CN104903467B - 确定体细胞突变原因的方法 - Google Patents

确定体细胞突变原因的方法 Download PDF

Info

Publication number
CN104903467B
CN104903467B CN201380069425.1A CN201380069425A CN104903467B CN 104903467 B CN104903467 B CN 104903467B CN 201380069425 A CN201380069425 A CN 201380069425A CN 104903467 B CN104903467 B CN 104903467B
Authority
CN
China
Prior art keywords
mutations
site
cancer
motif
nucleic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380069425.1A
Other languages
English (en)
Other versions
CN104903467A (zh
Inventor
罗宾·艾丽斯·林德利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GMDx Co.,Ltd.
Gmdx Pte Ltd
Original Assignee
Gmdx Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from AU2012904826A external-priority patent/AU2012904826A0/en
Application filed by Gmdx Pte Ltd filed Critical Gmdx Pte Ltd
Publication of CN104903467A publication Critical patent/CN104903467A/zh
Application granted granted Critical
Publication of CN104903467B publication Critical patent/CN104903467B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/142Toxicological screening, e.g. expression profiles which identify toxicity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明主要涉及确定诱变剂引起的核酸分子靶向体细胞突变已经发生的可能性的方法,和确定诱变剂是核酸分子的靶向体细胞突变的原因的可能性的方法。本发明还涉及受试者患癌症的诊断方法和/或确定受试者已经或将患癌症的可能性,治疗癌症患者或癌症高危人群的方法。在另一方面,本发明涉及识别核酸分子基序的方法,此基序通过诱变剂识别或是诱变剂的目标。

Description

确定体细胞突变原因的方法
技术领域
本发明通常涉及确定诱变剂引起的核酸分子靶向体细胞突变已经发生的可能性的方法,和确定诱变剂是核酸分子的靶向体细胞突变的原因的可能性的方法。本发明还涉及受试者患癌症的诊断方法和/或确定受试者患或将患癌症的可能性,治疗癌症患者或癌症高危人群的方法。在另一方面,本发明涉及识别核酸分子基序的方法,此基序被诱变剂识别或靶向。
相关申请
本申请要求2012年11月5日提交的题为“体细胞突变相关疾病的诊断方法”的澳大利亚临时申请2012904826;2012年11月13日提交的题为“体细胞突变相关疾病的诊断方法和数据库系统”的澳大利亚临时申请2012904940和2013年4月12日提交的题为“少量体细胞突变的诱变相关疾病的诊断方法”的澳大利亚临时申请2013901253的优先权。澳大利亚临时申请2012904826,2012904940和2013901253的主题通过引用的方式整体并入本文。
背景技术
正常细胞发展成癌细胞受多种因素的影响,包括免疫系统,激素状态,基因表达和组织间的信号的改变。癌症的发展的一个特别重要的因素是体细胞突变,它在大多数(如果不是全部)组织类型的癌症中作用。
各种基因体细胞突变的累积与癌症的发展直接相关。这已经通过体细胞突变增加的各种动物模型证明,例如,受损的DNA聚合酶的校对或DNA修复与加速肿瘤进展相关(参加例如Venkatesan et al.(2007).Mol.Cell.Biol.27:7669-7682;and Albertson(2009)Proc.Natl.Acad.Sci.U.S.A.106,17101-17104)。各种基因体细胞突变的增加的与多种癌症有关。例如,在TP53基因的体细胞突变是癌症中最常见的基因变异。几乎所有类型的癌症有TP53体细胞突变,从突变率为38%-50%卵巢癌,食管癌,结肠直肠癌,头颈癌,喉癌和肺癌,到突变率为5%的初级白血病,肉瘤,睾丸癌,恶性黑色素瘤,和子宫颈癌,和晚期或侵袭性癌症亚型(如三阴性或HER2扩增的乳腺癌),都与TP53体细胞突变频率增加有关(reviewed in Olivier et al.(2010)Cold Spring Harb Perspect Biol2:a001008)。与癌症相关的体细胞基因突变积累包括,例如,BRAF,RAS,KRAS2和NRAS,虽然癌症体细胞获得性突变在线数据库cosmic包括25000多个基因。
环境因素可引起体细胞突变,例如香烟烟雾、紫外线和辐射,和/或生物因子或进程,如染色体易位,DNA错配修复或未修复和酶启动体细胞超突变(SHM)。确定体细胞突变的原因和范围不仅可以帮助诊断与体细胞突变相关的条件或预测开发这样条件的风险,而且还可以协助发展最合适的治疗或预防方案。因此,需要精确的方法确定体细胞突变的存在和哪些诱变剂引起受试者体细胞突变。
发明内容
本发明部分基于确定诱变剂导致核酸分子一个特定密码子背景发生体细胞突变的偏好。因此,尽管已经知道一些诱变剂作用于基序,如本文所述这些基序的诱变主要发生在一个特定密码子背景,这一过程本文称靶向体细胞突变。通过识别所述基序的密码子背景,本发明人已经制定了用于确定所述类型的靶向体细胞突变已经发生的方法和确定一个或多个特定诱变剂是核酸分子的靶向体细胞突变的原因的方法。已经建立了。通过评定靶向体细胞突变的实例确定确定诱变剂靶向的基序的通用方法并在本文描述。
因为体细胞突变的累积与癌症的发生与发展与体细胞突变的累积有关,本文已经确定了诊断受试者患癌症和/或确定受试者已经或将患癌症的可能性的方法。通过确定致病诱变剂和/或诊断癌症或癌症发生的可能性,制定适当和具体的治疗方案抑制或减少诱变剂的活性,和/或治疗或预防癌症。
因此,在一个方面,本发明是针对用于检测或确定诱变剂引起的核酸分子靶向体细胞突变已经发生的方法,包括分析所述核酸分子的序列,以确定一个或多个基序密码子背景突变的突变类型,其中,当核酸分子密码子一个位点突变的数量或百分比高于预期时,可以定确靶向体细胞突变已经发生或可能发生。
通常,通过假设密码子背景的单独突变计算突变的预期数量或百分比。在一些实施方案中,突变的预期百分比大约是11%或17%,和/或突变的预期数量大约是每9个突变有1个或每6个突变有1个。在一些实例中,突变的百分比为至少30%,35%,40%,45%,50%,55%,60%,65%,70%,80%,85%,90%,95%或更多。
确定诱变剂引起的靶向体细胞突变是否已经发生的方法还包括确定哪个诱变剂是靶向体细胞突变的原因。诱变剂选自,例如,黄曲霉毒素,4-氨基联苯,马兜铃酸,砷化合物,石棉,硫唑嘌呤,苯,联苯胺,铍和铍的化合物,1,3-丁二烯,二甲基磺酸1,4-丁二醇酯,镉和镉化合物,苯丁酸氮芥,1-(2-氯乙基)-3-(4-甲基环己基)-1-亚硝基脲(MeCCNU),二氯二甲醚和工业级氯甲基甲醚,铬六价铬化合物,煤焦油沥青,煤焦油,焦炉逸散物,环磷酰胺,环孢菌素A,己烯雌酚(DES),毛沸石,环氧乙烷,甲醛,美法仑,长波紫外线联合甲氧沙林(PUVA),芥子气,2-萘胺,中子,镍化合物,氡,结晶二氧化硅(可吸入粒度),太阳辐射,煤烟,:含有硫酸的强无机酸酸雾,他莫昔芬,2,3,7,8-四氯双苯环二恶英(TCDD),塞替派,二氧化钍,烟草烟雾,氯乙烯,紫外线辐射,木屑,X射线,伽玛辐射,活化诱导胞苷脱氨酶(AID),载脂蛋白B mRNA编辑酶催化多肽样蛋白(APOBEC)胞苷脱氨酶,和易错DNA聚合酶。在一些实例,APOBEC胞苷脱氨酶选自APOBEC 1、APOBEC3A、APOBEC3B、APOBEC3C、APOBEC3D、APOBEC3F、APOBEC3G和APOBEC3H。
在特定的实施例中,所述诱变剂选自AID,APOBEC1,APOBEC3G,APOBEC3H和黄曲霉毒素如果在核酸分子非转录链密码子第二位点(MC-2位点)GYW基序的G>A突变的数量或百分比高于预期,可以确定AID是靶向体细胞突变的一个可能的原因;如果核酸分子非转录链密码子第一位点(MC-1位点)WRC基序的C>T突变的数量或百分比高于预期,可以确定AID是靶向体细胞突变的一个可能的原因;如果核酸分子非转录链密码子MC-2位点CG基序的G>A突变的数量或百分比高于预期,可以确定APOBEC3G是靶向体细胞突变的一个可能原因;如果核酸分子非转录链密码子MC-1位点CG基序的C>T突变的数量或百分比高于预期,可以确定APOBEC3G是靶向体细胞突变的一个可能原因;如果核酸分子非转录链密码子MC-1位点CC基序的C>T突变的数量或百分比高于预期,可以确定APOBEC3G是靶向体细胞突变的一个可能原因;如果核酸分子非转录链密码子MC-1位点GA基序的G>A突变的数量或百分比高于预期,可以确定APOBEC3H是靶向体细胞突变的一个可能原因;如果核酸分子非转录链密码子MC-1位点CA基序的C>T突变的数量或百分比高于预期,可以确定APOBECl是靶向体细胞突变的一个可能原因;如果核酸分子非转录链密码子MC-2位点TG基序的G>A突变的数量或百分比高于预期,可以确定APOBECl是靶向体细胞突变的一个可能原因;如果核酸分子非转录链密码子MC-3位点GG基序的G>T突变的数量或百分比高于预期,可以确定黄曲霉毒素是靶向体细胞突变的一个可能原因;其中所述核酸分子来自受试者的生物样品。
确定靶向体细胞突变是否发生的方法的实施方案还包括确定AID相关的突变过程是否可以引起所述靶向体细胞突变。例如,如果在核酸分子非转录链密码子MC-2位点WA基序的A>G突变,MC-2位点GYW基序的G>A突变或MC-1位点WRC基序的C>T突变的数量或百分比高于预期,可以确定AID相关的突变过程是靶向体细胞突变的一个可能原因。
在本发明方法的具体例子中,如果确定AID是靶向体细胞突变的一个可能原因,该方法还包括对受试者施用AID抑制剂;如果确定APOBEC3G是靶向体细胞突变的一个可能原因,该方法还包括对受试者施用APOBEC3G抑制剂;如果确定APOBEC3H是靶向体细胞突变的一个可能原因,还包括对受试者施用APOBEC3H抑制剂;如果确定APOBECl是靶向体细胞突变的一个可能原因,还包括对受试者施用APOBECl抑制剂。
在进一步的实施方案中,如果确定靶向体细胞突变已经发生和/或诱变剂是靶向体细胞突变的可能原因,所述方法还包括在受试者中诊断癌症或确定受试者将患癌症的可能性。
在其它方面,本发明涉及确定受试者已患或将患癌症的可能性的方法,包括分析取自受试者生物样品的核酸分子,以检测一个或多个诱变剂是否引起靶向体细胞突变,并确定发生靶向细胞诱变的受试者很可能已经患或发展成癌症。
在一个实例中,检测靶向体细胞突变的时机:核酸分子非转录链密码MC-2位点GYW基序的G到A突变的数量或百分比高于预期;核酸分子非转录链密码子MC-1位点WRC基序的C>T突变的数量或百分比高于预期;核酸分子非转录链密码子MC-2位点CG基序的G>A突变的数量或百分比高于预期;核酸分子非转录链密码子MC-1位点CG基序的C>T突变的数量或百分比高于预期;核酸分子非转录链密码子MC-1位点CA基序的C>T突变的数量或百分比高于预期;在核酸分子非转录链密码子MC-1位点GA基序的G>A突变的数量或百分比高于预期;核酸分子非转录链密码子MC-2位点TG基序的G>A突变的数量或百分比高于预期;核酸分子非转录链密码子MC-3位点GG基序的G>T突变的数量或百分比高于预期;核酸分子非转录链密码子MC-1位点CC基序的C>T突变的数量或百分比高于预期;或核酸分子非转录链密码子MC-2位点WA基序的A>G突变的数量或百分比高于预期。
在具体的实例中,权利要求19所述的方法,如核酸分子非转录链密码子MC-2位点GYW基序的G>A突变或MC-1位点WRC基序的C>T突变的数量或百分比高于预期,确定所述诱变剂是AID;如果核酸分子非转录链密码子MC-2位点CG基序的G>A突变,MC-1位点CG基序的C>T突变或MC-1位点CG基序的C>T突变的数量或百分比高于预期,其中所述诱变剂是APOBEC3G;如果核酸分子非转录链密码子MC-1位点CA基序检测的C>T突变或MC-2位点TG基序的G>A突变的数量或百分比高于预期,所述诱变剂是APOBEC1。如果核酸分子非转录链密码子MC-1位点GA基序的G>A突变的数量或百分比高于预期,所述诱变剂是APOBEC3G。如果核酸分子非转录链密码子MC-3位点GG基序的G>T突变的数量或百分比高于预期,所述诱变剂是黄曲霉毒素。
所述生物样品包括乳腺、前列腺、肝、结肠、胃、胰腺、皮肤、甲状腺、子宫颈、淋巴、造血、膀胱、肺、肾、直肠、卵巢、子宫和头颈部的组织或细胞,并且,在一些情况下,所述癌症选自乳腺癌、前列腺癌、肝癌、结肠癌、胃癌、胰腺癌、皮肤癌、甲状腺癌、子宫颈癌、淋巴癌、血癌、膀胱癌、肺癌、肾癌、直肠癌、卵巢癌、子宫癌和头颈部癌。在具体的实例中,所述癌症是肝细胞癌,黑素瘤或腺样囊性癌。
本发明的一些实施方案中,如果所述样品包括前列腺组织或细胞,可以诊断受试者患有前列腺癌或确定受试者可能已经患或将患癌症。在其他实施方案中,如果所述样品包括乳腺组织或细胞,可以诊断受试者患有乳腺癌或确定受试者可能患或将患乳腺癌。
本发明的方法还包括治疗受试者,例如,放射疗法,外科手术,化疗,激素消融治疗,促凋亡疗法和/或免疫疗法。在具体的实例中,所述方法包括对受试者施用AID抑制剂、APOBEC3G抑制剂、APOBEC1抑制剂和/或APOBEC3H抑制剂。
在另一个方面,本发明涉及通过诱变剂靶向识别核酸基序的方法,包括分析核酸分子的序列,以确定诱变剂引起的基因突变是体细胞突变;确定突变的密码子背景,以识别发生突变高于预期频率的优选核苷酸位点;并且识别位于优选核苷酸位点的核苷酸侧翼突变,以便识别所述突变的共同基序。
本发明涉及识别针对诱变剂的核酸基序的方法,包括:分析核酸分子的序列,以确定所述核酸分子的体细胞突变;识别密码子优选核苷酸位点上高于预期频率的突变型;并且识别位于优选核苷酸位点的核苷酸侧翼突变,以便识别所述突变的共同基序。
所述突变类型选自C>T、C>A、C>G、G>T、G>A、G>C、A>T、A>C、A>G、T>A、T>C和T>G突,所述优选核苷酸位点选自MC-1,MC-2和MC-3。
在此类方法中,通过假设密码子背景的单独突变计算所述预期频率。例如,所述预期频率大约是每9个突变有1个或每6突变有1个。在一些实施方案中,所述突变发生在优选核苷酸位点的至少有30%、35%、40%、45%、50%、55%、60%、65%、70%、80%、85%、90%、95%或更多。
本发明方法的一些实施方案中,分析所述核酸分子的非转录链。
所述诱变剂对于获得核酸的细胞来说是内源性的或外源性的。例如,所述诱变剂选自:4-氨基联苯,马兜铃酸,砷化合物,石棉,硫唑嘌呤,苯,联苯胺,铍和铍化合物,1,3-丁二烯,二甲基磺酸1,4-丁二醇酯,镉和镉化合物,苯丁酸氮芥,1-(2-氯乙基)-3-(4-甲基环己基)-1-亚硝基脲(MeCCNU),二氯二甲醚和工业级氯甲基甲醚,铬六价铬化合物,煤焦油沥青,煤焦油,焦炉逸散物,环磷酰胺,环孢菌素A,己烯雌酚(DES),毛沸石,环氧乙烷,甲醛,美法仑,长波紫外线联合甲氧沙林(PUVA),芥子气,2-萘胺,胞苷脱氨酶,和易错DNA聚合酶。本发明方法的具体例子中,所述核酸分子或获得核酸分子的细胞,在分析之前,已经暴露于诱变剂。
在本发明方法的实施案中还包括第一次分离核酸分子和/或核酸分子的全部或部分测序。所述核酸分子包含全部或部分单基因或单基因cDNA;或包含全部或部两个或多个基因或两个或多个基因cDNA。在一些情况下,所述基因与癌症相关。例如,所述基因选自TP53、PIK3CA、ERBB2、DIRAS3、TET2和一氧化氮合酶(NOS)基因。在进一步的实施方案中,分析构成细胞全外显子或全基因组的核酸分子。
本发明涉及一种试剂盒,包含在本文所述的方法中使用的试剂。所述试剂选自,例如,引物、dNTP和聚合酶。
在本发明方法具体实施方案中,所述方法的全部或部分由处理系统执行。
附图说明
图1示出核酸分子非转录链相关区域的靶向体细胞突变。
图2示出核酸分子示范性的分析过程,以确定AID或AOPBEC3G引起的靶向体细胞突变是否发生。
图3示出的分析用于确定突变是随机发生还是靶向体细胞突变的结果。
图4示出子宫颈癌受试者核酸TP53基因GYW/WRC位点(AID),CG/CG位点(APOBEC3G),TG/CA位点(APOBECl)和WA位点突变的密码子内的频率和位置,并且示出突变发生的统计分析。
图5示出结肠癌受试者核酸TP53基因GYW/WRC位点(AID),CG/CG位点(APOBEC3G),TG/CA位点(APOBECl)和WA位点突变的密码子内的频率和位置,并且示出突变发生的统计分析。
图6示出肝细胞癌受试者核酸TP53基因GYW/WRC位点(AID),CG/CG位点(APOBEC3G),TG/CA位点(APOBECl),WA位点和GG位点(黄曲霉毒素)突变的密码子内的频率和位置,并且示出突变发生的统计分析。
图7示出胰腺癌受试者核酸TP53基因GYW/WRC位点(AID),CG/CG位点(APOBEC3G),TG/CA位点(APOBECl)和WA位点突变的密码子内的频率和位置,并且示出突变发生的统计分析。
图8示出前列腺癌受试者核酸TP53基因GYW/WRC位点(AID),CG/CG位点(APOBEC3G),TG/CA位点(APOBECl)和WA位点突变的密码子内的频率和位置,并且示出突变发生的统计分析。
图9示出恶性黑色素瘤受试者核酸TP53基因GYW/WRC位点(AID),CG/CG位点(APOBEC3G),TG/CA位点(APOBECl)和WA位点突变的密码子内的频率和位置,并且示出突变发生的统计分析。
图10示出宫颈腺癌受试者核酸TP53基因GYW/WRC位点(AID),CG/CG位点(APOBEC3G),TG/CA位点(APOBECl)和WA位点突变的密码子内的频率和位置,并且示出突变发生的统计分析。
图11示出宫颈腺癌受试者核酸NOS基因GYW/WRC位点(AID),CG/CG位点(APOBEC3G),TG/CA位点(APOBECl)和WA位点突变的密码子内的频率和位置,并且示出突变发生的统计分析。
图12示出乳腺癌受试者核酸PI 3CA基因GYW/WRC位点(AID),CG/CG位点(APOBEC3G),TG/CA位点(APOBECl)和WA位点突变的密码子内的频率和位置,并且示出突变发生的统计分析。
图13示出造血和淋巴组织肿瘤受试者核酸TET2基因GYW/WRC位点(AID),CG/CG位点(APOBEC3G),TG/CA位点(APOBECl)和WA位点突变的密码子内的频率和位置,并且示出突变发生的统计分析。(A)受试者PD3185a.(B)受试者PD3181a。
图14示出腺样囊性癌2组受试者组织全外显子组GYW/WRC位点(AID),CG/CG位点(APOBEC3G)和WA位点突变的密码子内的频率和位置,并且示出突变发生的统计分析。(A)受试者PD3185a,(B)受试者PD3181a。
图15示出前列腺癌4组受试者组织全外显子组GYW/WRC位点(AID),CG/CG位点(APOBEC3G)和WA位点突变的密码子内的频率和位置,并且示出突变发生的统计分析。(A)受试者WA7,(B)受试者WA26,(C)受试者PR-09-3421,(D)受试者PR-2762。
图16示出1组膀胱癌受试者核酸全外显子组GA位点(APOBEC3H)突变的密码子内的频率和位置,并且示出突变发生的统计分析。
图17示出8组膀胱癌受试者和单膀胱癌受试者个核酸全外显子组CC位点(APOBEC3G)突变的密码子内的频率和位置,并且示出突变发生的统计分析。
图18示出处理系统检测核酸分子靶向体细胞突变的过程。
表A
核苷代码
代码 说明
A 腺苷
C 胞苷
G 鸟苷
T 胸苷
U 尿苷
M 氨基(腺苷、胞苷)
K 酮(鸟苷、胸苷)
R 嘌呤(腺苷、鸟苷)
Y 嘧啶(胞苷、尿苷)
W 腺苷或胞苷
N 任意核苷
具体实施方式
定义部分
除非另外定义,本文所用的所有技术和科学术语有本领域普通技术人员所熟知的相同的含义。虽然任何类似或等同于本文描述的方法和材料可以应用于本发明的实践或测试中,但是本文描述了优选的方法和材料。对于本发明的目的,下列术语定义如下。
本文中使用的冠词"a"和"an"是指一个或多于一个(即至少一个)冠词的语法对象。举个例子,“一个元件”意指一个元件或多于一个元件。
如本文所用的术语“生物样品”是指从受试者或患者萃取,未处理,处理过的,稀释或浓缩的样品。
如本文所用,关于突变的术语"密码子背景"是指发生突变密码子的核苷酸位置。本发明的目的,当密码子从5至3读码时,注解为MC-1、MC-2和MC-3的突变密码子核苷酸位点(MC;即含有突变的密码子),分别是指第一,第二和第三个核苷酸位点。因此,短语"确定突变密码子背景"或类似短语的意思是确定突变密码子发生突变的核苷酸位点,即MC-1、MC-2或MC-3。
在整个本说明书中,除非上下文另有要求,词语“包括”,“包含”和“包括”意指包括所述步骤或元素或一组步骤或元素,不是排除其他的步骤或元素或一组步骤或元素。
“基因”是指基因组中占据特定位点的遗传单位并且包括转录和/或翻译调节序列和/或编码区和/或非翻译序列(即,内含子,5'和3'非翻译序列)。
如本文所用,术语“可能性”用来衡量靶向体细胞突变是否发生,特定的诱变剂是否引起靶向体细胞突变,含有靶向体细胞突变核酸的受体是否已经或将患癌症基于给定的数学模型。例如增加的可能性可以是相对的或绝对的,并且可以定性或定量表达。例如,根据以前的人口研究,受试者患癌症增加的可能性或风险可以表现为简单地确定靶向体细胞突变的数量(如本文讲解的),并将受试者归为“增加的可能性或风险”一类。
在一些实施方案中,该方法包括比较所述靶向体细胞突变的数量或百分和预选或阈值数量或百分比。阈值可以选择提供可接受能力进行预测诊断、可能性或预后风险。在说明性实施例中,通过在两个群体中,其中第一群具有第一条件或风险和第二群具有第二条件或风险,绘制一个变量的值与它的相对频率计算受试者工作特征(ROC)曲线(所谓任意,例如,“健康状况”和“癌症”或“低风险”和“高风险”)。
患和未患疾病受试者突变数目的分布很有可能重叠。在这种条件下,测试并不能100%绝对区分第一条件和第二条件,并且重叠的区域表示其中测试不能区分的第一条件和第二条件。选择阈值,高于该测试认为是“阳性”和低于该测试认为是“阴性”。ROC曲线下的面积(AUC)提供了C-统计,这是一种概率衡量,该感知测量将允许条件正确的识别。术语“曲线下面积”或“AUC”指的是面积受试者工作特征(ROC)曲线,这两种在本领域是公知的曲线。AUC措施是用来比较整个完整的内容范围分类器的精确度。较大AUC分类器有更大的能力,以在两组获益之间进行正确分类未知(例如,健康条件突变状态和癌症突变状态)。ROC曲线可于用于绘制区分或识别区两个群体的特定功能的性能(如患癌症和控制没有癌症病例)。通常情况下,基于单个特性的值,整个人口的特征数据(例如,病例和对照)以升序进行排序。然后,对于该功能的每个值,计算数据的真阳性和假阳性率。灵敏度通过计数高于该特征值的病例数,然后除以病例的总数。特异性是通过计数低于该特征值的对照数,然后除以对照的总数。虽然这个定义是指方案中的特征是与对照组相比升高的病例,这一定义也适用于方案中的特征是与对照组相比降低的病例(在这种情况下,下面将计数该功能的采样值)。可以用单个特征以及其他单个输出生成ROC曲线,例如,两个或更多个特征的组合可以在数学上组合(例如,加,减,相乘,等等),以产生一个单一的值,并且这个单个的值可绘制在ROC曲线。此外,多个特征的任何组合(例如,一个或多个其他后生标记),其中,所述组合派生一个单独的输出值,可以绘制在ROC曲线。功能的这些组合可以包括一个测试。ROC曲线是该试验的特异性对测试的灵敏度的曲线图,其中按传统垂直轴给出灵敏度和水平轴给出特异性。因此,“AUC ROC值”等于分类器随机选择的正面实例高于随机选择的负面实例的概率。本文认为AUC ROC值可以等同于Mann-Whitney U测试,如果该组是连续的数据,可以检验两组得到的评分之间的中位数的差异,或用Wilcoxon秩检验。
可替代地,或另外地,阈值可以通过获得来自同一患者的早期突变状态建立,可以用来比对以后的结果。在这些实施方案中,个人的实际行为充当自己的“对照组。在另一个实施方案中,可通过分析正常人或患者健康组织的核酸靶向体细胞突变数目并与病变或癌组织核酸靶向体细胞突变数目比较建立阈值。
术语“诱变剂”是指可引起DNA的诱变的试剂。诱变剂包括内源性诱变剂(即诱变剂是内源的,或由包含DNA的细胞产生)和外源性诱变剂(即诱变剂是外源性的,或不通过包含DNA的细胞产生),并且包括例如化学品,蛋白质,酶,辐射和病毒。
如本文所使用的,“突变型”是指包含所述突变的特定核苷酸的取代,并且选自C>T、C>A、C>G、G>T、G>A、G>C、A>T、A>C、A>G、T>A、T>C和T>G突变。因此,例如,C>T突变型是指替代核酸T取代靶向或突变核酸C的突变。
该术语通常指的是长度大于30个核苷酸残基的多核苷酸。
术语“患者”和“受试者”可互换使用并且是指患者和人或其它哺乳动物受试者,包括期望用本发明的方法检查或治疗中的任何个人。然而,应该理解的是,“患者”并不意味着症状存在。本发明范围之内的合适哺乳动物包括,但不限于,人类和其他灵长类,家畜动物(例如,绵羊,牛,马,驴,猪),实验室试验动物(例如,兔,小鼠,大鼠合适的哺乳动物,豚鼠,仓鼠),伴侣动物(如猫,狗)和捕获的野生动物(如狐狸,鹿,野狗)。
术语“体细胞突变”指的是体细胞DNA中的突变(即不是生殖细胞),受孕后发生。因此“体细胞突变”指的是体细胞突变发生的过程。
如本文所用,“靶向细胞诱变”指的是从一种或多种诱变剂引起体细胞突变过程,其中诱变发生在一个基序内的靶向核苷酸,所述的靶向核苷酸存在于密码子内的特定位点(例如,第一、第二或第三位点,突变的密码子从5'至3'阅读,分别注解为MC-1、MC-2和MC-3),并且靶向核苷酸突变成特定的替代核苷酸(即突变是一个特定的突变型,例如:C>T,而不是C>A或C>G)。因此,靶向体细胞突变发生确定需要分析突变的类型(例如,C>T),突变发生的基序(例如WRC)和突变密码子的背景,即该突变发生的密码子内的位点(例如MC-1,MC-2或MC-3)。因此,“靶向体细胞诱剂”是指靶向体细胞突变引起的突变。
如本文所用,术语“治疗”,“治疗”和类似术语是指获得期望的药理学和/或生理学效果。该效果是可以预防的,即完全或部分地预防病症(如癌症)或其症状和/或可能是部分或完整的治疗方法和/或归因于条件的不利影响。“治疗”,如本文所用,涉及治疗任何病症的哺乳动物,特别是人类,并且包括:(a)预防有发展成该疾病的风险但迄今尚未诊断的受试者发生疾病;(b)抑制状态,即,阻止其发展;和(c)缓解病情,即,引起病症的消退。
如本文所用,“全显子组”,是指基因组中的全部外显子。因此,细胞全外显子组序列分析是指细胞基因组中的全部外显子序列的分析。
2.诱变剂参与体细胞突变
外源性和内源性因素可以作为诱变剂导致或在体细胞突变发挥作用。外源因苏包括但不限于,4-氨基联苯,马兜铃酸,砷化合物,石棉,硫唑嘌呤,苯,联苯胺,铍和铍的化合物,1,3-丁二烯,二甲基磺酸1,4-丁二醇酯,镉和镉化合物,苯丁酸氮芥,1-(2-氯乙基)-3-(4-甲基环己基)-1-亚硝基脲(MeCCNU),二氯二甲醚和工业级氯甲基甲醚,铬六价铬化合物,煤焦油沥青,煤焦油,焦炉逸散物,环磷酰胺,环孢菌素A,己烯雌酚(DES),毛沸石,环氧乙烷,甲醛,美法仑,长波紫外线联合甲氧沙林(PUVA),芥子气,2-萘胺,中子,镍化合物,氡,结晶二氧化硅(可吸入粒度),太阳辐射,煤烟,:含有硫酸的强无机酸酸雾,他莫昔芬,2,3,7,8-四氯双苯环二恶英(TCDD),塞替派,二氧化钍,烟草烟雾,氯乙烯,紫外线辐射,木屑,X射线,伽玛辐射,活化诱导胞苷脱氨酶(AID),载脂蛋白B mRNA编辑酶催化多肽样蛋白(APOBEC)胞苷脱氨酶,和易错DNA聚合酶,例如DNA。
2.1 AID
活化诱导胞苷脱氨酶(AID)是在适应性免疫中重要的酶,参与体细胞超突变(SHM)和B细胞的免疫球蛋白基因的类别转换重组。通过脱氨胞苷生成尿嘧啶(C>U)AID触发SHM,以多样化免疫球蛋白可变区基因(VDJ),并创建新的抗原结合位点。
本文已经认识到这些引起新的抗原结合位点的SHM进程产生的突变模式不是随机的。本文已经确定聚类和受相邻碱基序列影响的突变活性热点,和催化特性和从AID产生特异性突变谱和有记录其参与重排免疫球蛋白可变区基因的AID介导的DNA脱氨。
目前认为该SHM过程发生在两个阶段。在阶段1中,编码AID蛋白的基因在生发中心B淋巴细胞中表达上调(Muramatsu et al.(2000)Cell 102:553-563)。然后通过在转录过程中暴露出的DNA转录单链(ss)区域由胞苷直接脱氨基为尿嘧啶(C>U)(Di Noia andNeuberger(2007)Annu Rev Biochem.76:1-22;Teng and Papavasiliou(2007)Annu RevGenet 41:107-120),在反向互补热点GYW/WRC,AID靶向突变至G:C碱基对(其中Y=C/T,W=A/T,R=AG;和下划线的核苷酸构成靶向碱基对)。AID脱氨前占据靶向胞苷(Bhutani etal.(2011)Cell 146:866-872)。如果未修复DNA中的尿嘧啶有强致突变性,和它们活化DNA碱基切除修复(BER)过程涉及尿嘧啶DNA糖基化酶(UNG)引起脱嘌呤嘧啶(AP),或“脱碱基”,位点,导致ssDNA缺口(通过脱嘌呤/脱嘧啶核酸内切酶的活性,APE)和引起进一步的DNA补片修补活性(Peled et al.(2008)Ann Rev Immunol 26:481-511)。一旦UNG触发BER途径以除去尿嘧啶,在复制和修复中产生的脱碱基位点可以由碱基A,G,C或T取代。
与第1阶段相关联的主链偏好突变模式的特点是占主导地位的C>T和G>A转换,并且G的突变的总数超过C的数目Steele(2009)Mol Immunol 46:305-320)。本文已推断出链偏好突变模式是与哺乳动物RNA聚合酶II复制模板DNA链携带的AID病变,尿嘧啶和AP位点是一致的(see e.g.Steele(2009)Mol Immunol 46:305-320)。
在第2阶段中,突变主要是针对WA-热点基序的A:T碱基对在和A超过突变T2-3倍的链-偏好突变(see e.g.Steele(2009)Mol Immunol 46:305-320)。在第2阶段,G:U错配募集错配DNA结合修复异二聚体MSH2-MSH6复合物,在很短的补丁容易出错的DNA修复过程中反过来募集易出错的
Figure BDA0000752365620000141
家族跨损伤蛋白DNA聚合酶-eta到VDJ靶序列的区域的WA-位点和其他一些序列延伸。
一些研究表明,异常的AID发起SHM过程可能会导致生发中心环境之外DNA中C>U的转化,从而有助于发现在其他基因癌变(Beale et al.(2004)J Mol.Biol 337:585-594;Marusawa H.(2008)Int J Biochem Cell Biol 40:1399-1402)。已经发现发生在各种基因具有SHM样活性如人扁桃体B细胞的BCL-6(Yavuz et al.(2002)Mol Immunol 39:485-493),T-淋巴瘤中的CD5/4,、P1M 1和CMYC基因(otani et al.(2005)PNAS 102:4506-4511),和B-淋巴瘤中的BCL-6和C-MYC(Nilsen et al.(2005)Oncogene 24:3063-3066)。也研究了AID-启动SHM活性,作为许多研究中TP53突变的潜在来源。在一个这样的研究中,发现B细胞慢性淋巴细胞白血病(B-CLL)TP53的靶向突变表现出SMH过程的特征特性(Malcikovaet al.(2008)Molecular Immunology 45:1525-9)。虽然两个患者中观察到的突变数是低,该数据显CG碱基对点突变的显著偏好,及第一和第二例的RGYW/WRCY基序的著偏好(第一和第二患者分别为28%和44%,)。第二患者,发现6/8的点突变影响WA/TW基序A:T对碱基对在WA/TW基序,这是SHM单点突变谱的标志特征。发现第一患者高表达AID,但不是在IgVH基因突变的第二患者发现。如本文示出和Lindley和Steele描述(ISRN Genomics(2013)921418)and Lindley(Cancer Genet.(2013)206(6):222-6),链偏好的SHM样变过程与癌症相关。
也有传染性病原体诱导AID表达并导致TP53突变,它与免疫球蛋白基因SHM活性的已知特性一致的例子。实例包括C型肝炎病毒(Machida et al.(2004)Proc Natl Acad SciU.S.A.101:4262-4267),EB病毒(Epeldegui et al.(2007)Mol.Immunol 44:934-942)和幽门螺杆菌(Matsumoto et al.(2007)Nat Med.13:470-476)。AID与B细胞肿瘤和其他癌症相关(Honjo et al.(2012)Adv Cancer Res.2012;1 13:1-44),小鼠转基因表达肿瘤形成(Okazaki et al.(2003)J Exp Med 197:1173-1 181)。
2.2 APQBEC胞苷脱氨酶
除了AID,人类基因组编码几个同源APOBEC胞苷脱氨酶,它们参与免疫和编辑R A(Smith et al.(2012)Semin.Cell.Dev.Biol.23:258-268)。在人类中,至少APOBEC 1、XPOBEC3A、APOBEC3B、APOBEC3C、APOBEC3D、APOBEC3F、APOBEC3G和APOBEC3H参与提供先天免疫和/或细胞的mRNA编辑。
例如,APOBEC1负责ApoB mRNA前体编辑,它导致胞苷6666脱氨基使氨酰胺的密码子变为终止密码子,由此产生较短形式的ApoB(ApoB48)。APOBEC1也可以在DNA脱氨胞苷(Harris et al.(2002)Mol Cell.10:1247-1253;Petersen-Mahrt and Neuberger(2003)JBiol Chem.278:19583-19586)。该APOBEC3酶脱氨可改变因素(即内源性反转录因子和外源性病毒),DNA的突变的是一种形式的先天免疫。例如,APOBEC3G作用于HIV和其他逆转录病毒(如猿免疫缺陷病毒(SIV),马传染性贫血病毒(EIAV),鼠白血病病毒(MLV),和泡沫病毒(IV)突变反转录过程中的负链的DNA。其它APOBEC3酶也已显示作用于HIV和其他逆转录病毒,以及乙型肝炎病毒,细小病毒和AAV-2。
AID,APOBEC胞苷脱氨酶与癌变有关。例如,小鼠转基因表达APOBEC1导致肿瘤形成(Yamanaka et al.(1995)PNAS 92:8483-8487);高表达APOBEC3B会导致肿瘤相关的基因体细胞突变(Shinohara et al.(2012)Scientific Reports 2:806);至少乳腺癌,膀胱癌,子宫颈-(腺癌和鳞状细胞癌),和头颈部癌症中APOBEC3B上调,与突变APOBEC3B基序突变增加相关(Burns et al(2013)Nature 494:366-370;Burns et al.(2013)Nature Genetics45:977-983);并且已经证明是各种癌症中广泛存在APOBEC酶突变。
比较研究APOBEC1和APOBEC3G,用细菌突变试验证明了胞苷脱氨酶的特异性核苷酸5'和3'靶向C的极端重要性(Beale et al.(2004)J Mol.Biol 337:585-594)。虽然APOBEC3G只能在单链DNA脱氨胞苷,APOBEC1可以在DNA双链或RNA编辑胞苷。据观察,在APOBEC1的存在下79%的转换与5'T相关,因此意味着APOBEC1的TG/CA基序。该APOBEC3G基序建议作为CG/CG和/或CC(Beale et al.(2004)J Mol.Biol 337:585-594;and Rathmoreet al(2013).J.Mol.Biology 425(22):4442-54)。其他研究表明,其它APOBEC酶,如APOBEC3A,APOBEC3B和APOBEC3F有一个TC基序,或者更严格的TCW基序(其中W对应A或T)(Bishop et al.(2004)Curr Biol.14:1392-1396;Thielen et al.(2010)J Biol Chem285:27753-27766;Henry et al.(2009)PLoS One.4:e4277;Shinohara et al.(2012)Scientific Reports 2:806;Burns et al.(2013)Nature Genetics45:977-983)。建议APOBEC3H针对GA/TC基序。
3.检测靶向体细胞突变的方法
如本文所证实,某些诱变剂不仅导致核苷酸一个或多个特定基序的诱变,还在密码子背景识别的基序和突变核苷酸,即突变的核苷酸是密码子结构内的特定位点,如在突变密码的第一,第二或第三核苷酸(读5'至3')。还替换或替代的核苷酸的明显倾向。
由诱变剂靶向的基序特异性和密码子背景特异性组合在本文称靶向细胞诱变。通过一个非限制性的例子的方式,并如图1,核酸分子非转录链RA基序的A突变可优先发生在突变密码子的第一位点(MC-1位点),并且是一个C突变(即A>C)。因此,通过分析核酸分子序列确定核酸分子靶向体细胞突变是否发生的可能性,进而确定一个或多个特定基序(例如,WA基序)突变类型(例如A>C)突变的密码子背景。如果在基序突变型的突变的位点没有密码子偏倚(即突变基本上均匀地分布在密码子的每个位点),那么突变很有可能是偶然出现的,而不是诱变剂引起的靶向体细胞突变的结果。但是,如果有一个比预期的百分比或突变型的突变在一个特定位置中的密码子数目较高(例如MC-1,MC-2或MC-3位点)中的核酸分子,那么这表明靶向体细胞突变已经发生或可能已经发生。如果在核酸分子密码子特定位点(如MC-1,MC-2或MC-3位点)突变类型突变的数量或百分比高于预期,那么这表明靶向体细胞突变已经发生或可能已经发生。
如果突变是独立于其它突变和密码子背景,即密码子每个位点的每个靶核苷酸的突变分布是基本上连续的,上述突变的“预期数量或百分比”是预期突变的数量或百分比。因此,例如,评估MC-1,MC-2和MC-3的位置或位点产生突变时,它可以预期三个位点中的任何一个位点(如MC-1,MC-2或MC-3)的一个核苷酸(例如,A)可以突变成其它三种核苷酸的任何一个(如G,C或T)将发生如每9突变有1个(即1/3的机会A至G,C或T,并且任何一个位点有1/3的机会,在任何地点,总体相当于1/9的机会)或大约11%的时间。在评估整个基因突变引起的密码子的两个核苷酸位点所产生的突变,如MC-1和MC-2位点,,它可以预期,一个核苷酸的突变(例如,A)与其它核苷酸(例如G,C或T)中的任两个位点中的任何一个(例如,MC-1或MC-2),会发生如每6突变中有1个,或大约17%的时间(即1/3的机会A至G,C或T中的任何一个,并且任何位点有1/2的机会于,相当于总体有1/6的机会)。同样,当评估任一位点所产生的突变时(例如,MC-1),它可以预期,一个核苷酸(如A)突变至任何一个其它核苷酸(例如G,C或T)会出现如每3突变中有1个或大约33%的时间。。
这示于图2,其中在MC-1位点C>T突变的发生率(即突变密码子的第一个核苷酸位点)被评估,以确定靶向体细胞突变是否已经发生或观察到的突变是否出现随机。如果跨WRC基序MC-1和MC-2位点的胞嘧啶突变是随机的,然后将预期该突变的类型和位点是均匀分布的,并且每六次发生一次MC-2的C>T突变(或约17%),其他5个突变为MC-1的C>A,MC-2的C>A,MG-1的C>G,MC-2的C>G,和MC-1的C>T。图2中所示的特定例子中,WRC基序MC-1或MC-2位点共有82个胞嘧啶突变。如果诱变是随机的,可以预期,这些的六分之一(或17%)是MC-2位点的C>T突变,相当于约14事件。然而,在这个例子中,有观测的72个MC-2位点C>T突变,这表明核酸的靶向体细胞突变已经发生。
通常情况下,靶向体细胞突变发生是一种或多种诱变剂活性的结果,并通过密码子的三个位点(例如MC-1,MC-2和MC-3)评估,观察与该诱变剂相关联的特定的突变至少或约20%、25%、30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更多的时间。当通过两个位点评估(例如,MC-1和MC-2;MC-1和MC-3;或MC-2和MC-3),观察与该诱变剂相关联的特定的突变至少或约30%、35%、40%、45%、50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更多的时间。当通过一个位点评估(例如,MC-1;MC-2或MC-3),观察与该诱变剂相关联的特定的突变至少或约50%、55%、60%、65%、70%、75%、80%、85%、90%、95%或更多的时间。
通过评估一个特定基序的突变的类型,(例如,WRC基序的C>T突变),以及该突变的密码子背景(如突变是否在MC-2位点),当只评估基序的突变并不考虑密码子背景,可以通过比较更精确的评估诱变剂的活性。因此,使用本文描述的方法,通过分洗核酸分子的序列评估特定诱变剂或诱变过程,如AID相关的突变过程,引起核酸靶向体细胞突变的可能性,进而诱变剂或诱变过程攻击的基序突变的密码子背景。
3.1AID、APOBEC1、APOBEC3G、APQBEC3H和黄曲霉毒素引起靶向体细胞突变
如上所述,已知AID攻击所述GYW/WRC基序,其中带下划线的核苷酸发生突变。如本文所证实,MC-2位点有发生针对G到A的显著趋势,导致G>A的突变。因此,核酸分子非转录链MC-2位点GYW基序的G>A突变的数量或百分比高于预期,表明AID是核酸靶向体细胞突变的可能原因,并且获得核酸的细胞和/或组织的AID是有活性的。正如本文中也表明,MC-1位点有发生针对C到T显著趋势,导致C>T的突变。因此,核酸分子非转录链MC-1位点WRC基序的C>T突变的数量或百分比高于预期,表明AID是核酸靶向体细胞突变的可能原因,并且获得核酸的细胞和/或组织的AID是有活性的。
已知APOBEC3G攻击CG/CG基序,其中带下划线的核苷酸发生突变。本文所述的研究表明,MC-2位点有发生针对G到A的显著趋势,导致G>A的突变。因此,核酸分子非转录链MC-2位点CG基序的G>A突变的数量或百分比高于预期,表明APOBEC3G是核酸靶向体细胞突变的可能原因,并且获得核酸的细胞和/或组织的APOBEC3G是有活性的。MC-1位点有发生针对C到T显著趋势,导致C>T的突变。因此,核酸分子非转录链MC-1位点CG基序的C>T突变的数量或百分比高于预期,表明APOBEC3G是核酸靶向体细胞突变的可能原因,并且获得核酸的细胞和/或组织的APOBEC3G是有活性的。
已知APOBEC3G攻击CC基序,其中带下划线的核苷酸发生突变。本文所述的研究表明,MC-1位点有发生针对C到T的显著趋势,导致C>T的突变。因此,核酸分子非转录链MC-1位点CC基序的C>T突变的数量或百分比高于预期,表明APOBEC3G是核酸靶向体细胞突变的可能原因,并且获得核酸的细胞和/或组织的APOBEC3G是有活性的。
APOBEC1优先攻击核酸分子TG/CA基序。此外,MC-1位点CA基序有发生针对C到T的显著趋势,导致C>T的突变。因此,核酸分子非转录链MC-1位点CA基序的C>T突变的数量或百分比高于预期,表明APOBECl是核酸靶向体细胞突变的可能原因,并且获得核酸的细胞和/或组织的APOBECl是有活性的。MC-2位点TG基序也有发生针对G到A的显著趋势,导致G>A的突变。因此,核酸分子非转录链MC-2位点TG基序的G>A突变的数量或百分比高于预期,表明APOBECl是核酸靶向体细胞突变的可能原因,并且获得核酸的细胞和/或组织的APOBECl是有活性的。
已知WA基序的体细胞突变发生在生发中心B细胞AID相关SHM过程的第二阶段,并因此指示AID相关的突变过程,推而广之,可能预示AID活性。如本文所证实,MC-2位点有发生针对A到T的显著趋势,导致A>T的突变。因此,核酸分子非转录链MC-2位点WA基序的A>T突变的数量或百分比高于预期,表明获得核酸的细胞和/或组织的AID相关的体细胞突变过程是活跃的,并且细胞和/或组织的AID是有活性的。如果MC-2位点GYW基序的G>A突变或MC-1位点WRC基序的C>T突变的数量或百分比高于预期,可以确定AID相关的突变过程引起靶向体细胞突变。
黄曲霉毒素与TP53249位密码子第三位点G>T颠换相关。本文已经确定有攻击GG基序内G的趋势,其中靶向核苷酸在MC-3位点。因此,核酸分子非转录链MC-3位点GG基序的G>T突变的数量或百分比高于预期,表明黄曲霉毒素是核酸靶向体细胞突变的可能原因,并且获得核酸的细胞和/或组织的APOBECl是有活性的。在具体的实例中,黄曲霉毒素是黄曲霉毒素B1。在其它实例中,黄曲霉毒素是黄曲霉毒素B2、Gl、G2、Ml或M2。
3.2确定其他诱变剂的基序
本文清楚表明,诱变剂可以攻击特定密码子背景内的基序核酸。因此,这种诱变剂引起的靶向体细胞突变通常导致一种类型的突变(例如C>T,而不是C>G或C>A),在密码子结构内的一个位点(例如,MC-1和不是MC-2或MC-3)和在同一基序(例如,CG)。通过分析基序特定突变类型的核酸序列并在特定的密码子背景内,如上所述,获得的诱变剂活性指示比仅检测基序突变的发病率更精确。
密码子背景偏好可用来识别其他诱变剂的基序。已知为了体细胞突变突变类型的发病率的核酸序列分析与诱变剂相关(例如.G>T),并且还评估突变和核苷酸侧翼的突变的密码子背景,可以识别该基序的诱变剂。当一个特定的突变(例如G>T)发生在密码子内的特定位点(例如,MC-3)比随机发生更频繁,即该突变发生在优选核苷酸位点,该位点的突变可能是诱变剂引起的靶向体细胞突变的结果。通过分析优选核酸位点侧翼核苷酸突变(例如,MC-3),突变的共同基序,并因此确定诱变剂攻击。
这在下面实施例7中证实。先前认为TP53249位密码子第三位点G>T颠换与黄曲霉毒素有关。当分析肝癌受试者样品的全外显子组iiucleic酸的G>T突变时,检测到MC-3位点有有9个C>T突变,并且每个突变是与另一个G紧接5'的突变G一致,表明黄曲霉攻击GG基序,其中,所述靶向(下划线)G在MC-3位点,引起C>T突变。
因此,本发明还提供了确定诱变剂攻击基序的方法。该方法涉及分析核酸分子的序列,以确定与诱变剂相关的突变型是否主要发生在密码子的一个位置或位点(例如,MC-1,MC-2或MC-3)。如果有突变型和位点的共同发病率,则可以识别突变核苷酸的核苷酸侧翼,以便识别包括突变核苷酸的共同基序。更具体地,方法包括分析核酸分子的序列,以确定已知与诱变剂相关的体细胞突变基因突变类型,确定所述突变的密码子背景来识别突变发生频率高于预期的优选核苷酸位点,并识别优选核苷酸位点突变的核苷酸侧翼,以便识别突变的共同基序。
当不知道诱变剂相关的突变类型时可以适用类似的方法。在这种情况下,首先分析核酸分子的序列,以确定的体细胞突变,并且如果确定突变随机(即在优选核苷酸位点)发生在密码子内一个位点的(例如MC-3)任何突变型(如G>T)的频率高于预期。随后评估优选核苷酸位点突变的侧翼序列,以确定突变是否有共同基序。如果有,该基序可能是诱变剂的目标。
在其它实例中,可以进一步分析诱变剂的已知基序,以确定密码子偏倚和优选突变类型。可以根据本文评估核酸序列,如实施例1中,以确定与突变基序相关的密码子背景和突变型,进而评估密码子核苷酸位点突变型是否优选。例如,认为APOBEC3A,APOBEC3B,APOBEC3F和APOBEC3H攻击TC基序,或更严格是TCW基序。可以分析一种或多种核酸分子的序列,以确定基序突变发生的密码子背景,即是否在MC-1,MC-2或MC-3,并且确定发生什么类型的突变,(例如C>A,C>T,或C>G)。一旦重合突变型,确定基序和密码子背景,这组标准,或诊断规律,可以用来更准确地确定APOBEC3A,APOBEC3B,APOBEC3F或APOBEC3H(或其他诱变剂)是否引起核酸分子靶向体细胞突变,并且因此确定获得核酸的细胞是否有活性。
使用上述方法识别基序和/或诊断规则,通常是分析已知或怀疑与诱变剂相关的核酸或从细胞获得的已知或怀疑与诱变剂相关的核酸。例如,进行核酸分析之前,细胞包含的核酸在体外暴露于诱变剂。在其它实例中,可以从已知暴露于诱变剂的受试者组织或细胞中获得所述核酸。可以用多个样品的多个研究验证结果。
3.3评估核酸分子
用于获得和评估的核酸分子序列的本领域已知方法可用于本发明。本发明的方法可以分析任何核酸分子,虽然一般是DNA(包括cDNA)。通常,所述核酸是哺乳动物核酸,例如人类核酸。可以从任何生物样品获得该核酸。例如,生物样品可以包括血液,组织或细胞。在一些实例中,所述生物样品是活检组织。此外,样品可以来自身体的任何部位,并且可以包括任何类型的细胞或组织,诸如,例如,乳腺癌,前列腺癌,肝细胞,结肠,胃,胰腺,皮肤,甲状腺,子宫颈癌,淋巴,造血的,膀胱癌,肺癌,肾癌,直肠癌,卵巢癌,子宫癌,和头部或颈部的组织或细胞,或脑脊液细胞。在一些情况下,从怀疑或有患癌风险的受试者的细胞或组织样品获得核酸,或者从患癌受试者的细胞或组织样品获得。
所述核酸分子可以包含一个基因的全部或部分,或者两个或多个基因的全部或部分,并且根据本发明的方法分析这个基因或多个基因的序列。例如,所述核酸分子可以包含TP53,PIK3CA,ERBB2,DIRAS3,TET2或一氧化氮合酶(NOS)基因的全部或部分。在一些情况下,所述核酸分子包含整个基因组或全外显子组,并且根据本发明的方法分析整个基因组或全外显子组的序列。
使用本发明的方法时,已经预先确定核酸分子的序列。例如,该序列可能存储在数据库或其他存储介质中,并且根据本发明的方法分析该序列。在其它实例中,必须首先用本发明的方法确定所述核酸分子的序列。在具体的实例中,也必须首先从自生物样品分离核酸分子。
本领域熟知获得核酸和/或测序核酸的方法,并且任何这样的方法可用于本文描述的方法。在一些情况下,所述方法包括测序前扩增分离的核酸,和本领域的普通技术人员熟知的合适的核酸扩增技术。本领域熟知核酸测序技术,并且可以应用到单个或多个基因,或全外显子组或基因组。这些技术包括,例如,依赖于“Sanger测序'的毛细管测序方法(Sanger et al.(1977)Proc Natl Acad Sci USA74:5463-5467)(即涉及链终止测序方法),以及“下一代测序”技术,方便一次测序几千到几百万的分子。这样的方法包括,但不限于,焦磷酸测序,这使荧光素酶读出的信号作为单独的核苷酸添加到DNA模板;“通过合成测序”技术(Illumina公司),它使用在每个周期添加一个单核苷酸到DNA模板的可逆染料终止子技术;和SolidTM测序(通过寡核苷酸连接和检测测序;Life Technologies公司),它通过固定长度的寡核苷酸结扎优先序列。这些新一代测序技术对整个基因组和全外显子组测序特别有用。
一旦获得了核酸分子的序列,然后鉴定单点体细胞突变。可以通过比较所述序列和对照序列鉴单点突变定。对照序列是指从控制个体样品获得的核酸分子序列,例如无病的健康人;从对照样品获得的核酸分子的序列;如来自健康,无疾病组织的样品;或者可以理解为无体细胞突变的共有序列。除了确定的单点突变,识别突变的密码子和密码子内突变的位点(MC-1,MC-2或MC-3)。在5'和3'的密码子的核苷酸侧翼ALSP确定,以便识别基序。通常,本发明的方法中,分析核酸分子的非转录链(等效于cDNA序列)的序列。在一些情况下,分析转录链的序列。
图2显示生物样品核酸分析的一个例子,如上文所述,以确定APOBEC3G和/或AID是否引起体细胞突变。在这个例子中,已经确定PD3185a样品cDNA序列单点突变的的位置(其中,所述起始密码子“ATG”包括所述第一,第二和第三核苷酸分子)和其密码子背景以便评估GYW/WRC,CG/CG和WA基序每个位点发生突变的数量和类型。然后数据制成表格和进行统计分析用于确定突变是偶然发生还是由AID和/或APOBEC3G引起靶向体细胞突变的结果。在图2所示的例子中,因为非转录链MC-2位点GYW基序的G>A突变和MC-1位点WRC基序的C>T突变高于预期,所以AID可能引起核酸分子靶向体细胞突变。此外,非转录链MC-2位点CG基序的G>A突变高于预期,所以APOBEC3G可能引起核酸分子靶向体细胞突变。
如本文所证实,使用本发明的方法,只需分析少数基序突变以确定特定诱变剂引起靶向体细胞突变的统计学意义。在一些情况下,使用本发明的方法分析特定基序突变的数目少至2个突变。例如,如果发现看起来健康的患者所分析的核酸仅有2个体细胞突变,都是MC-2位点GYW基序的G>A突变,那么,这种模式偶然出现的概率是0.04238(p<95%,用ChiSquare test,9-1=9df)。另外,每个突变偶然发生的概率是1/9(即1/3的机会G>A突变,和一个1/3的机会的突变在MC-2位点,如上面所讨论的),并且2出2突变发生这种模式的概率是1/81(或0.012346)。然而,本领域技术人员可以理解,当分析特定基序多个突变时可以提高统计学显着性。因此,在一些情况下,使用本发明的方法分析的特定基序突变的数目至少是20。治疗前或治疗后受试者核酸样品中有40个或更多的突变,,携带高达400或更多个突变。因此,使用本发明的方法分析的特定基序突变的数目至少是或约2、3、4、5、6、7、8、9、10、152025、30、40、50、60、70、80、90、100、150、200、250、300或更多。
检测受试者靶向体细胞突变和进一步确定诱变剂引起靶向体细胞突变的可能性所必需的原料和试剂,并且如本文所述的相关的方法,可以组装在一试剂盒中。例如,当本发明的方法包括分析第一次分离和/或核酸测序进行时,试剂盒包括方便第一次分离和/或核酸测序的试剂。这类试剂可以包括,例如,DNA扩增的引物,聚合酶,dNTPs(包括标记的dNTPs),阳性和阴性对照,以及缓冲液和溶液。这种试剂盒通常还包括,合适的装置,每种试剂的不同容器。该试剂盒还可以配备各种设备,和/或试剂盒的使用说明书。
在一些实施方案中,按本文通常描述的方法进行,至少部分,由处理系统,如适当编程的计算机系统。用有执行应用程序软件微处理器的独立计算机执行上述的方法。另外,该方法可以进行,至少部分,由一个或多个处理系统操作分布式体系结构的一部分。例如,处理系统可用于识别突变类型,突变的密码子背景和/或一个或多个核酸序列的基序。在一些例子中,由用户输入到处理系统命令,协助处理系统在作出这些决定。
在一个实例中,处理系统包括至少一个微处理器,存储器,输入/输出设备,诸如键盘和/或显示器,以及一个外部接口,由总线相互连接。处理系统可以通过外部接口连接到外围设备,例如通信网络,数据库或存储设备。微处理器以应用软件存储在存储器形式执行指令,以允许进行本发明的方法,以及执行任何其他所需的过程,例如与计算机系统进行通信。应用软件可以包括一个或多个软件模块,并且可以合适的环境中应用,诸如操作系统环境中,或类似环境。
在另一示例中,处理系统可用于上传序列信息和数据库或其他源中的其它相关数据。适合本文公开的方法的算法可以应用到数据,如在图18中所示。在这个例子中,)输入数据[1]和测试参数(例如用基序)[2]被上传或输入到系统中。然后产生碱基替换表感兴趣的基因组区域内突变和对齐和链接突变的数据和密码子背景数据和关于样品的细节和核苷酸序列的其他信息[3,4,5]。下一步涉及识别每个基序密码子内的每个核苷酸位点各突变型的重合[6],表列数据记录每个基序与密码子背景的各突变型的重合[7],包括每个诊断的相对可能性等级与置信水平[8]。根据输入的服务请求信息生成输出报告[9]并产生可读的输出[10]。
4.诊断和治疗应用
本文描述的方法是为了检测靶向体细胞突变是否已经发生并确定诱变剂引起核酸分子体细胞突变的可能性有许多有用的诊断和治疗应用。已知体细胞突变与许多癌症的发生和发展有关。类似地,已知某些诱变剂是与许多癌症的发生和发展有关。根据本文描述的方法,可以确定存在和/或一种或多种诱变剂引起的靶向细胞诱变程度,并识别引起体细胞突变的诱变剂。这有利于癌症的早期诊断,该受试者已经或将要发生癌症的可能性的判断,和/或发展适当的治疗或预防方案。此外,靶向体细胞突变的持续评估属于用一种或多种诱变剂评估癌症是否发展或倒退和/或治疗方案的成功或失败。例如,样品核酸检测靶向体细胞突变的数量增加,例如活检,随着时间的推移,在同一受试者指示癌症的恶化的或治疗方案出现故障,而稳定或降低的突变数量可以指示病症的缓解或治疗方案的成功。
在特定情况下,本发明的方法可以延伸到的受试者癌症的诊断或受试者已患或将患癌症可能性的确定。例如,可通过分析来自受试者的生物样品的核酸分子评估受试者已患或将患癌症可能性,以便确定一个或多个诱变剂引起的靶向体细胞突变是否发生。如果已经发生靶向体细胞突变,可以确定受试者已患或将患癌症。
在一些实例中,上述的诊断规则被用来确定靶向体细胞突变已经发生。例如,检测靶向细胞诱变的时机:在核酸分子非转录链第二位点(MC-2位点)GYW基序的G>A突变的数量或百分比高于预期;在核酸分子非转录链第一位点(MC-1位点)WRC基序的C>T突变的数量或百分比高于预期;在核酸分子非转录链MC-2位点CG基序的G>A突变的数量或百分比高于预期;在核酸分子非转录链MC-1位点CG基序的C>T突变的数量或百分比高于预期;在核酸分子非转录链MC-1位点CA基序的C>T突变的数量或百分比高于预期;在核酸分子非转录链MC-1位点GA基序的G>A突变的数量或百分比高于预期;在核酸分子非转录链MC-2位点TG基序的G>A突变的数量或百分比高于预期;在核酸分子非转录链MC-3位点GG基序的G>T突变的数量或百分比高于预期;在核酸分子非转录链MC-1位点CC基序的C>T突变的数量或百分比高于预期;或在核酸分子非转录链MC-2位点WA基序的A>G突变的数量或百分比高于预期,如上所述的APOBEC3G、APOBEC3H、APOBEC1和黄曲霉毒素。在其它实例中,诊断规则确定其他诱变剂,用本文描述方法,检测靶向体细胞突变的发生。
在一些情况下,当检测受试者特定区域或位置的样品中的细胞或组织的靶向体细胞突变时,如乳腺癌、前列腺癌、肝癌、结肠、胃、胰腺、皮肤、甲状腺、子宫颈癌、淋巴、造血、膀胱癌、肺癌、肾癌、直肠癌、卵巢癌、子宫癌和头部或颈部的组织或细胞,然后,确定该受试者患有或可能发展为癌症所涉及的组织的或细胞。因此,例如,该受试者患有或可能发展为乳腺癌、前列腺癌、肝癌、结肠、胃、胰腺、皮肤、甲状腺、子宫颈癌、淋巴、造血、膀胱癌、肺癌、肾癌、直肠癌、卵巢癌、子宫癌或头颈部癌。
在具体的实例中,如果观察到诱变剂,例如AID或APOBEC3G可能引起前列腺组织或细胞核酸的靶向体细胞突变,那么可能被诊断该受试者患有前列腺癌,或确定可能患或发展成前列腺癌。同样,如果观察到诱变剂可能引起乳房组织或细胞核酸的靶向体细胞突变,那么可能被诊断该受试者患有前乳腺癌,或确定可能患或发展成前乳腺癌。
诱变剂引起的靶向体细胞突变的程度(即诱变剂引起的核酸靶向体细胞突变的数量)可用于帮助确定的受试者患或将患癌症的可能性,癌症进展或消退,和/或治疗有或没有效果。典型地,靶向体细胞突变的数量越高,受试者患或将患的癌症的可能性越大。此外,如果随着时间的推移受试者靶向体细胞突变的数量增多,癌症发展和/或治疗失败的可能性越大。反之,果随着时间的推移受试者靶向体细胞突变的数量减少,癌症消退和/或治疗成功的可能性越大。
本发明的方法扩展到治疗或预防的方案。确定受试者可能患癌症的实例中,设计和应用减少所述可能性的方案。例如,如果确定受试者发展成癌症的风险与特定诱变剂相关,可以建议受试者减少暴露于诱变剂。例如,如果确定受试者有患黑素瘤的风险,可以建议受试者减少暴露于紫外线辐射。在用上述方法诊断受试者患有癌症或判定发展成癌症高风险的实例中,为受试者和给药设计适当的治疗协议。这可以包括,例如,放射疗法、外科手术、化疗、激素消融治疗、促凋亡疗法和/或免疫治疗。在一些实例中,可以、执行进一步的诊断测试,以确认治疗前诊断。
放射治疗包括辐射和波诱导的DNA损伤,例如,γ射线、X射线、紫外线照射、微波、电子发射、放射性同位素等。可以通过照射局部肿瘤部位与上述形式的辐射进行治疗。最有可能的是,所有这些因素影响大范围的DNA损伤、DNA前体、DNA的复制和修复、和染色体的装配和修护。
X射线的剂量是从长时间50至200伦琴每日剂量(3至4周),到2000至6000伦琴单剂量。放射性同位素的剂量范围变化很大,并且取决于同位素的半衰期,强度和辐射发射的类型,以及摄取的肿瘤细胞。
非限定性放射治疗的例子包括适形外照射放疗(超过4-8周给予50-100Grey),无论是单次或分次,高剂量率近距离,永久性近距离治疗,全身放射性同位素(e.g.,Strontium 89)。在一些实施方案中,放射治疗可与放射增敏剂联合施用。放射增敏剂的说明性例子包括但不限于:乙丙昔罗、依他硝唑、全氟化碳、米索硝唑、尼莫唑、替莫卟吩和替拉扎明。
化疗剂可以选自任何一个或多个以下类别:
(i)抗增殖/抗肿瘤药及其组合,如用于医学肿瘤学,如烷基化剂(例如顺铂,卡铂,环磷酰胺,氮芥,美法仑,苯丁酸氮芥,白消安和亚硝基脲);抗代谢物(例如抗叶酸剂例如如氟吡啶像5-氟尿嘧啶和替加氟,雷替曲塞,甲氨蝶呤,阿糖胞苷和羟基脲);抗肿瘤抗生素(例如蒽环类像阿霉素,博莱霉素,阿霉素,柔红霉素,表阿霉素,伊达比星,丝裂霉素-C,更生霉素和光神霉素);抗有丝分裂剂(例如长春花生物碱像长春新碱,长春碱,长春地辛和长春瑞滨和类似的紫杉醇和多西他赛紫杉烷;和拓扑异构酶抑制剂(例如表鬼臼毒素像鬼臼乙叉甙和替尼泊苷,安吖啶,托泊替康和喜树碱);
(ii)细胞生长抑制剂如抗雌激素(例如他莫昔芬,托瑞米芬,雷洛昔芬,屈洛昔芬和碘酰昔芬),雌激素受体降压稳压器(例如氟维司群),抗雄激素(例如比卡鲁胺,氟他胺,尼鲁米特和醋酸环丙孕酮),UH拮抗剂或LHRH激动剂(用于例如戈舍瑞林,亮丙瑞林和布舍瑞林),孕激素(例如醋酸甲地孕酮),芳香酶抑制剂(例如,如阿那曲唑,来曲唑,伏氯唑和依西美坦)和5α-还原酶的抑制剂如非那雄胺;
(iii)抑制癌细胞侵袭的制剂(例如金属蛋白酶抑制剂像manmastat和尿激酶纤溶酶原激活剂受体功能抑制剂)
(iv)生长因子功能抑制剂,例如这样的抑制剂包括生长因子抗体,生长因子受体抗体(例如,抗ErbB2抗体曲妥单抗[Herceptin]和抗ErbB1抗体西妥昔单抗[C225]),法尼基转移酶抑制剂,MEK酶抑制剂,酪氨酸激酶抑制剂和丝氨酸/苏氨酸激酶抑制剂,表皮生长因子家族的其它抑制剂(例如其它EGFR家族酪氨酸激酶抑制剂如N-(3-氯-4-氟苯基)-7-甲氧基-6-(3-吗啉-4-丙氧基)喹唑啉-4-胺(吉非替尼,AZD1839),N-(3-乙炔基苯基)-6,7-二(2-甲氧基乙氧基)喹唑啉-4-胺(厄洛替尼,OSI-774)和6-丙烯酰胺-N-(3-氯-4-氟苯基)-7-(3-吗啉)喹唑啉-正-4-胺(CI1033)),例如,血小板衍生的生长因子家族抑制剂和例如肝细胞生长因子家族的抑制剂;
(v)抗血管生成剂,例如抑制血管内皮生长因子的作用,(例如抗血管内皮细胞生长因子抗体贝伐单抗[AvastinTM],例如国际专利申请公开的化合物WO97/22596,WO 97/30035,WO 97/32856and WO 98/13354)和通过其他机制作用的化合物(例如三羧氨基喹啉,整合ανβ3功能抑制剂和血管抑素);
(vi)血管损伤制剂如考布他汀A4和国际专利申请公开的化合物WO99/02166,WO00/40529,WO00/41669,WO01/92224,WO02/04434和WO02/08213;
(vii)反义疗法,例如针对上面列出的目标,如ISIS2503,抗ras基因反义;和
(viii)基因治疗方法,包括例如替换异常基因的方法例如异常p53或异常GDEPT(基因介导的酶前体药物治疗)方法如使用胞嘧啶脱氨酶,胸苷激酶或细菌硝基还原酶和方法来使患者更耐受化疗或放疗,如多药耐药基因疗法。
免疫治疗方法,包括例如离体和体内方法,以增加患者肿瘤细胞的免疫原性,如转染的细胞因子如白细胞介素2,白细胞介素4或粒细胞-巨噬细胞集落刺激因子,降低T细胞无反应性的方法,免疫细胞如细胞因子转染的树突细胞的方法,细胞因子转染肿瘤细胞系的方法和使用抗独特型抗体的方法。这些方法通常依靠使用免疫效应细胞和分子以攻击和破坏癌细胞。免疫效应器可以是,例如,恶性细胞表面上的一些标记性抗体。单独的抗体可作为治疗效应,或者它可以募集其他细胞来促进细胞杀伤。该抗体也可以缀合至药物或毒素(化学治疗,放射性核素,蓖麻毒素A链,霍乱毒素,百日咳毒素等),以及仅作为靶向剂。备选地,效应可以是携带表面分子的淋巴细胞相互作用,无论是直接或间接地,攻击恶性细胞。各种效应细胞包括细胞毒性T细胞和NK细胞。
其他癌症疗法的例子包括光疗、冷冻治疗、毒素治疗或促凋亡疗法。本领域技术人员知道这个列表不包括全部癌症和其它增生性病变的治疗方法的类型。
在一些情况下,确定诱变剂是靶向体细胞突变的原因,治疗或预防措施可以包括对受试者施用该诱变剂的抑制剂。抑制剂可包括,例如,siRNAs、miR As、蛋白拮抗剂(如显性负突变体诱变剂),小分子抑制剂,抗体及其片段。例如,本领域技术人员知道广泛应用市售的siRNA和APOBEC胞苷脱氨酶和AID特异性抗体。APOBEC3G抑制剂的其它实例包括Li等人描述的小分子。(ACS Chem Biol.(2012)7(3):506-517),其中许多,含有邻苯二酚部分,已知巯基反应后氧化成邻醌。APOBECl抑制剂还包括但不限于显性负突变体APOBECl多肽,如穆尔(H61K/C93S/C96S)突变体(Oka et al.(1997)J Biol Chem 272,1456-1460).
通常情况下,治疗剂与药物组合物与药学上可接受的载体一起施用并以有效量达到其预期的目的。受试者施用的活性化合物的剂量应足以达到在一段时间内对受试者产生益影响如在减少或缓解,癌症的症状,和/或减少,消退或消除肿瘤或癌细胞。药物活性化合物的给药量可以取决于待治疗受试者的年龄,性别,体重和一般健康状况。在这方面,施用活性化合物的精确量取决于医生的判断,并且本领域技术人员可以容易地确定治疗剂的合适剂量和无需过度实验的合适的治疗方案。
为了可以容易地理解本发明并付诸实际效果,通过以下非限制性实施例的方式描述特别优选的实施方案。
实施例
实施例1
乳腺癌TP 53体细胞突变的分析
通过访问IARC TP53数据库并提取乳腺癌的特定数据评估乳腺癌TP 53体细胞突变的频率和环境。该数据集点突变的数量很大(N=2,514)。大多数突变是单点突变,主要集中在TP53的DNA结合区(密码子-130-300)。仅一小部分样品携带TP53外显子突变。本文认为TP53的碱基组成有轻微变化,并且没有更正。各种标准的选择有利于建设和5'和3'侧翼序列上下游的所有类型突变的分析涉及未突变TP53外显子序列(并且在某些情况下,内含子序列)。这有利于各类型的突变的频率分布的发展(例如,A至G)与感兴趣区域的核苷酸和密码子的位点。
分析该cDNA转录的序列(即与非转录链相同的背景)。用于提取和分析COSM和ICENSEMBL数据库公开提供的这些cDNA转录物。用这些转录物,分析AID基序(GYW/WRC),APOBECl基序(TG/CA)和APOBEC3G基序(CG/CG),以及WA基序突变的背景,这代表SHM过程第二阶段A:T碱基对突变的可能位点(因此与AID活性有关)。评估所述突变涉及它们的突变密码子位点。
图1显示了分析定义的“感兴趣区域”的突变序列的一个例子。感兴趣区域包括包含突变密码的9个核苷酸,侧翼5'(5')密码子和3'(3')密码子。侧翼5'的密码子核苷酸(N)的位点分别标记为5'Nl,5'N2和5'N3(5'至3')。同样,侧翼3'的密码子核苷酸的位点分别注解为3'N1,3'N2和3'N3。所示A到C的点突变(A>C)的例子,点非转录链(NTS)MC-1位的A突变为复制非转录链(NTS')的C。突变的密码子的A突变与5'-N3位点的G相关联。这被注释为“S..A”(其中S是G或C)。此注解用于突变密码子内的突变位点。
汇集的乳腺癌数据集中的TP53基因的每个2514的体细胞突变的的频率和密码子背景显示在表1中。如上所述,MC-1,MC-2和MC-3指的是突变密码子(MC)内的突变位点。这些是从非转录链的5'到3'。以确定各突变型的密码子背景是否重要,卡方检验用于检验在<0.01水平的截止统计学意义(2DF)。
表1:
Figure BDA0000752365620000321
据观察,转变(即A<>G或C<>T)比颠换(即A或G<>C或T)多。其结果是,该突变模式显示显著链偏差,其中A突变超过T突变(371/283=1.3),和G突变超过C突变(1 1 10/750=1.5)。这与以前的工作一致示出了免疫球蛋白基因的VDJ地区SHM过程类似链偏好模式以及在包括乳腺癌的非淋巴肿瘤整个基因组中的蛋白激酶基因突变数据(Steele and Lindley(2010)DNA Repair 9:600-603)。该链偏好模式也与B细胞慢性淋巴细胞白血病患者的突变数据一致(Malcikova et al.(2008)Molecular Immunology 45:1525-9)。
在表1所示的合并数据集还揭示先前没有报道的显著突变的密码子偏好模式。最显著的密码子背景的偏好是为转换C>T(P<0.001,2DF),G>A(P<0.001,2DF)和A>G(P<0.001,2DF),已知这导致与SHM与进程相关联的标志链偏好模式。
结果发现所有C>T转换的397/593(66.9%)发生在MC-1位点,所有C突变的(即C>A/G/T)的397/750(52.9%)发生在MC-2位点。所有G突变的505/1 110(45.5%)(即G>A/C/T)是MC-2位点的G>A转换。如果随机发生并独立于的密码子结构的突变,因此预计仅特定核苷酸的突变的3种不同类型的突变1/9(或约11.1%)发生在一个特定的位点(即MC-1,MC-2或MC-3)。
对于A>G转换,所有A>G转换的194/269(72.1%)发生在MC-2位点,所有A突变(即A>C/G/T)的194/371(52.3%)是MC-2位点的A>G转换。
表1中的数据还支持在TP53错义突变选择的期望作为MC-3的突变的数目显著小于RNA每个C>T,G>A和A>G转换的MC-1或MC-2位点,无义介导的mRNA降解(NMD)途径是一种已知的依赖于密码子背景信息的细胞监视系统,使细胞识别和处置含“无义”突变基或可能提前停止翻译的STOP信号(UAG,UGA和UAA)的缺陷基因产品。这是TP53错义突变选择的结果。该数据也与另一个先前的研究相一致,此研究报告免疫球蛋白可变(V)区基因互补决定区密码子位点的MC-1和MC-2的可变性趋势高于预期。
该分析还发现MC-1位点发生C>T转换(P<0.001,2DF)和MC-2位点发生G>A转换(P<0.001,2DF)的非常显著的统计偏好。如开放“转录泡”ssDNA TS或NTS的胞苷都能够进行脱氨,该数据支持涉及能够读取结构内并区分TS和NTS胞苷的分子机制结论。
表2示出了发生在AID、APOBECl和APOBEC3G基序,以及WA基序TP 53乳腺癌数据集2514体细胞突变的密码子背景。卡方检验来确定对截止于PO.Ol水平的统计学意义(2DF)。
如果突变独立于5'-密码子结构发生,并且碱基组成无修正,然后,预计围绕每个突变型的三分之一将位于MC-1,、MC-2或MC-3位点。.同样地,预期仅围绕单个核苷酸的所有突变的九分之一(11.1%)将位于MC-1,、MC-2或MC-3位点。对于在关键基序过渡密码子背景偏好与AID、APOBECl和APOBEC3G活性比表1中示出的合并数据集在统计上更加显著相关。
表2.
Figure BDA0000752365620000341
因为GYW基序与AID活性相关,所有G>A转换的185/200(92.5%)发生在MC-2位点,并且GYW位点所有突变的106/132(80.3%)发生在MC-1位点。相反,在WRC位点,,所有C>T转换的106/132(80.3%)发生在MC-1位点,C所有突变(即C>A/G/T)的106/168(63.1%)是MC-1位点的C>T转换。
因为CG基序与APOBEC3G活性相关,所有G>A转换的358/407(87.7%)发生在MC-2位点,并且CG位点所有突变的358/505(70.9%)是MC-2位点的G-到-A转换。相反,在CG位点,,所有C>T转换的240/248(96.8%)发生在MC-1位点,C所有突变(即C>A/G/T)的240/288(83.3%)是MC-1位点的C>T转换。
因为TG/CA基序与APOBEC 1的活性相关,密码子背景偏好没有统计显著,在CA位点,C>T转换的93/160(58.1%)发生在MC-1位点,并且C所有突变(即C>A/G/T)的93/188(49.5%)是MC-1位点的C>T转换。仅TG位点所有G>A转换的62/155(40.0%)发生在MC-2位点,和所有C>T转换的240/248(96.8%)发生在MC-1位点,G所有突变(即C>A/G/T)的62/136(45.6%)是MC-2位点的G>A转换。
表2中所示在关键基序观察到的密码子偏好模式的另一特征是AID,APOBEC 1和APOBEC3G每个基序多数的所有G突变为发生在MC-2位点。通过比较,每个基序多数的C突变为发生在MC-1目标点。这表示符合读码框架的感测机制涉及转录起始的期间的DNA水平,并且,它能够区分NTS的胞苷和开放的“转录泡”背景TS的胞苷。
因为WA位点的A>G转换,128/141(90.8%)发生在MC-2位点,并且WA位点的所有A突变(即.A>C/G/T)的128/167(76.6%)是MC-2位点的G>A转换。认为WA位点的A>G突变水平的提高是SHM活性的一个特征和RNA模板中间参与的诊断,这一发现支持内源性AID引起的突变过程活跃在至少许多数据集中的样品的预测。
表3示出发生在在关键基序的突变的密码子背景与AID,APOBECl和APOBEC3G相关并且与强核苷酸(S=G/C)共同位于5'N3位点。标记'S..M'(其中M是突变的核苷酸A,G,C或T)用于表明侧翼突变密码子5'N3位点处“S”核苷酸的存在,以及在MC-1,MC-2或MC-3位点的任一处突变的核苷酸靶标。如果突变独立地发生在5'-密码子结构,并且碱基组成不进行校正,然后,预计仅每个所述基序的一半突变将和S共同位于5'N3位点。
表3.
Figure BDA0000752365620000361
*5'N3位点核苷酸是'S'和MC-1位点突变是WA或TG是不可能的。同样,5'N3位点的核苷酸不能是“S”并且MC-2位点WRC突变和MC-1位置CG位点所有的突变在5'N3位点有“S”。
所述分析发现S—M位点和与AID,APOBEC3G活性相关的基序转换之间出乎意料地高联系,并且在WA位点,但不在APOBEC1位点。因为GYW/WRC基序与AID活性相关,MC-2位点所有G>A转换的184/185(99.5%)在5'N3位点有S出现,并且MC-1位点所有C>T转换的102/106(96.2%)在5′H 3位点有S出现。因为CG/CG基序与APOBEC3G活性相关,MC-2位点所有G>A转换的352/358(98.3%)在5'N3位点有S出现,并且MC-1位点所有C到T转换的239/240(99.6%)在5'N3位点有S出现。因为TG/CA基序与APOBECT活性相关,所述的结果没有统计学显著。仅MC-2位点G>A转换的36/62(58.1%)在5'N3位点有S出现,并且MC-1位点C到T转换的252/93(55.9%)在5'N3位点有S出现。对于WA位点,MC-2位点A到G转换的121/127(95.3%)在5'N3位点有S出现。
表3中的数据也揭示了与S共同位于5'N3位点的选择基序的一些颠换的出乎意料的高比例。特别是,GYW或CG靶向位点的G到T/C突变和S..G位点之间有高于预期的结合。因为G的所有转换和颠换发生在选择的AID,APOBEC3G和WA基序的MC-2目标位点,高度显著778/799(97.4%)和S··G在同一位点.。同样,CG的所有转换和颠换的375/382(98.2%)发生在选择的AID和APOBEC3G基序的MC-1目标位点,和S..C共存。
因此,和S..M(M=A/G/C/T)在同一位点似乎是直接接触结合的一个组成部分和与AID和APOBEC3G脱氨酶酶活性相关的密码子阅读框传感器机制,以及作用在WA位点的突变机制(S)。
实施例2
预测AID,APOBEC1或APOBEC3G活性的诊断规则的发展
观测的AID,APOBEC 1,APOBEC3G和WA基序突变的密码子偏好模式(上述)用于产生下面的“规则”或诊断标准,预测核苷酸体细胞突变是否是AID,APOBEC 1和/或APOBEC3G活动的结果。
MC-2位点去除GYW(AID)基序的G>A突变的数量高于预期与转录链AID脱氨酶的活性相关。
MC-1位点去除WRC(AID)基序的C>T突变的数量高于预期与非转录链AID脱氨酶的活性相关。
MC-2位点去除CG(APOBEC3G)基序的G>A突变的数量高于预期与APOBEC3G的活性相关。
MC-1位点去除CG(APOBEC3G)基序的突变C>T的数量高于预期与APOBEC3G的活性相关。
MC-2位点去除WA基序的A>G突变的数量高于预期指示AID-关联的突变过程,从而指示AID的活性。
当应用这些规则时,假定该组中的每个核苷酸的突变是彼此独立的,并且如果诱变剂不存在,每个密码子位点的MC-1和MC-2的每个核苷酸的突变的分布将随机分配为A,G,C或T突变。
图2示出如何用上述诊断标准确定偏好性突变分布的可能原因,偶然出现或由AID或APOBEC3G引起的靶向体细胞突变引起。对于每一个上述选择的诊断类别,实测(O)和预期(E)突变的数量列于表的形式。对于诊断类别,如果突变是随机的,预期(E)突变的数量用可能出现在特定核苷酸每三个可能突变类型的MC-1和MC-2位点的突变总数量计算(当分析TP53基因的突变,如在图2中,排除MC-3位点作为已选定绑定功能TP53基因的突变的变体的比较。无义介导的信使RNA降解(NMCD)途径涉及一种已知的依赖于密码子背景信息的细胞监控系统,使细胞识别和处置有缺陷的基因产物,该产物含无义突变或停止信号,可能提前停止翻译)。例如,关于与WRC基序相关的AID活性可以导致非转录链的胞嘧啶(C)突变,如果被随机分布突变C的数量,突变将均匀地分布在MC-1,MC-2位点和C>A,C>G和C>T(C>A/G/T)。因此,在该示例中,MC-1位点的C>T突变的预期(E)数量是MC-1和MC-2位点的C>A/T/G突变的总数(即1+1+72+6+1+1),除以突变可能类型/位点的数量(即6),这等于13.67。然后用简单的卡方检验确定检测的随机分布的概率。图3所示的例子中,适用于TET2基因突变组的诊断标准的选择集中MC-l MC-2密码子偏好分布随即出现的可能性是7.42E-128。这一结果有非常高的统计学意义(P<1E-127)。
再次参照图3,MC-2位点GYW基序G>A突变的数量高于预期和MC-1位点WRC基序C>T突变的数量高于预期表明AID脱氨酶活性,而MC-2位点CG基序G>A突变的数量高于预期和MC-1位点CG基序C>T突变的数量高于预期表明APOBEC3G活性。
实施例3
其他癌症中TP53体细胞突变分析
为了确定乳腺癌样品TP53的AID、APOBEC3G和WA基序突变的密码子偏好是否也发生在其他癌症的TP53,从子宫颈癌(所有类型),宫颈腺癌,结肠腺癌,肝细胞癌,胰腺癌,前列腺癌,以及恶性黑色素瘤的IARC TP53数据库中提取数据,并如上所述进行分析。
图4-11示出了GYW/WRC位点(AID),CG/CG位点(APOBEC3G)和WA位点突变密码子的频率和位置。如这些图所示,检测每个这些癌症TP53中AID,APOBEC3G和/或WA基序突变密码子偏好模式,表明有TP53突变的多种癌症与AID/APOBEC脱氨酶的活性有关在统计学上有非常高的可能性。
实施例4
归因于PIK3CA和TET2中AID或APOBEC3G体细胞突变的分析
数据库中不同的患者群来源的总样本数据分析乳腺癌组织样品PIK3CA和造血和淋巴组织样本TET2的AID、APOBEC3G和WA基序体细胞突变密码子背景的缺失频率。如图12和13所示,AID、APOBEC3G和WA基序体细胞突变密码子背景的缺失频率表明AID和APOBEC3G在这些组织中有活性,和检测的体细胞突变显著数量的可能原因。
实施例5
腺样囊性癌受体样品的全外显子组分析
用上述的诊断标准评估AID和/或APOBEC3G参与腺样囊性癌(ACC)患者组织细胞靶向体细胞突变的可能性。在23预处理主要ACC标本和1局部区域淋巴结转移以及相应的配套正常涎腺实质样品进行全外显子组测序的研究中获得序列数据(Stephens et al.(2013)JClin Invest.123(7):2965-2968)。所述外显子组测序鉴定312个突变,,平均每外显子组有13个突变,相对于其他实体瘤是比较少的。如上所述分析体细胞突变,以确定GYW/WRC位点(AID)、CG/CG位点(APOBEC3G)和WA位点.突变的频率和密码子的位置
图14示出了两个患者样品中发现的突变的代表分析:PD3185a和PD3181a。诊断标准的应用,本文发现PD3185a样品的核苷酸发生了靶向体细胞突变,和该样品细胞的AID和APOBEC3G可能有活性并引起靶向体细胞突变。与此相反,试样中具有最高数目的体细胞突变(PD3181a),没检测到靶向体细胞突变的证据,没有AID或APOBEC3G导致该样品核苷酸体细胞突变的迹象。
总体而言,本文发现检测24个ACC样品只有9个样品AID和/或APOBEC3G活性引起的靶向体细胞突变呈阳性(表4)。有突变的数量和靶向体细胞突变之间或MYB激活得分之间。没有相关性。此派生MYB激活得分以指示特定样品是否有MYB-NFIB基因融合(Stephens etal.(2013)J Clin Invest.123(7):2965-2968)。
表4
Figure BDA0000752365620000401
实施例6
前列腺癌受体样品的全外显子组分析
从COSMIC数据库获得四个前列腺癌样本外显子组范围内的突变数据(WellcomeTrust Sanger Institute;http://cancer.sanger.ac.uk/cancergenome/Droiects/cosmic/'),并且如上所述进行分析,以确定所述样品核苷酸的靶向体细胞突变是否由AID和/或APOBEC3G活动引起。两个样品来自尸检转移性去势抵抗前列腺癌病人(CRPC),另两个样品分别来自pT2c病人和PT3A期前列腺癌病人。
如表5中归纳,发现AID和/或APOBEC3G活动导致三个样本靶向体细胞突变呈阳性。有趣的是,低PSA样品受体检测到靶向体细胞突变,表明这种类型的分析可以用于在PSA水平开始上升前检测早期前列腺癌。
图15显示了四个患者样品中发现的突变的个体分析。除了指示AID和/或APOBEC3G活性,PR-09-3421样品MC-1位点G>T突变的高数量和MC-3位点C>T突变的告数量,及PR-2762样品G>A突变和C>T突变的高数量表明在这些患者中可能有其它APOBEC脱氨酶活动。
表5
Figure BDA0000752365620000411
实施例7
黄曲霉毒素基序的鉴定
TP53密码子249第三位点的AG>T颠换与黄曲霉毒素,来自曲霉属的外源性诱变剂相关,并已用作诊断标记物。如图5,有MC-3位点高数量G>T突变与肝细胞癌(HCC)样本TP53基因GG基序结合。为了进一步调查,分析来自COSMIC数据库的全外显子组样品(HCC53T)的G>T突变。据观察,全外显子组MC-3位点有9个G>T突变,每个突变与GG基序重合。这表明,黄曲霉毒素导致GG基序MC-3位点G>T突变。
实施例8
预测APOBEC3H活性的诊断规则发展
认为APOBEC3H是针对GA基序。为了进一步分析该基序突变的密码子背景,分析膀胱癌受试者组织的全外显子组(从COSMIC数据库获得序列)。如图16,MC-1位点有G>A突变优势,表明当G在MC-3位点时,在GA基序APOBEC3H首先攻击突变成G,导致G>A突变。
实施例9
预测APOBEC3G活性的诊断规则发展
本文已经表明APOBEC3G攻击CG/CG基序之外的CC基序。为了进一步分析CC基序突变的密码子背景,分析膀胱癌治疗之前受试者组织的全外显子组(从COSMIC数据库获得序列)。分析8名受试者(B2、B5、B8-10、B13、B15和B20)的全外显子组序列作为汇集数据(图17A)并且独立地分析一个受试者(B 13)的全外显子序列(图17A)。如图17和18,MC-1位点C>T突变有统计学上显著优势,表明当C在MC-1位点时,在CC基序APOBEC3H首先攻击突变成C导致C>T突变。
本文引用的每一个专利,专利申请和出版物的公开内容均以引用的方式全文并入本文。
本文任何参考文献的引用均不代表承认该参考文献可作为“现有技术”应用到本申请。
整个说明书的目的是描述本发明的优选实施例,而不限制本发明到任何一个实施方式或特征的特定集合。因此本领域技术人员可以理解的是,根据本文公开,可以在具体的实施方案中进行各种修改和改变而不脱离本发明的范围。所有这些修改和变化,意图包括在所附权利要求的范围之内。

Claims (11)

1.一种确定受试者患或将患癌症的可能性的处理系统,包括至少一个微处理器,存储器,输入/输出设备,以及一个外部接口,由总线相互连接,其中所述微处理器以应用软件存储在存储器形式执行指令以进行以下处理:
分析取自受试者生物样品的核酸分子,以对于诱变剂识别或靶向的一个或多个基序处的一种突变型的多个突变确定这些突变的密码子背景,从而对于核酸分子中多个突变密码子的每一个确定突变位置和突变类型,其中各个突变的密码子背景通过:确定所述各个突变发生在对应突变密码子的三个位置的哪一个来确定;
在一种突变类型在所述多个突变密码子的三个位置中的一个高于预期的突变百分比或数量时,确定已发生一个或多个诱变剂引起的靶向体细胞突变;并且
在已发生靶向细胞突变时确定所述受试者很可能患或将患癌症;
其中所述诱变剂是选自活化诱导胞苷脱氨酶(AID)和载脂蛋白B mRNA编辑酶催化多肽样蛋白(APOBEC)胞苷脱氨酶的脱氨酶;并且
其中在以下情况发生时测得靶向体细胞突变:
核酸分子非转录链密码子MC-2点GYW基序的G到A突变的数量或百分比高于预期;
核酸分子非转录链密码子MC-1点WRC基序的C>T突变的数量或百分比高于预期;
核酸分子非转录链密码子MC-2位点CG基序的G>A突变的数量或百分比高于预期;
核酸分子非转录链密码子MC-1位点CG基序的C>T突变的数量或百分比高于预期;
在核酸分子非转录链密码子MC-1位点CA基序的C>T突变的数量或百分比高于预期;
在核酸分子非转录链密码子MC-1位点GA基序的G>A突变的数量或百分比高于预期;
核酸分子非转录链密码子MC-2位点TG基序的G>A突变的数量或百分比高于预期;
核酸分子非转录链密码子MC-1位点CC基序的C>T突变的数量或百分比高于预期;或
核酸分子非转录链密码子MC-2位点WA基序的A>G突变的数量或百分比高于预期。
2.权利要求1所述的处理系统,其中如果核酸分子非转录链密码子MC-2位点GYW基序的G>A突变或MC-1位点WRC基序的C>T突变的数量或百分比高于预期,则所述诱变剂是AID。
3.权利要求1所述的处理系统,其中如果核酸分子非转录链密码子MC-2位点CG基序的G>A突变或MC-1位点CG基序的C>T突变的数量或百分比高于预期,则所述诱变剂是APOBEC3G。
4.权利要求1所述的处理系统,其中如果核酸分子非转录链密码子MC-1位点CA基序测的C>T突变或MC-2位点TG基序的G>A突变的数量或百分比高于预期;则所述诱变剂是APOBEC1。
5.权利要求1所述的处理系统,其中如果核酸分子非转录链密码子MC-1位点GA基序的G>A突变的数量或百分比高于预期,则所述诱变剂是APOBEC3H。
6.权利要求1-5任一项所述的处理系统,其中所述生物样品包括乳腺、前列腺、肝、结肠、胃、胰腺、皮肤、甲状腺、淋巴、造血、膀胱、肺、肾、直肠、卵巢、子宫和头颈部的组织或细胞。
7.权利要求1-6任一项所述的处理系统,其中所述癌症选自乳腺癌、前列腺癌、肝癌、结肠癌、胃癌、胰腺癌、皮肤癌、甲状腺癌、淋巴癌、血癌、膀胱癌、肺癌、肾癌、直肠癌、卵巢癌、子宫癌和头颈部癌。
8.权利要求1-7任一项所述的处理系统,其中,如果所述样品包括前列腺组织或细胞,则诊断受试者患有前列腺癌或确定其可能患或将患癌症。
9.权利要求1-7任一项所述的处理系统,其中,如果所述样品包括乳腺组织或细胞,则诊断受试者患有乳腺癌或确定其可能患或将患乳腺癌。
10.权利要求1-5任一项所述的处理系统,其中所述生物样品为子宫颈组织。
11.权利要求1-5或10任一项所述的处理系统,其中所述癌症为子宫颈癌。
CN201380069425.1A 2012-11-05 2013-11-05 确定体细胞突变原因的方法 Active CN104903467B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
AU2012904826 2012-11-05
AU2012904826A AU2012904826A0 (en) 2012-11-05 Method for the diagnosis of disease associated with somatic mutagenesis
AU2012904940 2012-11-13
AU2012904940A AU2012904940A0 (en) 2012-11-13 Database system and method for the diagnosis of disease associated with somatic mutagenesis
AU2013901253A AU2013901253A0 (en) 2013-04-12 Method for the diagnosis of disease associated with mutagenesis using small numbers of somatic mutations
AU2013901253 2013-04-12
PCT/AU2013/001275 WO2014066955A1 (en) 2012-11-05 2013-11-05 Methods for determining the cause of somatic mutagenesis

Publications (2)

Publication Number Publication Date
CN104903467A CN104903467A (zh) 2015-09-09
CN104903467B true CN104903467B (zh) 2020-09-08

Family

ID=50626228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380069425.1A Active CN104903467B (zh) 2012-11-05 2013-11-05 确定体细胞突变原因的方法

Country Status (8)

Country Link
US (4) US10767229B2 (zh)
EP (2) EP3354752B1 (zh)
JP (2) JP6304776B2 (zh)
CN (1) CN104903467B (zh)
AU (1) AU2013337616B2 (zh)
ES (1) ES2674928T3 (zh)
HK (2) HK1214842A1 (zh)
WO (1) WO2014066955A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2873841T3 (es) * 2015-08-26 2021-11-04 Gmdx Co Pty Ltd Métodos para detectar la recurrencia del cáncer
US11875877B2 (en) 2016-08-25 2024-01-16 Nantomics, Llc Immunotherapy markers and uses therefor
WO2018223185A1 (en) * 2017-06-06 2018-12-13 Gmdx Co Pty Ltd Methods of determining the likelihood of hepatitis b virus recrudescence
EP3691676A4 (en) * 2017-10-02 2021-06-16 Curematch, Inc. METHOD FOR PREDICTING ANTIGENICITY AND / OR IMMUNOGENICITY OF A TUMOR-DERIVED NEO-PEPTIDE, USING MUTATIONAL SIGNATURE GROUNDS
SG11202003885UA (en) 2017-11-08 2020-05-28 Twinstrand Biosciences Inc Reagents and adapters for nucleic acid sequencing and methods for making such reagents and adapters
EP3710600A4 (en) * 2017-11-17 2022-02-16 GMDx Co Pty Ltd SYSTEMS AND METHODS FOR PREDICTING CANCER TREATMENT EFFECTIVENESS
WO2019160998A1 (en) * 2018-02-13 2019-08-22 Twinstrand Biosciences, Inc. Methods and reagents for detecting and assessing genotoxicity
AU2019261597A1 (en) * 2018-04-24 2020-11-19 Grail, Llc Systems and methods for using pathogen nucleic acid load to determine whether a subject has a cancer condition
EP3821004A4 (en) 2018-07-12 2022-04-20 Twinstrand Biosciences, Inc. METHODS AND REAGENTS FOR CHARACTERIZING GENOMIC EDITING AND CLONAL EXPANSION, AND RELATED APPLICATIONS
US20220378913A1 (en) * 2019-10-25 2022-12-01 Gmdx Co Pty Ltd Methods for diagnosis and treatment
AU2021285711A1 (en) * 2020-06-01 2023-01-05 Gmdx Co Pty Ltd Methods of predicting cancer progression

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9624482D0 (en) 1995-12-18 1997-01-15 Zeneca Phaema S A Chemical compounds
BR9707495A (pt) 1996-02-13 1999-07-27 Zeneca Ltd Derivado de quinazolina processo para a preparação do mesmo composição farmacêutica e processo para a produç o de um efeito antiangiogênico e/ou de redução de permeabilidade vascular em um animal de sangue quente
KR100489174B1 (ko) 1996-03-05 2005-09-30 제네카-파마 소시에떼아노님 4-아닐리노퀴나졸린유도체
GB9718972D0 (en) 1996-09-25 1997-11-12 Zeneca Ltd Chemical compounds
GB9714249D0 (en) 1997-07-08 1997-09-10 Angiogene Pharm Ltd Vascular damaging agents
GB9900334D0 (en) 1999-01-07 1999-02-24 Angiogene Pharm Ltd Tricylic vascular damaging agents
GB9900752D0 (en) 1999-01-15 1999-03-03 Angiogene Pharm Ltd Benzimidazole vascular damaging agents
IL152682A0 (en) 2000-05-31 2003-06-24 Astrazeneca Ab Indole derivatives with vascular damaging activity
KR20030022264A (ko) 2000-07-07 2003-03-15 앤지오젠 파마슈티칼스 리미티드 신생 혈관 형성 억제제인 콜치놀 유도체
US20050277627A1 (en) 2000-07-07 2005-12-15 Arnould Jean C Colchinol derivatives as vascular damaging agents
AU2003903430A0 (en) * 2003-07-04 2003-07-17 Johnson & Johnson Research Pty Limited Method for detection of alkylated cytosine in dna
US9982304B2 (en) * 2010-09-03 2018-05-29 The Johns Hopkins University ARID1A and PPP2R1A mutations in cancer

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Analysis of BCR–ABL1 tyrosine kinase domain mutational spectra in primitive chronic myeloid leukemia cells suggests a unique mutator phenotype;Grant H等;《Leukemia》;20100826;第24卷(第10期);第1818页第二、三段,第1821页左栏第二段 *
Likelihood Models of Somatic Mutation and Codon Substitution in Cancer Genes;Yang Z H等;《Genetics》;20031031;第165卷;第695-705页 *
Mutational Processes Molding the Genomes of 21 Breast Cancers;Serena N Z等;《Cell》;20120525;第149卷;第979-993页 *

Also Published As

Publication number Publication date
US20150284803A1 (en) 2015-10-08
EP2914750B1 (en) 2018-04-18
CN104903467A (zh) 2015-09-09
ES2674928T3 (es) 2018-07-05
HK1214842A1 (zh) 2016-08-05
US10767229B2 (en) 2020-09-08
HK1259439A1 (zh) 2019-11-29
JP6304776B2 (ja) 2018-04-04
AU2013337616A1 (en) 2015-07-02
US20180334725A1 (en) 2018-11-22
AU2013337616B2 (en) 2019-03-21
US20200362422A1 (en) 2020-11-19
WO2014066955A1 (en) 2014-05-08
JP2018108105A (ja) 2018-07-12
EP3354752A1 (en) 2018-08-01
US20230138572A1 (en) 2023-05-04
EP2914750A1 (en) 2015-09-09
EP3354752B1 (en) 2020-03-11
EP2914750A4 (en) 2016-07-13
JP2016505241A (ja) 2016-02-25
JP6490849B2 (ja) 2019-03-27

Similar Documents

Publication Publication Date Title
CN104903467B (zh) 确定体细胞突变原因的方法
Wheeler et al. Molecular features of cancers exhibiting exceptional responses to treatment
US20200165685A1 (en) Circulating rna for detection, prediction, and monitoring of cancer
JP6850294B2 (ja) 癌の再発を検出する方法
EP3471717A1 (en) Treatment of squamous cell carcinomas with inhibitors of erk
Jain et al. Blastoid mantle cell lymphoma
US20220025466A1 (en) Differential methylation
US10610521B2 (en) Biomarkers for response to rapamycin analogs
KR20230165202A (ko) Msi 암을 진단하는 방법
US20200385815A1 (en) Using cfRNA for Diagnosing Minimal Residual Disease
Cerhan et al. Genetics in lymphomagenesis
US20130309685A1 (en) Method for target based cancer classification, treatment, and drug development
Hannaway The investigation of circulating biomarkers and potential mechanisms of resistance in the ATR/CHK1 signalling pathway in response to CHK1 inhibitor therapy
WO2022226168A1 (en) Diagnostic and treatment of cancer using c-met inhibitor

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20160629

Address after: Vitoria, Australia

Applicant after: GMDx Pte. Ltd.

Address before: Vitoria, Australia

Applicant before: GMDx Co.,Ltd.

Effective date of registration: 20160629

Address after: Vitoria, Australia

Applicant after: GMDx Co.,Ltd.

Address before: New South Wales Australia

Applicant before: LINDLEY ROBYN ALICE

GR01 Patent grant
GR01 Patent grant