CN104918884B - 在选择性催化还原反应中用作催化剂的stt‑型沸石的制备方法 - Google Patents

在选择性催化还原反应中用作催化剂的stt‑型沸石的制备方法 Download PDF

Info

Publication number
CN104918884B
CN104918884B CN201380058689.7A CN201380058689A CN104918884B CN 104918884 B CN104918884 B CN 104918884B CN 201380058689 A CN201380058689 A CN 201380058689A CN 104918884 B CN104918884 B CN 104918884B
Authority
CN
China
Prior art keywords
stt
metal
catalyst
zeolite
zeolites
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201380058689.7A
Other languages
English (en)
Other versions
CN104918884A (zh
Inventor
M·曼卡
李运奎
J·拉沙佩勒
武炜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Industrial Development Corp
Original Assignee
Pacific Industrial Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Industrial Development Corp filed Critical Pacific Industrial Development Corp
Publication of CN104918884A publication Critical patent/CN104918884A/zh
Application granted granted Critical
Publication of CN104918884B publication Critical patent/CN104918884B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • B01J29/76Iron group metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/16After treatment, characterised by the effect to be obtained to increase the Si/Al ratio; Dealumination
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/186After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/37Acid treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/40Special temperature treatment, i.e. other than just for template removal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

公开了制备结晶STT‑型沸石的方法以及掺入该STT‑型沸石的气体处理系统和使用该STT‑型沸石处理气体的方法,该结晶STT‑型沸石具有大于约15:1的四价元素的氧化物与三价元素的氧化物的摩尔比。该方法一般地包括:形成含水反应混合物,所述含水反应混合物包括四价元素氧化物源;三价元素氧化物源;碱金属源;含N,N,N‑三甲基‑1‑金刚烷胺氢氧化物的有机结构导向剂;在足以使STT‑型沸石晶体结晶的结晶条件下,维持该含水混合物;和回收该STT‑型沸石晶体。该STT‑型沸石晶体显示出具有在下述处的2θ度峰值的x‑射线衍射图案:8.26,8.58,9.28,9.54,10.58,14.52,15.60,16.43,17.13,17.74,18.08,18.46,19.01,19.70,20.12,20.38,20.68,21.10,21.56,22.20,22.50,22.78,23.36,23.76,23.99,24.54,24.92,25.16,25.58,25.80,26.12,26.94,27.38,27.92,28.30,28.60,29.24,29.48,30.08,30.64,31.20,31.46,31.80,32.02,32.60,33.60,和34.43。

Description

在选择性催化还原反应中用作催化剂的STT-型沸石的制备 方法
技术领域
本发明的公开内容涉及形成STT-型沸石的方法和在选择性催化还原(SCR)反应中使用所述沸石作为催化剂的方法。
背景技术
在这一部分中的说明仅仅提供关于本发明公开内容的背景信息且不可能构成现有技术。
沸石是一种具有基于氧离子的延伸的三维结构网络框架的结晶硅铝酸盐。所有沸石的基本结构单元是包围小的硅或铝离子的四个氧阴离子的四面体。排列这些四面体,使得这四个氧阴离子中每一个本身又与另一氧化硅或氧化铝四面体共享。晶体晶格在三维上延伸,且计算出每一氧阴离子的电荷,即氧化态为-2。每一硅离子具有它的+4电荷,这通过四个四面体氧阴离子平衡,和因此氧化硅四面体是电中性的。每一铝四面体具有-1的残留电荷,因为三价铝键合到四个氧阴离子上。这一残留的电荷通过占据非-框架位置且充当供给强酸的布朗斯台德位点的阳离子平衡,这将在以下的示意图中并在R.Szostak为作者的Principles of Synthesis and Identification,第2版,Blackie Academic andProfessional,London,1998中进一步描述。
典型地由碱金属或碱土金属氧化物源;硅的氧化物源;任选地氧化铝源;和由1-金刚烷胺,其衍生物,N,N,N-三甲基-1-金刚烷铵氢氧化物,及其混合物衍生的阳离子的含水反应混合物,制备含高氧化硅的沸石或分子筛。气相法白炭黑用作硅氧化物的典型来源,而氢氧化铝用作氧化铝的典型来源。通过结晶形成的“原样合成的”结晶沸石然后可进行进一步处理。例如,可通过热处理(即煅烧),除去结构导向剂(SDA)。这种进一步的处理包括使用已知方法,例如使用稀释的酸溶液或硝酸铵溶液,通过离子交换除去金属阳离子。
Y.Nakagawa等人在Microporous and Mesoporous Materials,22(1998),第69-85页中通过计算确定了可使用Ν,Ν,Ν-三甲基-1–金刚烷铵阳离子制造的五种不同的沸石。它们的分子模型计算与它们的实验数据一致。他们报道了这一模板使SSZ-13,SSZ-23,SSZ-24,SSZ-25和SSZ-31类型的沸石结晶。他们示出了共同地通过两个SDA制造的五种沸石的结晶场边界。Ν,Ν,Ν-三甲基-1–金刚烷铵SDA分子使菱沸石相在SAR 10–40处结晶,而STT相在SAR 50–70处结晶。
很少有有机模板会产生与SSZ-23型沸石类似的结构。美国专利No.4,859,442公开了使用金刚烷季铵离子作为模板,制备结晶SSZ-23沸石。如此制备的SSZ-23沸石具有大于约50:1的选自氧化硅,氧化锗,及其混合物中的氧化物与选自氧化铝,氧化镓,氧化铁,氧化硼及其混合物中的氧化物的摩尔比。
发明概述
本发明的公开内容一般地提供选择的合成反应,它扩展了形成结构与SSZ-23沸石类似的沸石的能力。令人惊奇的是,与SSZ-23沸石类似的结构作为在本文描述的反应类型和特定组的合成条件下的产品(SST-型沸石)形式出现。根据本发明公开内容的教导制备的STT-型沸石具有大于约15:1的四价元素的氧化物与三价元素的氧化物的摩尔比。或者,四价元素的氧化物是氧化硅,和三价元素的氧化物是氧化铝,且比值为10:1到30:1。
结晶STT-型沸石的制备方法一般地包括形成含水反应混合物,所述含水反应混合物包括四价元素的氧化物源,三价元素的氧化物源,碱金属源,和含N,N,N-三甲基-1–金刚烷铵氢氧化物的有机结构导向剂;维持该含水混合物在足以使STT-型沸石晶体结晶的结晶条件下;和回收STT-型沸石晶体。STT-型沸石晶体显示出在下述位置处的峰的x-射线衍射图案(2θ度):8.26,8.58,9.28,9.54,10.58,14.52,15.60,16.43,17.13,17.74,18.08,18.46,19.01,19.70,20.12,20.38,20.68,21.10,21.56,22.20,22.50,22.78,23.36,23.76,23.99,24.54,24.92,25.16,25.58,25.80,26.12,26.94,27.38,27.92,28.30,28.60,29.24,29.48,30.08,30.64,31.20,31.46,31.80,32.02,32.60,33.60,和34.43。
根据本发明公开内容的方法制备的STT-型沸石可用作催化剂,例如在SCR应用中作为催化剂。使用本发明公开内容的教导制备的STT-型沸石,针对氨和正丙胺二者的温度编程的解吸(TPD)研究的比较证明这些沸石具有与SSZ-23沸石类似的结构。在TPD测量中,通过使用具有碱性特征的探针分子,例如氨和正丙胺,和测量它们被解吸时的温度,监控所合成的沸石的酸强度。
根据本文提供的说明,进一步的应用领域是显而易见的。应当理解,说明书和具体实施例意欲仅仅为了阐述的目的,且并不意欲限制本发明公开内容的范围。
附图简述
本文描述的附图仅仅为了阐述的目的,且绝对并不意欲限制本发明公开内容的范围。
图1是根据本发明公开内容的教导制备STT-型沸石的示意图。
图2是根据实施例1制备的STT-型沸石的x-射线粉末衍射分析谱图;
图3是根据实施例1制备的煅烧过的STT-型沸石的x-射线粉末衍射分析谱图;
图4是在10%(w/w)水存在下,在750℃下老化24小时之后,根据实施例2制备的STT-型沸石的x-射线粉末衍射分析谱图;
图5是TPD测试设备的示意图;
图6是由根据本发明公开内容制备的新鲜沸石样品显示出的氨解吸曲线的图示;
图7是由通过水热老化(750℃24小时,10%H2O)的沸石样品显示出的氨解吸曲线的图示;
图8是由根据本发明公开内容的教导制备的新鲜沸石样品显示出的正丙胺解吸曲线的图示;
图9是由通过水热老化(750℃24小时,具有10%水蒸气)的沸石样品显示出的正丙胺解吸曲线的图示;
图10提供根据本发明公开内容的教导获得的STT-型沸石的扫描电镜(SEM)图像;
图11是对于根据本发明公开内容的教导制备的新鲜STT-型沸石和对于在750℃,10%H2O下水热老化24小时的沸石样品在200℃下的NOx转化率的图示;和
图12是对于根据本发明公开内容的教导制备的新鲜STT-型沸石和对于在750℃,10%H2O下水热老化24小时的沸石样品在500℃下的NOx转化率的图示。
详细说明
下述说明性质上仅仅是例举,且绝不意欲限制本发明的公开内容或其应用或用途。应当理解,在说明书当中,相应的参考标记是指相同或相应的部件和特征。
本发明的公开内容一般地提供具有与SSZ-23沸石类似的STT-型结构或框架的结晶沸石的制备方法。本文制备的STT-型沸石显示出对选择催化还原(SCR)反应的催化活性,该活性类似于SSZ-23沸石显示出的活性,这通过氨和正丙胺的温度解吸研究证明。SSZ-23沸石的经验凝胶组成用下式表示:
5.577NaOH:4.428RNOH:Al2O3:28SiO2:1219.7H2O
给出下述具体实施方案,阐述根据本发明公开内容的教导制备的STT-型沸石的制备,鉴定和用途,且不应当解释为限制本发明公开内容的范围。鉴于本发明的公开内容,本领域技术人员会理解,可在本文公开的具体实施方案中作出许多变化,且在没有脱离或者超出本发明公开内容的精神或范围的情况下,仍然获得相同或类似的结果。本领域技术人员将进一步理解,本文报道的任何性能代表常规地测量且可通过多种不同方法获得的性能。本文描述的方法代表在没有超出本发明公开内容的范围情况下,可利用的一种这样的方法和其他方法。
参考图1,一般地通过搅拌反应物,直到获得均匀的乳状溶液,制备本发明公开内容的STT-型沸石。在2.0L Parr高压釜中,在150℃-160℃下进行沸石晶体的合成4-7天,或者在约155℃下约6天。一旦冷却,则将反应器容器的内容物倾倒在过滤器内,并用蒸馏水洗涤该晶体,和在约120℃下干燥过夜。在合成之后,在离子交换之前,煅烧沸石,以便除去沸石框架结构导向剂。所得沸石显示出大于约15:1的四价元素氧化物与三价元素氧化物的摩尔比。或者,该沸石显示出约10:1至30:1,或者约28:1的氧化硅:氧化铝摩尔比。通过XRD表征所得产物。使用0.02°2θ的步长,从5到35°的2θ扫描,获得图案。使用Carl-Zeiss显微镜,获得扫描电镜(SEM)图像和能量分散X-射线光谱法(EDAX)化学分析。在与MKS Cirrus质谱仪耦联的2920Micromeritics仪器上进行温度解吸研究。所有合成的材料是白色粉末。
根据本发明公开内容的一个方面,STT-型沸石具有D50为约0.1-50微米的粒度。四价元素源可以是水含量为约2wt%的气相法白炭黑,而三价元素源是氢氧化铝。碱金属阳离子平衡结晶STT-型沸石内的价电子电荷。碱金属阳离子可以是衍生于氢氧化钠的钠或衍生于氢氧化钾的钾。
根据本发明公开内容的另一方面,提供含有金属的催化剂的制备方法;该方法包括下述步骤:用硝酸使STT-型沸石脱铝;用金属盐的水溶液浸渍所得脱铝的沸石,该金属盐选自Cu,Fe,Co,Zr,Ti或其混合物中的一种。将金属掺入到脱铝沸石的框架位点内。
含金属的催化剂的特征在于氨温度解吸和正丙胺温度解吸,以显示出与含金属的SSZ-23沸石相当的催化活性。水热老化含金属的催化剂;水热老化的催化剂能进行氨温度解吸和正丙胺温度解吸二者。通过用Cu,Fe,Co,Zr,Ti金属离子交换,实现将金属掺入到脱铝沸石的框架内的步骤,所述金属的用量足以维持在含氮氧化物的废气物流内的NOx转化性能。在这一含金属的催化剂内存在的金属量范围可以是0.3-10.0%,或者约0.3-约5.0%,基于含金属的催化剂的总重量。
在200℃下,新鲜制备的含金属的催化剂的NOx转化性能为72%,或者约65%。在500℃下,新鲜制备的含金属的催化剂的NOx转化性能为约45%,或约30%。
仍然参考图1,根据本发明公开内容的教导制备的沸石材料可用作催化剂,例如在SCR应用中用作催化剂。通过使用具有碱性特性的探针分子,例如氨和正丙胺,通过测量它们解吸时的温度(温度编程解吸测量),监控合成的沸石样品的酸强度。通过氨温度编程的解吸和正丙胺-TPD技术,测量样品的酸度。STT-型沸石具有一直到600℃的温度稳定的强酸位点。
根据本发明公开内容的一个方面,SCR催化剂可以是单独的催化剂颗粒形式或者作为蜂窝整块结构。该蜂窝结构可以或者由催化剂组合物形成,或者是催化剂组合物作为修补基面涂层(washcoats)或修补基面涂层的组合施加在其上的陶瓷或金属基底,或者挤出的基底。预期本文中所使用的术语"SCR"催化剂包括,但不限于,选择性催化还原反应,其中氮氧化物与还原剂或还原试剂反应。还原剂或还原试剂是指可在高温下还原NOx的任何化学品或化合物。还原剂可以是氨或氨前体,例如脲。还原剂也可以是燃料,例如柴油机燃料及其馏分,以及任何其他烃类或氧化烃类。
该催化剂组合物可以是自承载的粒状物,它被制成整块结构或者布置在本领域技术人员制备催化剂通常使用的任何基底上。基底或整块结构可包括具有延伸经过其中的一个或多个气体流动通路的任何陶瓷或金属蜂窝结构。可施加该催化剂组合物到一部分结构壁上,所述结构壁定义所述通路,使得流经该通路的气体接触该催化剂组合物。该流动通路是具有任何所需截面形状或尺寸的薄壁通道,例如,但不限于,梯形,矩形,正方形,椭圆形和圆形。本领域技术人员要理解,基底也可以是壁流(wall flow)过滤器基底,其中流动通路或者被阻挡,使得气体仅仅被允许在一个通用的方向上流动。因此,使用壁流式基底提供附加的优势:能从流动的气体中与气态污染物一起除去粒状物质。壁流过滤器基底可以由本领域通常已知的材料制造,举几个来说,例如堇青石,钛酸铝或碳化硅。施加到壁流式基底上的催化剂组合物量将取决于基底的性能,例如孔隙率和壁厚。
根据本发明公开内容的另一方面,也可与氨氧化(AMOX)催化剂联合使用SCR催化剂组合物。除了SCR催化剂以外,AMOX催化剂也可作为与氧气,氮氧化物,和氨的气态物流相互作用的催化剂,用于废气处理系统。通常添加氨到在烟道或废气内流动的气态物流中,以便借助用氨催化还原氮氧化物,减少由发动机生成的氮氧化物的排放。SCR催化剂倾向于利于还原氮氧化物,而AMOX催化剂利于分解任何过量的氨。在没有超出本发明公开内容的范围情况下,预期根据本发明公开内容的教导制备的催化剂组合物的各种其他用途是可能的。例如,在美国公布No.2008/0226545中提供了与含金属的SSZ-23沸石有关的各种用途的额外说明,其全部内容在本文中通过参考引入。
实施例1–合成PIDC-120602STT-型沸石.
结合氢氧化钠溶液和N,N,N-三甲基-1–金刚烷铵氢氧化物。添加氢氧化铝,接着氧化硅Aerosil 200。向所获得的混合物中添加去离子水。搅拌反应物,直到获得均匀的乳状溶液。将所得浆液转移到2.0LParr不锈钢容器内并密封该容器。在155℃下加热该反应器容器6天。一旦冷却,则倾倒反应器容器的内容物到过滤器内,并用蒸馏水洗涤晶体,和在120℃下干燥过夜。在合成之后,在离子交换之前煅烧沸石粉末,以便除去沸石的框架结构导向剂。
在下表1中概述了,以及在图2中示出了由这一工序获得的SSZ-23沸石产品的X-射线衍射图案。该XRD图案证明存在具有高结晶度的纯的SSZ-23相。在煅烧之后,SSZ-23沸石具有其中X-射线衍射图案如图3所示的晶体结构。煅烧过的样品的XRD谱图仍然显示出存在SSZ-23相。在8.16,8.52,9.46,10.62,13.31,13.90,14.10,14.50,15.57,16.32,17.22,17.80,18.60,18.99,19.66,20.08,20.49,20.78,21.21,21.58,22.18,22.56,22.97,23.40,23.78,23.98,24.64,24.94,25.47,25.96,26.64,27.04,27.35,28.06,28.56,29.44,29.73,30.09,30.44,30.60,30.99,31.40,31.94,32.67,33.78,和34.48的2θ度下,在XRD谱图内的主峰归因于SSZ-23相。通过本文描述的方法获得的SSZ-23沸石的BET表面积为约358m2/g,和微孔体积为约0.18cm3/g。
选择在含有10%H20的流动空气内,在750℃下对SSZ-23沸石进行老化处理24小时。在图4中示出了这种水热处理的样品的X-射线衍射(XRD)谱图。该XRD谱图显示出SSZ-23型沸石的特征线。在8.16,8.50,9.40,10.52,11.27,11.76,12.79,13.26,13.88,14.08,14.46,15.54,16.12,17.10,17.72,18.09,18.50,18.80,19.60,20.04,20.38,20.64,21.48,22.07,22.50,22.79,23.34,23.60,23.80,24.57,24.76,25.34,25.83,26.52,26.94,27.33,27.92,28.45,29.30,29.62,30.46,31.38,31.96,32.75,和33.66的2θ度下的主峰归因于SSZ-23相。
表1.–PI DC-120602(实施例1)的X-射线数据(实施例1)
实施例2–温度编程的解吸
采用碱性分子NH3和正丙胺的温度编程的解吸,研究在本文制备的SSZ-23沸石上酸性位点的总体性质与分布。在与MKS Cirrus Mass Spec设备内的导热率检测仪(TCD)相连的2920 Micromeritic仪器上,记录TPD光谱。在图5中示出了示意图。
典型地,对于NH3-TPD来说,在500℃下,在20℃/min的速率下,在25mL min-1的氦气流中,预处理0.1g催化剂30分钟,然后冷却到100℃的解吸温度。在100℃下用稀释的氨(10%氨/90%氩气)饱和该催化剂30分钟。在饱和之后,在25mL min-1下,用氦气净化样品20分钟,以除去在沸石表面上的微弱吸附的氨。然后在20℃/min的加热速率下,采用在25mLmin-1下维持的流动氦气,从100℃升高样品温度到650℃,最终在650℃下保持40分钟。使用质谱仪,监控解吸的NH3
典型地,对于正丙基-TPD来说,在500℃下,在25mL min-1的氦气流中,预处理0.1g催化剂30分钟,然后冷却到100℃的解吸温度。在60℃下加热含有正丙胺的烧瓶,生成正丙胺蒸汽。用稀释的正丙胺给催化剂投料(dose)。反复投料,直到样品饱和,这通过存在5个等高峰佐证。在饱和之后,在25mL min-1下,用氦气净化样品20分钟,以除去在沸石表面上的微弱吸附的氨。然后在20℃/min的加热速率下,从100℃升高样品温度到650℃,同时流动的氦气为25mL min-1。使用质谱仪,监控解吸的正丙胺。
使用充当微流反应器的Micromeritics 2920和在穿过样品之后,进行气体浓度分析的MKS残留气体分析仪,测试NOx转化率。采用下述气体浓度,在50,000-1/hr的空间速率下,测试样品:NO=175ppm;NO2=175ppm;NH3=350ppm;和O2=175ppm。由在恒定压力下通过MKS残留气体分析仪45分钟之后的稳态条件计算NOx转化值。
根据它们的TPD峰面积,评价从三个样品中解吸的氨量。(图6)存在三个NH3解吸峰。在约160℃下的NH3解吸峰与弱酸位点有关,在340℃下的第二个峰,和在高于600℃下的另一峰与强酸位点有关,从而证明STT型沸石材料PIDC-120602的高催化活性。
由于在高温下的催化剂稳定性和耐水性对于SCR反应来说是非常重要的问题,因此,研究水热老化对催化剂性能的影响。选择在750℃下,在含有10wt%H20的流动空气中老化处理24小时。在图7中示出了水热老化的沸石样品的氨解吸曲线。可看出,SSZ-23沸石在低和中温范围下显示出非常稳定的活性,而在最多600℃的非常高温下的活性显著下降。
分别在图8中示出了针对新鲜样品和图9针对老化样品的正丙胺TPD曲线的结果。新鲜样品在160℃,360℃和600℃下显示出三个解吸峰,这表明在这一样品上存在三个能量活性类型的正丙胺吸收位点。较高温度的解吸峰归因于正丙胺与沸石样品表面处存在的硅烷醇基的较强相互作用。
分别在图11中针对新鲜样品和在图12中针对老化样品示出了NOx转化率的结果。在200℃和550℃这两个温度下老化之后,NOx转化率下降。这种NOx转化率下降表示在暴露于水热老化条件之后样品的酸度下降导致的活性损失。
为了阐述和描述的目的列出了本发明的前述说明和各种形式。并不意欲穷举或限制本发明到所公开的精确形式上。鉴于上述教导,许多改性或变化是可能的。选择并描述所讨论的形式,以提供本发明原理及其实际应用的最好阐述,从而使得本领域普通技术人员能以各种形式且在各种修饰下利用本发明,因为它们适合于所考虑的特定用途。所有这种改性和变化在所附权利要求确定的本发明范围内,当根据它们公平,合法和公正授权的宽度解释时。

Claims (23)

1.一种制备结晶STT-型沸石的方法,该结晶STT-型沸石的四价元素的氧化物与三价元素的氧化物的摩尔比为10:1-30:1,所述方法包括:
形成含水反应混合物,所述含水反应混合物包含四价元素氧化物源;三价元素氧化物源;碱金属源;和含N,N,N-三甲基-1-金刚烷基氢氧化铵的有机结构导向剂;其中三价元素源是氢氧化铝;
搅拌该含水反应混合物以形成均匀的含水料浆;
在包括在150℃-160℃的温度下在高压釜中加热料浆4-7天的条件下,对该均匀的含水料浆进行结晶化处理;
在足以使STT-型沸石晶体结晶的结晶条件下,维持该均匀的含水料浆,所述晶体具有在下述处的2θ峰的x-射线衍射图案:8.26,8.58,9.28,9.54,10.58,14.52,15.60,16.43,17.13,17.74,18.08,18.46,19.01,19.70,20.12,20.38,20.68,21.10,21.56,22.20,22.50,22.78,23.36,23.76,23.99,24.54,24.92,25.16,25.58,25.80,26.12,26.94,27.38,27.92,28.30,28.60,29.24,29.48,30.08,30.64,31.20,31.46,31.80,32.02,32.60,33.60和34.43;和
回收该STT-型沸石晶体。
2.权利要求1的方法,其中回收的STT-型沸石是SSZ-23。
3.权利要求2的方法,其中SSZ-23沸石的经验凝胶组成用下式表示:
5.577 NaOH:4.428 RNOH:Al2O3:28 SiO2:1219.7 H2O。
4.权利要求1-3中任一项的方法,其中该方法进一步包括形成含金属的催化剂,其通过以下步骤实现:
用硝酸使STT-型沸石脱铝;
用金属盐水溶液浸渍或离子交换脱铝的STT-型沸石;和
将选自Cu,Fe,Co,Zr,Ti中的一种或其混合物中的金属掺入到脱铝的STT-型沸石的框架位点内,形成含金属的催化剂。
5.权利要求4的方法,其中含金属的催化剂的特征在于氨温度解吸和正丙胺温度解吸,以显示出与含金属的SSZ-23沸石相当的催化活性。
6.权利要求4的方法,其中在含金属的催化剂中存在的金属范围为0.3-10.0%,基于含金属的催化剂的总重量。
7.权利要求4的方法,其中水热老化含金属的催化剂;该水热老化的催化剂能进行氨温度解吸和正丙胺温度解吸二者。
8.权利要求4的方法,其中通过用Cu,Fe,Co,Zr,Ti金属进行离子交换,实现将金属掺入到脱铝沸石的框架内的步骤,所述金属的量足以在含氮氧化物的废气流内维持NOx转化率性能。
9.权利要求8的方法,其中在200℃下,新鲜制备的含金属的催化剂的NOx转化率性能为72%。
10.权利要求8-9中任一项的方法,其中在500℃下,新鲜制备的含金属的催化剂的NOx转化率性能为45%。
11.权利要求8的方法,其中在200℃下,水热老化的含金属的催化剂的NOx转化率性能为65%。
12.权利要求8的方法,其中在500℃下,水热老化的含金属的催化剂的NOx转化率性能为30%。
13.权利要求4的方法,其中该方法进一步包括在蜂窝状基底、金属基底或挤出基底上沉积含金属的催化剂。
14.权利要求13的方法,其中该蜂窝状基底包括壁流式基底。
15.权利要求1的方法,其中STT-型沸石具有D50为0.1至50微米的粒度。
16.权利要求1的方法,其中STT-型沸石具有对最多600℃的温度稳定的强酸位点。
17.权利要求1的方法,其中四价元素源是水含量为2wt%的气相法白炭黑。
18.权利要求1的方法,其中碱金属阳离子平衡结晶STT-型沸石内的价电子电荷。
19.权利要求17的方法,其中碱金属阳离子是来自氢氧化钠的钠、或者来自氢氧化钾的钾。
20.权利要求1的方法,其中加热该混合物到155℃的温度。
21.一种废气处理系统,它包括根据权利要求4-7任一项的方法制备的含金属的催化剂。
22.权利要求21的废气处理系统,其中至少一部分壁流式基底用含金属的催化剂涂布且适合于减少在气流内包含的氮氧化物。
23.在氧气存在下减少在气流内包含的氮氧化物的方法,其中所述方法包括使该气流与根据权利要求4-7任一项的方法制备的含金属的催化剂接触。
CN201380058689.7A 2012-09-28 2013-09-27 在选择性催化还原反应中用作催化剂的stt‑型沸石的制备方法 Expired - Fee Related CN104918884B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261707392P 2012-09-28 2012-09-28
US61/707,392 2012-09-28
PCT/US2013/062075 WO2014052691A1 (en) 2012-09-28 2013-09-27 A method of preparing an stt-type zeolite for use as a catalyst in selective catalytic reduction reactions

Publications (2)

Publication Number Publication Date
CN104918884A CN104918884A (zh) 2015-09-16
CN104918884B true CN104918884B (zh) 2018-01-09

Family

ID=49304425

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380058689.7A Expired - Fee Related CN104918884B (zh) 2012-09-28 2013-09-27 在选择性催化还原反应中用作催化剂的stt‑型沸石的制备方法

Country Status (5)

Country Link
US (1) US10137411B2 (zh)
EP (1) EP2900600A1 (zh)
JP (1) JP6416096B2 (zh)
CN (1) CN104918884B (zh)
WO (1) WO2014052691A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106608637B (zh) * 2015-10-27 2019-02-01 中国石油化工股份有限公司 一种合成stt结构分子筛的方法
CN106315611A (zh) * 2016-08-24 2017-01-11 山东齐鲁华信高科有限公司 一种ssz‑13分子筛的制备方法
CN112912340B (zh) * 2018-10-29 2024-01-02 太平洋工业发展公司 高酸度和低二氧化硅与氧化铝比率(sar)的ssz-13沸石的制备方法
GB201900484D0 (en) 2019-01-14 2019-02-27 Johnson Matthey Catalysts Germany Gmbh Iron-loaded small pore aluminosilicate zeolites and method of making metal loaded small pore aluminosilicate zeolites
CN109772445A (zh) * 2019-02-17 2019-05-21 浙江大学 一步法合成Ti-Cu-SSZ-13分子筛催化剂的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859442A (en) * 1986-01-29 1989-08-22 Chevron Research Company Zeolite SSZ-23
CN1968748A (zh) * 2004-04-15 2007-05-23 格雷斯公司 用于在流体催化裂化中降低NOx排放的组合物和方法
CN101573182A (zh) * 2006-12-27 2009-11-04 雪佛龙美国公司 小孔分子筛的制备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4936977A (en) * 1986-01-29 1990-06-26 Chevron Research Company Zeolite SSZ-24
NZ218940A (en) * 1986-01-29 1989-11-28 Chevron Res Zeolite ssz-23: mole ratio of sio 2 or geo 2 to other framework oxides greater than 50 to 1
US5202014A (en) * 1986-01-29 1993-04-13 Chevron Research And Technology Company Zeolite SSZ-25
JPH04180836A (ja) * 1990-11-16 1992-06-29 Toyota Motor Corp 排気ガス浄化用触媒
JP2775041B2 (ja) * 1992-01-31 1998-07-09 財団法人産業創造研究所 脱硝触媒の製造方法および脱硝方法
JPH0788379A (ja) * 1993-09-24 1995-04-04 Honda Motor Co Ltd 排気ガス浄化用触媒
US6620402B2 (en) * 1999-12-06 2003-09-16 Haldor Topsoe A.S Method of preparing zeolite single crystals with straight mesopores
US6709644B2 (en) * 2001-08-30 2004-03-23 Chevron U.S.A. Inc. Small crystallite zeolite CHA
JP5345386B2 (ja) * 2005-04-29 2013-11-20 ダブリュー・アール・グレイス・アンド・カンパニー−コネチカット 部分燃焼FCC法で使用するNOx低減用組成物
US8383080B2 (en) * 2006-06-09 2013-02-26 Exxonmobil Chemical Patents Inc. Treatment of CHA-type molecular sieves and their use in the conversion of oxygenates to olefins
WO2008106519A1 (en) * 2007-02-27 2008-09-04 Basf Catalysts Llc Copper cha zeolite catalysts
US7998423B2 (en) * 2007-02-27 2011-08-16 Basf Corporation SCR on low thermal mass filter substrates
GB0723841D0 (en) * 2007-12-06 2008-01-16 Univ Leuven Kath Enhancing catalytic activity of nanoprous materials
US10583424B2 (en) * 2008-11-06 2020-03-10 Basf Corporation Chabazite zeolite catalysts having low silica to alumina ratios
BRPI1015393B1 (pt) * 2009-05-08 2018-08-14 Mitsubishi Chemical Corporation Processo de produção de propileno, zeólita e catalisador
JP5685870B2 (ja) * 2009-09-14 2015-03-18 三菱化学株式会社 プロピレンの製造方法
KR101294098B1 (ko) * 2010-03-11 2013-08-08 존슨 맛쎄이 퍼블릭 리미티드 컴파니 NOx의 선택적 촉매 환원을 위한 무질서 분자체 지지체
BR112013001046A2 (pt) * 2010-07-15 2016-05-24 Basf Se material zeolítico de ofretita (off) e/ ou erionita (eri), zsm-34 contendo cobre, catalisador, uso de um catalisador, sistema de tratamento de gás de escapamento, e, método para redução seletiva de óxidos de nitrogênio nox
US20130034482A1 (en) * 2011-08-05 2013-02-07 Chevron U.S.A Inc. Reduction of oxides of nitrogen in a gas stream using molecular sieve ssz-23
US8512674B1 (en) 2012-03-01 2013-08-20 Chevron U.S.A. Inc. Preparation of molecular sieve SSZ-23

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4859442A (en) * 1986-01-29 1989-08-22 Chevron Research Company Zeolite SSZ-23
CN1968748A (zh) * 2004-04-15 2007-05-23 格雷斯公司 用于在流体催化裂化中降低NOx排放的组合物和方法
CN101573182A (zh) * 2006-12-27 2009-11-04 雪佛龙美国公司 小孔分子筛的制备

Also Published As

Publication number Publication date
US20150196876A1 (en) 2015-07-16
EP2900600A1 (en) 2015-08-05
WO2014052691A1 (en) 2014-04-03
JP2015535800A (ja) 2015-12-17
CN104918884A (zh) 2015-09-16
US20170043294A9 (en) 2017-02-16
JP6416096B2 (ja) 2018-10-31
US10137411B2 (en) 2018-11-27

Similar Documents

Publication Publication Date Title
US8715618B2 (en) Process for the direct synthesis of Cu containing zeolites having CHA structure
KR101991529B1 (ko) 분자체 전구체 및 분자체의 합성
EP2746223B1 (en) B-type iron silicate composition and method for reducing nitrogen oxides
CN104918884B (zh) 在选择性催化还原反应中用作催化剂的stt‑型沸石的制备方法
KR101507204B1 (ko) 고내열성 β-형 제올라이트 및 이를 사용한 SCR 촉매
WO2012086753A1 (ja) チャバザイト型ゼオライト及びその製造方法、銅が担持されている低シリカゼオライト、及び、そのゼオライトを含む窒素酸化物還元除去触媒、並びに、その触媒を使用する窒素酸化物還元除去方法
US10596518B2 (en) Bimetal-exchanged zeolite beta from organotemplate-free synthesis and use thereof in the selective catalytic reduction of NOx
CN105452168B (zh) 沸石以及其制造方法和用途
EP3386632A1 (en) Cha type zeolitic materials and methods for their preparation using combinations of cycloal-kyl- and ethyltrimethylammonium compounds
BR112012014791B1 (pt) processo para a preparação de uma peneira molecular contendo cobre com a estrutura de chabazita (cha), peneira molecular contendo cobre, catalisador, uso do catalisador, sistema de tratamento de gás de escapamento, e, método para reduzir seletivamente óxidos de nitrigênio nox.
BR102015007798A2 (pt) Catalisador
CN103917493A (zh) 使用n,n-二甲基有机模板合成沸石材料
US20120207669A1 (en) Novel metallosilicates, processes for producing the same, nitrogen oxide removal catalyst, process for producing the same, and method for removing nitrogen oxide with the same
EP2072128B1 (en) Catalyst for reducing nitrogen oxides and process for reducing nitrogen oxides
CN104797337B (zh) 在选择性催化还原中用作催化剂的氧化铝硅酸盐沸石‑型材料及其制造方法
US20210138441A1 (en) Stable CHA Zeolites
EP3124435A1 (en) Method for producing transition metal-containing zeolite, transition metal-containing zeolite obtained by said method, and exhaust gas purifying catalyst using said zeolite
JP5309936B2 (ja) 窒素酸化物浄化触媒及び窒素酸化物浄化方法
Sørli Effect of Porosity on the Hydrothermal Stability of CuSAPO-34 for the deNOx Process

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20180109