测。本发明将金纳米笼与核酸适体和表面正电荷修饰技术结合在一起,使该纳米荧光传感器具有可生物响应的分子门,一旦加入需要检测的靶分子如ATP,则发生靶分子及其适体的特异性识别反应,导致适体链从金纳米笼表面脱离,使封堵笼孔的分子门被打开,并使孔内被封堵的荧光分子被释放出来,因此,利用该荧光传感器,能够实现对靶分子的高灵敏、高选择性检测。
本发明的纳米荧光传感器结构简单,稳定性好,可控性强,荧光信号灵敏,同时,不受其它常见干扰物质影响,具有高的选择性。该纳米荧光传感器及其检测技术在生物医学、生命科学等领域具有较大的应用潜力和广阔的应用前景,可用于ATP的特异性检测,为癌症等重大疾病的早期诊断及治疗提供新的途径和方法。

Claims (7)

1.一种纳米荧光传感器,其特征在于:以金纳米笼作为载体,其内部载有荧光分子,其表面被组装上核酸适体,可将金纳米笼孔封堵,防止荧光分子外泄。
2.一种如权利要求1所述的纳米荧光传感器,其特征在于:所述的核酸适体可以通过静电作用被组装到金纳米笼表面。
3.一种如权利要求1-2中任一项所述的纳米荧光传感器,其特征在于:所述的核酸适体可以通过在金纳米笼表面修饰正电荷而将其组装到金纳米笼表面。
4.一种如权利要求1-3中任一项所述的纳米荧光传感器,其特征在于:所述的正电荷可通过在金纳米笼表面修饰一层聚阳离子PDDA,即聚二烯丙基二甲基氯化铵而产生。
5.一种如权利要求1-4中任一项所述的纳米荧光传感器,其特征在于:所述的荧光分子是罗丹明B。
6.一种如权利要求1-5中任一项所述的纳米荧光传感器的制备方法,其特征在于步骤如下:
(1)在磁珠-金纳米笼的复合物中加入PDDA溶液,室温振荡过夜;
(2)磁分离上述溶液后加入罗丹明B溶液,室温振荡过夜;
(3)向上述溶液中加入核酸适体溶液,室温振荡过夜,磁分离,用PBS缓冲溶液清洗后即制得纳米荧光传感器;
其中,所述的磁珠-金纳米笼的复合物按如下方法制备而成:将磁珠与金纳米笼的混合溶液置于室温振荡反应10h,磁分离,用PBS缓冲溶液清洗,移除上清夜,即得。
7.一种如权利要求1-5中任一项所述的纳米荧光传感器的应用,其特征在于用于ATP的检测,方法如下:
(1)将ATP样品溶液加入到如权利要求1-5中任一项所述的纳米荧光传感器的PBS悬浮液中,37℃恒温振荡反应1h,发生ATP与其适体的特异性结合,使ATP适体从金纳米笼表面脱离,分子门被打开;
(2)磁分离上述溶液,收集上清液,检测其荧光信号。
CN201510091552.2A 2015-02-28 2015-02-28 一种纳米荧光传感器及其制备方法和应用 Active CN104931684B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510091552.2A CN104931684B (zh) 2015-02-28 2015-02-28 一种纳米荧光传感器及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510091552.2A CN104931684B (zh) 2015-02-28 2015-02-28 一种纳米荧光传感器及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN104931684A true CN104931684A (zh) 2015-09-23
CN104931684B CN104931684B (zh) 2017-01-18

Family

ID=54118950

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510091552.2A Active CN104931684B (zh) 2015-02-28 2015-02-28 一种纳米荧光传感器及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN104931684B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105784666A (zh) * 2016-05-23 2016-07-20 青岛科技大学 一种纳米荧光生物传感器及其制备方法和应用
CN106802294A (zh) * 2017-03-09 2017-06-06 青岛科技大学 一种基于可控释放技术的谷胱甘肽荧光传感器及其制备方法
CN106908429A (zh) * 2017-03-09 2017-06-30 青岛科技大学 一种检测谷胱甘肽的方法
CN110376194A (zh) * 2019-07-11 2019-10-25 中国人民解放军国防科技大学 一种自动痕量爆炸物检测系统
CN113252619A (zh) * 2020-02-12 2021-08-13 青岛科技大学 一种可同时检测Hg2+和Ag+的纳米胶囊-核酸生物分子复合物及其制备方法
CN113252620A (zh) * 2020-02-12 2021-08-13 青岛科技大学 一种可同时检测Hg2+和Ag+的方法
CN114437709A (zh) * 2021-09-15 2022-05-06 中国科学院海洋研究所 一种核酸功能化mof材料及其制备和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101380473A (zh) * 2008-10-14 2009-03-11 上海师范大学 一种金纳米棒基药物载体及其制备工艺和应用
CN103217415A (zh) * 2013-03-11 2013-07-24 上海交通大学 利用核酸适配体修饰纳米金粒子的三聚氰胺检测方法
CN103255174A (zh) * 2013-05-02 2013-08-21 天津大学 以聚乙二醇接枝的透明质酸为外层的三元复合物及三元复合物的液体与应用
CN103562124A (zh) * 2011-04-13 2014-02-05 布鲁克海文科学协会有限责任公司 用于多组分功能化纳米微粒系统的生物可设计结晶的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101380473A (zh) * 2008-10-14 2009-03-11 上海师范大学 一种金纳米棒基药物载体及其制备工艺和应用
CN103562124A (zh) * 2011-04-13 2014-02-05 布鲁克海文科学协会有限责任公司 用于多组分功能化纳米微粒系统的生物可设计结晶的方法
CN103217415A (zh) * 2013-03-11 2013-07-24 上海交通大学 利用核酸适配体修饰纳米金粒子的三聚氰胺检测方法
CN103255174A (zh) * 2013-05-02 2013-08-21 天津大学 以聚乙二醇接枝的透明质酸为外层的三元复合物及三元复合物的液体与应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHUN-LING ZHU 等: "Bioresponsive Controlled Release Using Mesoporous Silica Nanoparticles Capped with Aptamer-Based Molecular Gate", 《J. AM. CHEM. SOC.》, vol. 133, 7 January 2011 (2011-01-07), pages 1278 - 1281, XP 055132442, DOI: doi:10.1021/ja110094g *
MADHURI SHRINGIRISHI 等: "GOLD NANOPARTICLES: PROMISING AND POTENTIAL NANOMATERIAL", 《IJPSR》, vol. 4, no. 11, 1 November 2013 (2013-11-01), pages 4068 - 4082 *
YA CAO 等: "Aptamer-based homogeneous protein detection using cucurbit[7]urilfunctionalized electrode", 《ANALYTICA CHIMICA ACTA》, vol. 812, 10 January 2014 (2014-01-10), pages 45 - 49, XP 028830325, DOI: doi:10.1016/j.aca.2014.01.008 *
闫涛: "基于金纳米笼放大技术荧光法检测肿瘤细胞中的ATP", 《中国优秀硕士学位论文全文数据库(工程科技I辑)(2013年)》, no. 6, 15 June 2013 (2013-06-15), pages 014 - 369 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105784666A (zh) * 2016-05-23 2016-07-20 青岛科技大学 一种纳米荧光生物传感器及其制备方法和应用
CN105784666B (zh) * 2016-05-23 2018-08-03 青岛科技大学 一种纳米荧光生物传感器及其制备方法和应用
CN106802294A (zh) * 2017-03-09 2017-06-06 青岛科技大学 一种基于可控释放技术的谷胱甘肽荧光传感器及其制备方法
CN106908429A (zh) * 2017-03-09 2017-06-30 青岛科技大学 一种检测谷胱甘肽的方法
CN106908429B (zh) * 2017-03-09 2020-03-10 青岛科技大学 一种检测谷胱甘肽的方法
CN106802294B (zh) * 2017-03-09 2020-03-10 青岛科技大学 一种基于可控释放技术的谷胱甘肽荧光传感器及其制备方法
CN110376194A (zh) * 2019-07-11 2019-10-25 中国人民解放军国防科技大学 一种自动痕量爆炸物检测系统
CN113252619A (zh) * 2020-02-12 2021-08-13 青岛科技大学 一种可同时检测Hg2+和Ag+的纳米胶囊-核酸生物分子复合物及其制备方法
CN113252620A (zh) * 2020-02-12 2021-08-13 青岛科技大学 一种可同时检测Hg2+和Ag+的方法
CN114437709A (zh) * 2021-09-15 2022-05-06 中国科学院海洋研究所 一种核酸功能化mof材料及其制备和应用

Also Published As

Publication number Publication date
CN104931684B (zh) 2017-01-18

Similar Documents

Publication Publication Date Title
CN104931684A (zh) 一种纳米荧光传感器及其制备方法和应用
Huang et al. A simple fluorescence aptasensor for gastric cancer exosome detection based on branched rolling circle amplification
Hua et al. Selective collection and detection of MCF-7 breast cancer cells using aptamer-functionalized magnetic beads and quantum dots based nano-bio-probes
Wang et al. Development of nucleic acid aptamer-based lateral flow assays: A robust platform for cost-effective point-of-care diagnosis
De Sousa et al. Isolation and characterization of extracellular vesicles and future directions in diagnosis and therapy
Chen et al. Label-free surface plasmon resonance cytosensor for breast cancer cell detection based on nano-conjugation of monodisperse magnetic nanoparticle and folic acid
CN106596484B (zh) 一种检测Hg2+的方法
Pu et al. Using aptamers to visualize and capture cancer cells
Zhang et al. Determination of urinary adenosine using resonance light scattering of gold nanoparticles modified structure-switching aptamer
CN108815537A (zh) 一种肿瘤细胞靶向特异性荧光探针及其制备方法与应用
Lu et al. Tetraphenylethene derivative modified DNA oligonucleotide for in situ potassium ion detection and imaging in living cells
Zhao et al. State-of-the-art nanotechnologies for the detection, recovery, analysis and elimination of liquid biopsy components in cancer
CN106908429B (zh) 一种检测谷胱甘肽的方法
Celikbas et al. A bottom-up approach for developing aptasensors for abused drugs: biosensors in forensics
Roy et al. The potential of aptamer-mediated liquid biopsy for early detection of cancer
CN105784666B (zh) 一种纳米荧光生物传感器及其制备方法和应用
Chen et al. The fluorescent bioprobe with aggregation-induced emission features for monitoring to carbon dioxide generation rate in single living cell and early identification of cancer cells
Wang et al. Ultrasensitive and non-labeling fluorescence assay for biothiols using enhanced silver nanoclusters
Dong et al. Simultaneous visualization of dual intercellular signal transductions via SERS imaging of membrane proteins dimerization on single cells
Xu et al. Advances in biosensing technologies for analysis of cancer-derived exosomes
CN106770107A (zh) 一种检测Hg2+的生物传感器及其制备方法
Zamay et al. Aptamer-based methods for detection of circulating tumor cells and their potential for personalized diagnostics
Cui et al. Rapid and efficient isolation and detection of circulating tumor cells based on ZnS: Mn2+ quantum dots and magnetic nanocomposites
Li et al. Magnetic separation-assistant fluorescence resonance energy transfer inhibition for highly sensitive probing of nucleolin
Qian et al. Analysis and biomedical applications of functional cargo in extracellular vesicles

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210401

Address after: 215024 Room 301, building 1, science and Technology Innovation Park, Sangtian Island, No.1 Huayun Road, Suzhou Industrial Park, Jiangsu Province

Patentee after: SUZHOU ZUNDAO BIOTECHNOLOGY Co.,Ltd.

Address before: 266000 Qingdao University of Science & Technology, 99 Songling Road, Laoshan District, Qingdao, Shandong

Patentee before: Qingdao University Of Science And Technology