CN104900754A - 一种多晶氧化钨纳米带高灵敏紫外光电探测器的制备方法 - Google Patents

一种多晶氧化钨纳米带高灵敏紫外光电探测器的制备方法 Download PDF

Info

Publication number
CN104900754A
CN104900754A CN201510177854.1A CN201510177854A CN104900754A CN 104900754 A CN104900754 A CN 104900754A CN 201510177854 A CN201510177854 A CN 201510177854A CN 104900754 A CN104900754 A CN 104900754A
Authority
CN
China
Prior art keywords
photodetector
tungsten oxide
polycrystalline
highly sensitive
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510177854.1A
Other languages
English (en)
Inventor
杨为佑
贺之洋
刘乔
侯慧林
高凤梅
杨祚宝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University of Technology
Original Assignee
Ningbo University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University of Technology filed Critical Ningbo University of Technology
Priority to CN201510177854.1A priority Critical patent/CN104900754A/zh
Publication of CN104900754A publication Critical patent/CN104900754A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种多晶氧化钨纳米带高灵敏紫外光电探测器的制备方法,包括以下步骤:(1)、将配置的WCl6/聚乙烯吡咯烷酮(PVP)前驱体纺丝液,置于静电纺丝机中进行静电纺丝,收集得到WCl6/PVP有机前驱体纳米带;(2)、将所述WCl6/PVP前驱体纳米带进行高温煅烧,实现WO3多晶纳米带的制备。(3)、WO3纳米带超声分散后,滴涂到叉指电极上,烘干,构建WO3多晶纳米带光电探测器件,然后以激光灯和氙灯为光源,用半导体参数测试系统对其光电探测性能进行检测。本发明与已有技术相对比,能够实现了WO3紫外光电探测器在低偏压下的高光电流响应,且光暗电流比达1000,具有超高灵敏度。

Description

一种多晶氧化钨纳米带高灵敏紫外光电探测器的制备方法
技术领域
本发明涉及紫外线光电探测器技术领域,尤其涉及一种多晶氧化钨纳米带高灵敏紫外光电探测器的制备方法。
背景技术
近些年,使用半导体纳米结构构建的功能器件,展现出了诸多优异而独特的物理特性。其中,光电探测器件在生物环保、传感器、污染监测、污水杀菌处理、导弹发射和监控检测等领域,具有广泛的应用前景。已有技术表明,宽禁带半导体如GaN、ZnO、SnO2和WO3,由于其光响应的高灵敏度和选择性,被认为是高效紫外线光电探测器的理想材料。
在宽禁带半导体家族中,WO3是典型的n型金属氧化物半导体,具有独特的电致和光致变色特性,其一维WO3纳米结构被认为是构建新颖高效微型紫外光电探测器的优异候选材料之一。如Golberg等人报道了通过化学气相沉积的方法制备出单晶WO3纳米线,对紫外光具有很强的响应灵敏度。Zhang等人通过水热方法合成了六方晶系单晶WO3纳米线,展现出对紫外光响应的高灵敏度。然而,已有技术所研发的基于WO3纳米结构的紫外光电探测器,其光暗电流比一般在200以下。因此,对于如何实现具有低偏压下高光电流的响应、以及较高的光暗电流比的高灵敏紫外光电探测器的研发,依然面临挑战。
发明内容
本发明所要解决问题是提供一种多晶氧化钨纳米带高灵敏紫外光电探测器的制备方法。
本发明采用如下技术方案:
本发明的晶氧化钨纳米带高灵敏紫外光电探测器的制备方法包括以下步骤:
(1)材料制备:
将WCl6与聚乙烯吡咯烷酮加入乙醇与N,N-二甲基甲酰胺混合液中,搅拌均匀后得到前驱体纺丝液,在18kV高压下进行静电纺丝,收集得到有机前驱体纳米带;将所述前驱体纳带在空气中于500℃煅烧30分钟,得到WO3多晶纳米带;
(2)光电探测器构建:
将WO3纳米带超声分散在乙醇中,然后滴涂在叉指电极上烘干,制得本发明的多晶氧化钨纳米带高灵敏紫外光电探测器。
步骤(1)中,WCl6与聚乙烯吡咯烷酮的质量比是5:1;混合液中乙醇与N,N-二甲基甲酰胺的体积比是1:4;WCl6与混合溶液中重量体积比是2:5g/ml。
步骤(2)中,本发明制备的多晶氧化钨纳米带高灵敏紫外光电探测器的功能单元为多晶WO3纳米带。
步骤(2)中,本发明制备的多晶氧化钨纳米带高灵敏紫外光电探测器能够实现在低偏压下的紫外高光电流响应,且光暗电流比达1000,具有超高灵敏度。
本发明的积极效果如下:
相比于已报道的光暗电流比一般低于200的WO3纳米结构光电探测器,本发明实现了具有光暗电流比达1000的多晶WO3纳米带高灵敏紫外光电探测器的制备。
附图说明
图1为本发明实施例一所制得的WO3纳米带的扫锚电镜(SEM)图。
图2为本发明实施例一所制得的WO3纳米带的透射电镜(TEM)图。
图3为本发明实施例一所制得的WO3纳米带的选区电子衍射(SAED)图。
图4为本发明实施例一所构建的WO3纳米带光电探测器结构示意图。
图5为本发明实施例一所构建的单根WO3纳米带光电探测器的扫描电镜(SEM)图。
图6为本发明实施例一所制得的高灵敏WO3纳米带光电探测器在不同波长下的光谱响应图谱。
图7为本发明实施例一所制得的高灵敏WO3纳米带光电探测器在黑暗及不同波长下的电流-电压曲线图。
图8为本发明实施例一所制得的高灵敏WO3纳米带光电探测器在黑暗及不同功率的405nm激光下的电流-电压曲线图。
图9为本发明实施例一所制得的高灵敏WO3纳米带光电探测器在1mV偏压及405nm激光照射下的电流-时间响应曲线图。
具体实施方式
下面的实施例是对本发明的进一步详细描述。
为使本发明技术方案清晰明白,下面对本发明中的技术方案进行详细、完整地描述。
实施例一
量取1ml的无水乙醇和4ml的N,N-二甲基甲酰胺(DMF)置于锥形瓶中,称取0.4g的聚乙烯吡咯烷酮(PVP)缓慢的加入到已称取好的无水乙醇与DMF的混合液中,在室温下搅拌2h,直至得到澄清透明的PVP溶液;再称取2g的WCl6快速的加入到已分散好的PVP溶液中,在室温下继续搅拌0.5h,直到形成澄清深蓝色的WCl6/PVP的溶液。
将配置好的前驱体纺丝液静置后注入塑料针管内,并水平置于纺丝机上。金属针头(0.22mm)作电纺丝阳极,铁丝网作接收材料的阴极,阳极与阴极之间的距离为20cm,在18kV高压下进行静电纺丝,制备得到高纯度均匀分布的有机前驱体纳米带材料。
然后将机前驱体带材料置于70℃恒温烘干箱内,获得固态有机前驱体纳米带材料。最后将固态有机前驱体置于坩埚中,在空气气氛下以7℃/min在500℃保温30分钟进行煅烧,然后随炉冷却。
图1和图2为所制备的高纯度WO3纳米带材料的典型扫描及透射电镜照片,表明所制备的试样为规整带状结构纳米材料,图3为所制备的高纯度WO3纳米带材料的选区电子衍射图谱,其证明所制备的材料为多晶WO3
将制备好的WO3纳米带超声分散到乙醇溶液中,然后滴涂到叉指电极上,随后烘干,构建出WO3纳米带光电探测器。
图4和图5分别为WO3纳米带光电探测器结构示意图和扫描电镜图。图6为本发明实施例一所制得的高灵敏WO3纳米带光电探测器在不同波长下的光谱响应图谱,表明其对不同波长的响应度不同在400nm时最高,表现出较好的紫外光响应选择性;图7为其在黑暗及不同波长下的电流-电压曲线图,进一步表明其对不同波长光的敏感度不同,具有良好的光响应选择性;图8为其在黑暗及不同功率的405nm激光下的电流-电压曲线图,表明电流大小与入射光强度成正比,说明本WO3纳米带光电探测器的光生载流子效率与吸收光子通量成正比;图9为其在1mV偏压及405nm激光照射下的电流响应时间曲线图,在光照条件下,光电流增加~12nA,关闭光时然后迅速降低到初始值12pA,其光暗电流比达到1000,表明本WO3光电探测器具有超高灵敏度,以及良好的稳定性和可重复性。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (4)

1.一种多晶氧化钨纳米带高灵敏紫外光电探测器的制备方法,其特征在于:所述的方法包括以下步骤:
(1)材料制备:
将WCl6与聚乙烯吡咯烷酮加入乙醇与N,N-二甲基甲酰胺混合液中,搅拌均匀后得到前驱体纺丝液,在18kV高压下进行静电纺丝,收集得到有机前驱体纳米带;将所述前驱体纳带在空气中于500℃煅烧30分钟,得到WO3多晶纳米带;
(2)光电探测器构建:
将WO3纳米带超声分散在乙醇中,然后滴涂在叉指电极上烘干,制得本发明的多晶氧化钨纳米带高灵敏紫外光电探测器。
2.如权利要求1所述的多晶氧化钨纳米带高灵敏紫外光电探测器的制备方法,其特征在于:步骤(1)中,WCl6与聚乙烯吡咯烷酮的质量比是5:1;混合液中乙醇与N,N-二甲基甲酰胺的体积比是1:4;WCl6与混合溶液中重量体积比是2:5g/ml。
3.如权利要求1所述的多晶氧化钨纳米带高灵敏紫外光电探测器的制备方法,其特征在于:步骤(2)中,本发明制备的多晶氧化钨纳米带高灵敏紫外光电探测器的功能单元为多晶WO3纳米带。
4.如权利要求1所述的多晶氧化钨纳米带高灵敏紫外光电探测器的制备方法,其特征在于:步骤(2)中,本发明制备的多晶氧化钨纳米带高灵敏紫外光电探测器能够实现在低偏压下的紫外高光电流响应,且光暗电流比达1000,具有超高灵敏度。
CN201510177854.1A 2015-04-15 2015-04-15 一种多晶氧化钨纳米带高灵敏紫外光电探测器的制备方法 Pending CN104900754A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510177854.1A CN104900754A (zh) 2015-04-15 2015-04-15 一种多晶氧化钨纳米带高灵敏紫外光电探测器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510177854.1A CN104900754A (zh) 2015-04-15 2015-04-15 一种多晶氧化钨纳米带高灵敏紫外光电探测器的制备方法

Publications (1)

Publication Number Publication Date
CN104900754A true CN104900754A (zh) 2015-09-09

Family

ID=54033290

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510177854.1A Pending CN104900754A (zh) 2015-04-15 2015-04-15 一种多晶氧化钨纳米带高灵敏紫外光电探测器的制备方法

Country Status (1)

Country Link
CN (1) CN104900754A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110872742A (zh) * 2018-08-30 2020-03-10 湖北大学 一种c纤维/wo3三维网络复合结构的制备方法
CN110902660A (zh) * 2019-11-06 2020-03-24 三峡大学 一种GaN纳米线锂离子电池负极材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318703A (zh) * 2008-07-08 2008-12-10 清华大学 一种氧化钨纳米线及氧化钨纳米线氨敏传感器的制备方法
CN101869842A (zh) * 2010-06-11 2010-10-27 哈尔滨工业大学深圳研究生院 碳化钨纳米纤维氧还原催化剂及其制备方法和应用
CN102437229A (zh) * 2011-11-29 2012-05-02 吉林大学 钛锆氧化物固溶体纳米线阵列紫外光探测器及其制备方法
CN103011293A (zh) * 2013-01-05 2013-04-03 吉林大学 一种三氧化钨的合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101318703A (zh) * 2008-07-08 2008-12-10 清华大学 一种氧化钨纳米线及氧化钨纳米线氨敏传感器的制备方法
CN101869842A (zh) * 2010-06-11 2010-10-27 哈尔滨工业大学深圳研究生院 碳化钨纳米纤维氧还原催化剂及其制备方法和应用
CN102437229A (zh) * 2011-11-29 2012-05-02 吉林大学 钛锆氧化物固溶体纳米线阵列紫外光探测器及其制备方法
CN103011293A (zh) * 2013-01-05 2013-04-03 吉林大学 一种三氧化钨的合成方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
A.KOSKI 等: "Effect of molecular weight on fibrous PVA produced yelectrospinning", 《MATRIALS LETTERS》 *
GUAN WANG 等: "Fabrication and characterization of polycrystalline WO3 nanofibers and their application for ammonia sensing", 《THE JOURNAL OF PHYSICAL CHEMISTRY B》 *
KAI HUANG 等: "Ultraviolet Photoconductance of a Single Hexagonal WO3 Nanowire", 《NANO RESEARCH》 *
Y.B.LI 等: "WO3 nanorods/nanobelts synthesized via physical vapor deposition process", 《CHEMICAL PHYSICS LETTERS》 *
吕宁: "WO3纳米纤维的制备及其气敏特性的研究", 《中国优秀硕士学位论文全文数据库工程科技I辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110872742A (zh) * 2018-08-30 2020-03-10 湖北大学 一种c纤维/wo3三维网络复合结构的制备方法
CN110872742B (zh) * 2018-08-30 2022-01-04 湖北大学 一种c纤维/wo3三维网络复合结构的制备方法
CN110902660A (zh) * 2019-11-06 2020-03-24 三峡大学 一种GaN纳米线锂离子电池负极材料的制备方法
CN110902660B (zh) * 2019-11-06 2022-08-05 三峡大学 一种GaN纳米线锂离子电池负极材料的制备方法

Similar Documents

Publication Publication Date Title
Chen et al. Self-powered diamond/β-Ga 2 O 3 photodetectors for solar-blind imaging
Shen et al. A self-powered ultraviolet photodetector based on solution-processed p-NiO/n-ZnO nanorod array heterojunction
Zhang et al. High performance self-powered ultraviolet photodetectors based on electrospun gallium nitride nanowires
Huang et al. A simple, repeatable and highly stable self-powered solar-blind photoelectrochemical-type photodetector using amorphous Ga 2 O 3 films grown on 3D carbon fiber paper
Yin et al. The light-induced pyro-phototronic effect improving a ZnO/NiO/Si heterojunction photodetector for selectively detecting ultraviolet or visible illumination
Chetri et al. Self-powered UV detection using SnO2 nanowire arrays with Au Schottky contact
Arya et al. Sol-gel synthesis of Cu-doped p-CdS nanoparticles and their analysis as p-CdS/n-ZnO thin film photodiode
Wang et al. Progress in ultraviolet photodetectors based on II–VI group compound semiconductors
Lin et al. Transparent ZnO-nanowire-based device for UV light detection and ethanol gas sensing on c-Si solar cell
Lou et al. Flexible ultraviolet photodetectors based on ZnO–SnO2 heterojunction nanowire arrays
Juan et al. Self-powered hybrid humidity sensor and dual-band UV photodetector fabricated on back-contact photovoltaic cell
Young et al. Ultraviolet photodetectors with Ga-doped ZnO nanosheets structure
Chen et al. Electrospun anatase TiO 2 nanorods for flexible optoelectronic devices
Liu et al. Ga-doped ZnO nanosheet structure-based ultraviolet photodetector by low-temperature aqueous solution method
Hamdaoui et al. Highly efficient, low cost, and stable self–powered UV photodetector based on Co2+: ZnO/Sn diluted magnetic semiconductor nanoparticles
Kajli et al. Efficient UV–visible photodetector based on single CuO/Cu2O core-shell nanowire
CN111864005B (zh) 氧化镓基pn结光电探测器、远程电晕监测系统及制作方法
CN112563420A (zh) 一种日盲紫外钙钛矿光电探测器及其制备方法
Zargar et al. Optical properties of ZnO/SnO2 composite coated film
CN104900754A (zh) 一种多晶氧化钨纳米带高灵敏紫外光电探测器的制备方法
CN109256438A (zh) 一种硅基非晶氧化镓薄膜日盲光电晶体管及其制造方法
Kumar et al. Influence of Sn doping on photoluminescence and photoelectrochemical properties of ZnO nanorod arrays
CN107658384A (zh) 基于有机‑无机多异质结纳米阵列的广谱光电探测器及其制备方法
Chang et al. A $\hbox {TiO} _ {2} $ Nanowire MIS Photodetector With Polymer Insulator
Zhang et al. Construction of n-SnO2 microwire/p-InGaN heterojunction for self-powered and broadband photodetector

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150909