CN104821398A - 一种锂离子电池负极材料沥青基多孔炭/ZnMn2O4的制备方法 - Google Patents

一种锂离子电池负极材料沥青基多孔炭/ZnMn2O4的制备方法 Download PDF

Info

Publication number
CN104821398A
CN104821398A CN201510042074.6A CN201510042074A CN104821398A CN 104821398 A CN104821398 A CN 104821398A CN 201510042074 A CN201510042074 A CN 201510042074A CN 104821398 A CN104821398 A CN 104821398A
Authority
CN
China
Prior art keywords
znmn
porous charcoal
ion battery
base porous
asphaltic base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510042074.6A
Other languages
English (en)
Inventor
吴明铂
李朋
刘婧妍
刘阳
吴文婷
尹令红
孙启乾
李忠涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China University of Petroleum East China
Original Assignee
China University of Petroleum East China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China University of Petroleum East China filed Critical China University of Petroleum East China
Priority to CN201510042074.6A priority Critical patent/CN104821398A/zh
Publication of CN104821398A publication Critical patent/CN104821398A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种锂离子电池负极材料沥青基多孔炭/ZnMn2O4的制备方法,属新材料制备技术的范畴,属于炭素材料与电化学交叉的技术领域。本发明的特征是以量大价廉的石油沥青为碳源,纳米氧化锌为模板,制备沥青基多孔炭,洗涤烘干后加入六水合硝酸锌和硝酸锰,低温干燥后惰性气体保护下煅烧,即得锂离子电池沥青基多孔炭/ZnMn2O4负极材料,产品放电比容量高、循环性能好,是一种应用前景非常好的锂离子二次电池负极材料。

Description

一种锂离子电池负极材料沥青基多孔炭/ZnMn2O4的制备方法
技术领域
一种锂离子电池负极材料沥青基多孔炭/ZnMn2O4的制备方法,属新材料制备技术的范畴,属于炭素材料与电化学交叉的技术领域。本发明的特征是以量大价廉的石油沥青为碳源,纳米氧化锌为模板,制备沥青基多孔炭,洗涤烘干后加入六水合硝酸锌和硝酸锰,低温干燥后惰性气体保护下煅烧,即得锂离子电池沥青基多孔炭/ZnMn2O4负极材料,该材料具有高的比电容和好的循环性,是一种应用前景看好的锂离子二次电池负极材料。
背景技术
相对于其他电池,锂离子二次电池具有很多独特优势,如工作电压高、应用温度范围广、自放电率低、无污染等,目前已广泛应用于便携式通讯设备、相机、混合动力汽车等电源,并在航天、小型医疗器械及军用通讯等方面逐步替代传统的电源。锂离子电池负极材料的电化学性能是提升锂电整体性能的关键因素之一。
锌锰矿(ZnMn2O4)具有较高的理论比容量,其在锂离子电池负极材料中的应用是当今研究的热点之一,但充放电过程中出现的积聚与坍塌限制了其广泛应用。对ZnMn2O4进行改性,以提高其电化学性能成为锂离子电池研究领域的重要研究方向之一。
发明内容
一种锂离子电池负极材料沥青基多孔炭/ZnMn2O4的制备方法,以量大价 廉的石油沥青为碳源,纳米氧化锌为模板,制备沥青基多孔炭,洗涤烘干后加入六水合硝酸锌和硝酸锰,低温干燥后惰性气体保护下煅烧,即得锂离子电池沥青基多孔炭/ZnMn2O4负极材料。其特征在于其制备的步骤和工艺条件如下:
(1)称取一定量的石油沥青溶于100mL甲苯,再加入一定量纳米氧化锌,且m(纳米氧化锌):m(石油沥青)=0.2~0.8,110℃下搅拌蒸干。
(2)将蒸干后的混合物在700~800℃惰性气体保护下焙烧1h,自然冷却后用2M的盐酸洗去纳米氧化锌模板,抽滤干燥。
(3)所得的沥青基多孔炭经浓硝酸80℃预处理1h后,加入一定量的六水合硝酸锌和六水合硝酸锰,使m(ZnMn2O4)/m(沥青基多孔炭+ZnMn2O4)=0.3~0.7,60℃下干燥12h。
(4)将烘干产物于350~500℃惰性气体保护下焙烧1~3h。将产物研磨并用200目筛分后即得锂离子电池负极材料沥青基多孔炭/ZnMn2O4
所制沥青基多孔炭/ZnMn2O4用作锂离子电池负极材料时,产品形貌好、结构稳定、放电容量高、循环性能好,是一种应用前景非常好的锂离子二次电池负极材料。
附图说明
图1是所得样品的X射线衍射图。
图2是所得样品与纯ZnMn2O4的循环性能曲线图。
具体实施方式
下面将结合具体实施例来详叙本发明的技术特点。
实施例1
称取2g石油沥青溶于100mL甲苯中,按照质量比m(纳米氧化锌):m(沥青)=2:5称取相应量的氧化锌并于110℃下搅拌蒸干。将蒸干后的混合物在800℃,氮气保护下焙烧1h,自然冷却后用2M的盐酸洗去纳米氧化锌模板,抽滤干燥。将所得的沥青基多孔炭用浓硝酸于80℃预处理1h后,按照m(ZnMn2O4)/m(沥青基多孔炭+ZnMn2O4)=0.3加入六水合硝酸锌和硝酸锰,并于60℃下干燥12h。将烘干产物在400℃氮气保护下焙烧3h,产物经研磨过200目筛后即得到锂离子电池负极材料沥青基多孔炭/ZnMn2O4
实施例2
沥青基多孔炭的制备同实施例1。将沥青基多孔炭用浓硝酸于80℃预处理1h后,按照m(ZnMn2O4)/m(沥青基多孔炭+ZnMn2O4)=0.5加入六水合硝酸锌和硝酸锰。其余步骤与实例1相同,得到锂离子电池沥青基多孔炭/ZnMn2O4负极材料。
实施例3
沥青基多孔炭的制备同实施例1。将沥青基多孔炭用浓硝酸于80℃预处理1h后,按照m(ZnMn2O4)/m(沥青基多孔炭+ZnMn2O4)=0.7加入六水合硝酸锌和硝酸锰。其余步骤与实例1相同,得到锂离子电池沥青基多孔炭/ZnMn2O4负极材料。
对实施例1~3中合成的沥青基多孔炭/ZnMn2O4进行XRD分析,如图1所示,锌锰矿在复合材料中的质量百分含量分别为30、50和70%时,对应的衍射峰基本一致,各个衍射峰的衍射角也大体相同,图中未发现明显杂峰。
对合成的沥青基多孔炭/ZnMn2O4负极材料做成电池,进行恒流充放电测试。由图2可得,相对于纯的ZnMn2O4,沥青基多孔炭/ZnMn2O4负极材料的比容量显著提高。当m(ZnMn2O4)/m(沥青基多孔炭+ZnMn2O4)=0.3时,循环 30次后,容量保持在400mA hg-1左右;当m(ZnMn2O4)/m(沥青基多孔炭+ZnMn2O4)=0.7时,虽然首次放电达到1300mA hg-1以上,但是容量很快衰减到了600mA hg-1以下;当m(ZnMn2O4)/m(沥青基多孔炭+ZnMn2O4)=0.5时,沥青基多孔炭/ZnMn2O4负极材料首次放电容量达到1400mA hg-1,循环30次后仍然保持在750mA hg-1以上,并且可逆性良好,具有非常好的综合电化学性能。

Claims (2)

1.一种锂离子电池负极材料沥青基多孔炭/ZnMn2O4的制备方法,以量大价廉的石油沥青为碳源,纳米氧化锌为模板,制备沥青基多孔炭,洗涤烘干后加入六水合硝酸锌和硝酸锰,低温干燥后惰性气体保护下煅烧,即得锂离子电池沥青基多孔炭/ZnMn2O4负极材料。其特征在于其制备的步骤和工艺条件如下:
(1)称取一定量的石油沥青溶于100mL甲苯,再加入一定量纳米氧化锌,110℃下搅拌蒸干;
(2)将蒸干后的混合物在700~800℃高温、惰性气体保护下焙烧,自然冷却后用2M的盐酸洗去纳米氧化锌模板,抽滤干燥;
(3)所得的沥青基多孔炭经浓硝酸80℃预处理1h后,加入一定量的六水合硝酸锌和六水合硝酸锰,60℃下干燥12h;
(4)将烘干产物于350~500℃惰性气体保护下焙烧1~3h。将产物研磨并用200目筛分后即得锂离子电池负极材料沥青基多孔炭/ZnMn2O4
2.根据权利要求1所述的一种锂离子电池负极材料沥青基多孔炭/ZnMn2O4的制备方法,其特征在于,m(纳米氧化锌):m(石油沥青)=0.2~0.8,m(ZnMn2O4)/m(沥青基多孔炭+ZnMn2O4)=0.3~0.7。
CN201510042074.6A 2015-01-26 2015-01-26 一种锂离子电池负极材料沥青基多孔炭/ZnMn2O4的制备方法 Pending CN104821398A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510042074.6A CN104821398A (zh) 2015-01-26 2015-01-26 一种锂离子电池负极材料沥青基多孔炭/ZnMn2O4的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510042074.6A CN104821398A (zh) 2015-01-26 2015-01-26 一种锂离子电池负极材料沥青基多孔炭/ZnMn2O4的制备方法

Publications (1)

Publication Number Publication Date
CN104821398A true CN104821398A (zh) 2015-08-05

Family

ID=53731629

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510042074.6A Pending CN104821398A (zh) 2015-01-26 2015-01-26 一种锂离子电池负极材料沥青基多孔炭/ZnMn2O4的制备方法

Country Status (1)

Country Link
CN (1) CN104821398A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107804849A (zh) * 2017-12-05 2018-03-16 中国石油化工股份有限公司 一种石油沥青基活性炭的制备方法及其制备的沥青基活性炭
CN113248791A (zh) * 2021-05-26 2021-08-13 深圳德诚达光电材料有限公司 一种有机硅铝炭黑填料的制取工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066759A (zh) * 2007-06-06 2007-11-07 中国科学院山西煤炭化学研究所 一种双峰分布多孔炭的制备方法
CN102502588A (zh) * 2011-11-09 2012-06-20 上海理工大学 一种孔径分布可控的中孔炭的制备方法
CN103050663A (zh) * 2012-11-05 2013-04-17 天津市贝特瑞新能源科技有限公司 一种锂离子电池负极材料及其制备方法和其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101066759A (zh) * 2007-06-06 2007-11-07 中国科学院山西煤炭化学研究所 一种双峰分布多孔炭的制备方法
CN102502588A (zh) * 2011-11-09 2012-06-20 上海理工大学 一种孔径分布可控的中孔炭的制备方法
CN103050663A (zh) * 2012-11-05 2013-04-17 天津市贝特瑞新能源科技有限公司 一种锂离子电池负极材料及其制备方法和其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
LONGWEI YIN ET AL.: "Spinel ZnMn2O4 Nanocrystal-Anchored 3D Hierarchical Carbon Aerogel Hybrides as Anode Materials for Lithium Ion Batteries", 《ADVANCED FUNCTIONAL MATERIALS》 *
YUANFU DENG ET AL.: "Recent advances in Mn-based oxides as anode materials for lithium ion batteries", 《RSC ADVANCES》 *
ZHIYONG WANG ET AL.: "Effects of Hierarchical Architecture on Electronic and Mechanical Properties of Nanocast Monolithic Porous Carbons and Carbon-Carbon Nanocomposites", 《CHEMISTRY OF MATERIALS》 *
郝凤斌: "碳凝胶复合材料的锂电性能研究", 《中国优秀硕士学位论文全文数据库 基础学科辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107804849A (zh) * 2017-12-05 2018-03-16 中国石油化工股份有限公司 一种石油沥青基活性炭的制备方法及其制备的沥青基活性炭
CN113248791A (zh) * 2021-05-26 2021-08-13 深圳德诚达光电材料有限公司 一种有机硅铝炭黑填料的制取工艺

Similar Documents

Publication Publication Date Title
Liu et al. A cation/anion co-doped Li1. 12Na0. 08Ni0. 2Mn0. 6O1. 95F0. 05 cathode for lithium ion batteries
Zhao et al. Synthesis and electrochemical performance of F-doped Li4Ti5O12 for lithium-ion batteries
Wang et al. Improved performance all-solid-state electrolytes with high compacted density of monodispersed spherical Li1. 3Al0. 3Ti1. 7 (PO4) 3 particles
Zhao et al. Environment-friendly synthesis of high-voltage LiNi0. 5Mn1. 5O4 nanorods with excellent electrochemical properties
CN103165883B (zh) 锂离子电池磷酸基正极复合材料及其制备方法和用途
CN103219493B (zh) 一种硫导电氧化物复合材料及其作为锂硫电池正极材料的应用
CN105977458A (zh) 纳米金刚石粉和石墨烯的复合电极材料及其制备方法
Mu et al. Novel 1.5 V anode materials, ATiOPO 4 (A= NH 4, K, Na), for room-temperature sodium-ion batteries
CN104362408B (zh) 一种磷酸铁锂电池制造环节磷酸铁锂废料的回收再利用方法
CN106602067B (zh) 一种石墨基复合材料、其制备方法及包含该复合材料的锂离子电池
CN103762354B (zh) 一种LiNi0.5Mn1.5O4材料、其制备方法及锂离子电池
CN103855389A (zh) 三氟化铁/碳复合材料及其制备方法和应用
CN103545113B (zh) 一种锂离子混合超级电容器
Sun et al. Cu doped LiNi0. 5Mn1. 5− xCuxO4 (x= 0, 0.03, 0.05, 0.10, 0.15) with significant improved electrochemical performance prepared by a modified low temperature solution combustion synthesis method
CN107946564B (zh) 富钠锰基Na4Mn2O5/Na0.7MnO2复合材料及其制备方法和应用
CN102931404B (zh) 磷位硼掺杂磷酸锰锂/碳复合材料及其制备方法
Feng et al. Preparation of SnO2 nanoparticle and performance as lithium-ion battery anode
CN103594694A (zh) 一种球形钛酸锂离子电池负极材料的制备方法
CN104112849A (zh) 一种轻金属元素掺杂三元锂离子电池正极材料及其合成方法
CN103515608A (zh) 石墨烯/硫复合材料及其制备方法、电池正极及其制备方法和电池
CN105280887A (zh) 一种锂离子电池负极的制作方法
CN101894943A (zh) 一种锂离子电池正极材料的碳包覆方法
CN103996823B (zh) 一种动力锂离子电池用三元聚阴离子磷酸盐/碳正极材料的快速微波反应制备方法
CN105810901A (zh) 一种Ti3+/Ti4+混合价态的掺杂铁元素的锂离子电池钛酸锂负极材料及其制备方法
CN104934577B (zh) 嵌入石墨烯网络的介孔Li3VO4/C纳米椭球复合材料及其制备方法和应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150805