CN104795542A - 一种纳米级锂离子复合正极的等离子喷射制备方法 - Google Patents

一种纳米级锂离子复合正极的等离子喷射制备方法 Download PDF

Info

Publication number
CN104795542A
CN104795542A CN201510004455.5A CN201510004455A CN104795542A CN 104795542 A CN104795542 A CN 104795542A CN 201510004455 A CN201510004455 A CN 201510004455A CN 104795542 A CN104795542 A CN 104795542A
Authority
CN
China
Prior art keywords
lithium ion
nano
plasma spraying
carbon
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510004455.5A
Other languages
English (en)
Inventor
阮殿波
袁峻
傅冠生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NINGBO NANCHE NEW ENERGY TECHNOLOGY Co Ltd
Original Assignee
NINGBO NANCHE NEW ENERGY TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NINGBO NANCHE NEW ENERGY TECHNOLOGY Co Ltd filed Critical NINGBO NANCHE NEW ENERGY TECHNOLOGY Co Ltd
Priority to CN201510004455.5A priority Critical patent/CN104795542A/zh
Publication of CN104795542A publication Critical patent/CN104795542A/zh
Priority to PCT/CN2015/087983 priority patent/WO2016110108A1/zh
Priority to AU2015101545A priority patent/AU2015101545A4/en
Priority to DE102015122946.3A priority patent/DE102015122946A1/de
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/10Oxides, borides, carbides, nitrides or silicides; Mixtures thereof
    • C23C4/11Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/134Plasma spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明涉及锂离子电池技术领域,具体涉及一种纳米级锂离子复合正极的等离子喷射制备方法。包括以下步骤:(1)按比例取原料15-20%锂电正极材料、5-20%的导电剂和60-80%多孔碳材料混合均匀成混合物;(2)然后将混合物加入到送粉器中;(3)以5m/min的速度将混合物采用等离子喷射技术涂覆到集流体上,涂覆为双面涂覆,涂覆的厚度为50-100μm。

Description

一种纳米级锂离子复合正极的等离子喷射制备方法
技术领域
本发明涉及锂离子电池技术领域,具体涉及一种纳米级锂离子复合正极的等离子喷射制备方法。
背景技术
锂离子电池是一种能量密度大,平均输出电压高,自放电小并且不含有毒物质的绿色二次电池。经过了将近二十年的发展,锂离子电池已经能达到100 Wh/kg 到150 Wh/kg,工作电压最大可达4V。超级电容是基于双电层储能原理以及可逆性较高的氧化还原准电容原理的储能器件,具有功率密度高、充放电时间短、循环寿命长、工作温度范围宽等优点,同时也具有能量密度相对较低等劣势。
锂离子电池和超级电容在比能量和比功率上的差异决定了两者充放电速率的差异,而在实际的应用中,由于超级电容和锂离子电池具有各自突出的优点以及局限性,两者结合起来的并联式或者串联式电容电池的应用弥补了这一块的空白。正极采用锂离子电池的正极材料混合一定量的多孔碳材料,多孔碳材料包括活性炭、介孔碳、碳纳米管、石墨烯等。然而由于复合正极材料制备过程中受到工艺和成本的影响,复合效果并不理想,无法达到均匀分散以及纳米级别的混合。
锂电正极材料的发展历程从层状结构的钴酸锂,尖晶石结构的锰酸锂,橄榄石结构的磷铁酸锂到三元材料锂镍钴锰。钴酸锂正极材料是目前传统电子产品中锂电的主要使用材料,主要是基于其容量大、电压范围大等优势。锰酸锂由于其低价、稳定、导电性能好等优点在电动自行车、电动汽车等领域广泛应用,但也存在其容量衰减问题。近年来随着使用清洁能源的公共交通的大力发展,橄榄石结构的磷酸铁锂正极材料和更为技术发展前沿的三元材料锂镍钴锰被广泛地应用到电动汽车及大规模储能器件。
等离子喷射法是是采用由直流电驱动的等离子电弧作为热源,将陶瓷、合金、金属等材料加热到熔融或半熔融状态,并以高速喷向经过预处理的工件表面而形成附着牢固的表面层的方法。该方法利用等离子弧进行的,离子弧是压缩电弧,与自由电弧相比较,其弧柱细,电流密度大,气体电离度高,因此具有温度高,能量集中,弧稳定性好等特点。
发明内容
本发明的目的是为了解决锂离子电容电池正极复合材料在制备工艺上由于分散、性能均一以及粒径分布等方面的不足导致电化学性能受到限制的问题,提供一种纳米级锂离子复合正极的等离子喷射制备方法。本发明能够以较为经济的方法制得在纳米尺寸上混合均匀的锂电正极材料和多孔碳复合材料,并且将其涂覆在铝箔上得到复合电极。
为了达到上述发明目的,本发明采用以下技术方案:
一种纳米级锂离子复合正极的等离子喷射制备方法,包括以下步骤:
(1)按比例取原料15-20%锂电正极材料、5-20%的导电剂和60-80%多孔碳材料混合均匀成混合物;
(2)然后将混合物加入到送粉器中;
(3)以5m/min的速度将混合物采用等离子喷射技术涂覆到集流体上,涂覆为双面涂覆,涂覆的厚度为50-100μm。
作为优选,锂电正极材料为 LiCoO2、LiMn2O4、LiMnO2、LiNiO2、LiFePO4、LiMnPO4、LiNi0.8Co0.2O2或LiNi1/3Co1/3Mn1/3O2
作为优选,多孔碳材料为活性炭、介孔碳、碳气凝胶、碳纤维、碳纳米管、炭黑、硬炭或石墨烯中。
作为优选,所述集流体为涂炭铝箔、铝箔、带孔铝箔、铜箔或带孔铜箔 。
作为优选,集流体的厚度为20μm。
作为优选,所述导电剂为导电炭黑、石墨烯或碳纳米管。
作为优选,所述等离子喷射技术包括:低温低压等离子技术、高温低压等离子技术、真空等离子技术、水稳等离子技术和气稳等离子技术。
本发明与现有技术相比,有益效果是:
1锂电正极材料表面能均匀分散包覆碳源,弥补锂电正极材料存在的导电率低等问题
2等离子喷射法能够实现致密的电极层,无需经过碾压工序,保证电极密度。
具体实施方式
下面通过具体实施例对本发明的技术方案作进一步描述说明。
如果无特殊说明,本发明的实施例中所采用的原料均为本领域常用的原料,实施例中所采用的方法,均为本领域的常规方法。
实施例1:
一种纳米级锂离子复合正极的等离子喷射制备方法,制备过程如下:
磷酸铁锂/活性炭复合电极的制备过程
原材料:LiFePO4(台塑长园)、活性炭(韩国PCT)、导电炭黑(TIMCAL)、铝箔(韩国产20μm)。
将总质量为500g的LiFePO4、活性炭、导电炭黑按照质量比为20:65:10的比例混合均匀,加入到送粉器中,用5m/min的速度进行等离子喷射涂覆。
经过冷却干燥和双面涂覆后,得到厚度为200μm的正极,经测定,该电极密度为0.93g/cm3
将得到的正极极片与石墨负极极片进行组装,得到的电容电池经过化成后进行性能测试,用1C充电至3.7V,1C放电至2.0V,电容电池的比能量为35.6Wh/kg,比功率为3800W/kg,经过1C充放电循环15000次后,容量保持在91.3%。
将得到的正极极片经过SEM扫描得到的图片看出,活性炭、导电炭黑和磷酸铁锂颗粒混合均匀,磷酸铁锂颗粒在100nm以下,并且在磷酸铁锂表面均包覆有导电炭黑和活性炭混合物。
实施例2:
一种纳米级锂离子复合正极的等离子喷射制备方法,制备过程如下:
磷酸锰锂/活性炭/石墨烯复合电极制备过程:
原材料:LiMnPO4(宁波材料所)、活性炭(韩国PCT)、导电炭黑(TIMCAL)、涂炭铝箔(韩国产20μm)、石墨烯(盐城纳新)、添加剂S(实验室合成)。
将总质量为600g的LiMnPO4、活性炭、导电炭黑、石墨烯按照质量比为15:70:9:1的比例混合均匀,加入到送粉器中,用5m/min的速度对涂炭铝箔进行等离子喷射涂覆。
经过冷却干燥和双面涂覆后,得到厚度为220μm的正极,经测定,该电极密度为0.86g/cm3
将得到的正极极片与硬炭负极极片进行组装,得到的电容电池经过0.02C化成充放电后进行性能测试,用1C充电至4.5V,1C放电至2.0V,电容电池的比能量为52.3Wh/kg,比功率为4250W/kg,经过1C充放电循环15000次后,容量保持在92.1%。
将得到的正极极片经过SEM扫描得到的图片看出,活性炭、导电炭黑、石墨烯和磷酸锰锂颗粒混合均匀,活性炭、导电炭黑、磷酸锰锂均匀得分布在单层石墨烯的导电结构上,其中纳米级的磷酸锰锂表面还有导电炭黑的包覆。
实施例3:
一种纳米级锂离子复合正极的等离子喷射制备方法,制备过程如下:
三元钴镍锰/活性炭/硬炭复合电极制备过程:
原材料:LiNi1/3Co1/3Mn1/3O2(深圳贝特瑞)、活性炭(韩国PCT)、硬炭(EnerG2)、导电炭黑(TIMCAL)、铝箔(韩国产20μm)、、添加剂S(实验室合成)。
将总质量为550g的LiNi1/3Co1/3Mn1/3O2、活性炭、硬炭、导电炭黑按照质量比为15:60:10:10的比例混合均匀,加入到送粉器中,用5m/min的速度对涂炭铝箔进行等离子喷射涂覆。
经过冷却干燥和双面涂覆后,得到厚度为200μm的正极,经测定,该电极密度为1.02g/cm3
将得到的正极极片与硅碳负极极片进行组装,得到的电容电池经过0.02C化成充放电后进行性能测试,用1C充电至4.2V,1C放电至2.0V,电容电池的比能量为55.4Wh/kg,比功率为4560W/kg,经过1C充放电循环15000次后,容量保持在89.2%。
将得到的正极极片经过SEM扫描得到的图片看出,活性炭、硬炭、导电炭黑和三元钴镍锰颗粒混合均匀,其中钴镍锰表面还有导电炭黑的包覆。
从上述实例可以看出,采用等离子喷射法可以实现纳米级别的混合,使得锂电正极材料表面能均匀包覆碳源,弥补锂电正极材料存在的导电率低等问题。此外,等离子喷射法能够实现致密的电极层,无需经过碾压工序,保证电极密度。其中,正极复合电极的锂电正极材料和多孔碳材料的比例和最终组装而成的电容电池的能量密度、功率密度、循环寿命等有关系,所使用的电压范围和采用的锂电正极材料有关。

Claims (7)

1.一种纳米级锂离子复合正极的等离子喷射制备方法,其特征在于,包括以下步骤:
(1)按比例取原料15-20%锂电正极材料、5-20%的导电剂和60-80%多孔碳材料混合均匀成混合物;
(2)然后将混合物加入到送粉器中;
(3)以5m/min的速度将混合物采用等离子喷射技术涂覆到集流体上,涂覆为双面涂覆,涂覆的厚度为50-100μm。
2.根据权利要求1所述的一种纳米级锂离子复合正极的等离子喷射制备方法,其特征在于,锂电正极材料为 LiCoO2、LiMn2O4、LiMnO2、LiNiO2、LiFePO4、LiMnPO4、LiNi0.8Co0.2O2或LiNi1/3Co1/3Mn1/3O2
3.根据权利要求1所述的一种纳米级锂离子复合正极的等离子喷射制备方法,其特征在于, 多孔碳材料为活性炭、介孔碳、碳气凝胶、碳纤维、碳纳米管、炭黑、硬炭或石墨烯中。
4.根据权利要求1所述的一种纳米级锂离子复合正极的等离子喷射制备方法,其特征在于,所述集流体为涂炭铝箔、铝箔、带孔铝箔、铜箔或带孔铜箔 。
5.根据权利要求1所述的一种纳米级锂离子复合正极的等离子喷射制备方法,其特征在于,集流体的厚度为20μm。
6.根据权利要求1所述的一种纳米级锂离子复合正极的等离子喷射制备方法,其特征在于,所述导电剂为导电炭黑、石墨烯或碳纳米管。
7.根据权利要求1所述的一种纳米级锂离子复合正极的等离子喷射制备方法,其特征在于,所述等离子喷射技术为低温低压等离子技术、高温低压等离子技术、真空等离子技术、水稳等离子技术或气稳等离子技术。
CN201510004455.5A 2015-01-06 2015-01-06 一种纳米级锂离子复合正极的等离子喷射制备方法 Pending CN104795542A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201510004455.5A CN104795542A (zh) 2015-01-06 2015-01-06 一种纳米级锂离子复合正极的等离子喷射制备方法
PCT/CN2015/087983 WO2016110108A1 (zh) 2015-01-06 2015-08-25 一种纳米级锂离子复合正极的等离子喷射制备方法
AU2015101545A AU2015101545A4 (en) 2015-01-06 2015-10-19 Preparation method of nanoscale li-ion composite anode by plasma jet
DE102015122946.3A DE102015122946A1 (de) 2015-01-06 2015-12-30 Verfahren zur Herstellung einer nanoskaligen Lithium-Ionen-Verbundanode durch Plasmaspritzen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510004455.5A CN104795542A (zh) 2015-01-06 2015-01-06 一种纳米级锂离子复合正极的等离子喷射制备方法

Publications (1)

Publication Number Publication Date
CN104795542A true CN104795542A (zh) 2015-07-22

Family

ID=53560199

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510004455.5A Pending CN104795542A (zh) 2015-01-06 2015-01-06 一种纳米级锂离子复合正极的等离子喷射制备方法

Country Status (4)

Country Link
CN (1) CN104795542A (zh)
AU (1) AU2015101545A4 (zh)
DE (1) DE102015122946A1 (zh)
WO (1) WO2016110108A1 (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016110108A1 (zh) * 2015-01-06 2016-07-14 宁波南车新能源科技有限公司 一种纳米级锂离子复合正极的等离子喷射制备方法
CN106784796A (zh) * 2017-01-20 2017-05-31 中盐安徽红四方锂电有限公司 一种高温三元材料动力电池及其制备方法
CN106848200A (zh) * 2017-01-23 2017-06-13 北京鼎能开源电池科技股份有限公司 一种锂离子电池磷酸铁锂正极材料的制备方法
CN107086299A (zh) * 2017-05-16 2017-08-22 苏州思创源博电子科技有限公司 一种包覆型钴酸锂正极材料的制备方法
CN108766789A (zh) * 2018-05-07 2018-11-06 中国东方电气集团有限公司 一种超级电容电极极片的制备方法
CN109560244A (zh) * 2018-08-07 2019-04-02 深圳市电科电源股份有限公司 磷酸铁锂锂离子电池制备方法及磷酸铁锂锂离子电池
CN110182807A (zh) * 2019-04-23 2019-08-30 宁波中车新能源科技有限公司 一种锆掺杂多孔碳材料及制备锂离子电容电池用复合正极的制备方法
CN114899355A (zh) * 2022-06-29 2022-08-12 深圳市一众自动化技术有限公司 一种锂离子电池电极及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044893A (zh) * 2021-03-12 2021-06-29 电子科技大学 一种对高镍三元材料进行碳包覆改性的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101079510A (zh) * 2007-06-25 2007-11-28 中南大学 一种超级电容电池
CN101689630A (zh) * 2007-06-12 2010-03-31 松下电器产业株式会社 非水电解质二次电池用电极的制造方法
CN102066607A (zh) * 2008-06-20 2011-05-18 Sakti3有限公司 采用物理气相沉积法的电化学电池的大规模制造
CN102709531A (zh) * 2012-01-09 2012-10-03 宁德新能源科技有限公司 一种锂离子电池及其负极
CN103730636A (zh) * 2013-12-20 2014-04-16 广西科技大学 制备高电位LiNi0.5Mn1.5O4锂离子电池正极片方法
CN103794801A (zh) * 2014-01-27 2014-05-14 中原工学院 等离子体喷涂高分子复合ptc粉体制备锂电池集流体的方法
CN104157880A (zh) * 2014-08-29 2014-11-19 合肥国轩高科动力能源股份公司 一种导电金属陶瓷修饰锂离子电池集流体的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103143333A (zh) * 2013-03-13 2013-06-12 河海大学 一种活性炭吸附剂的改性方法及其应用
CN103977841B (zh) * 2014-06-04 2016-02-17 黑龙江大学 一种制备氮化物/碳纳米管-石墨烯三元复合体的方法
CN104795542A (zh) * 2015-01-06 2015-07-22 宁波南车新能源科技有限公司 一种纳米级锂离子复合正极的等离子喷射制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101689630A (zh) * 2007-06-12 2010-03-31 松下电器产业株式会社 非水电解质二次电池用电极的制造方法
CN101079510A (zh) * 2007-06-25 2007-11-28 中南大学 一种超级电容电池
CN102066607A (zh) * 2008-06-20 2011-05-18 Sakti3有限公司 采用物理气相沉积法的电化学电池的大规模制造
CN102709531A (zh) * 2012-01-09 2012-10-03 宁德新能源科技有限公司 一种锂离子电池及其负极
CN103730636A (zh) * 2013-12-20 2014-04-16 广西科技大学 制备高电位LiNi0.5Mn1.5O4锂离子电池正极片方法
CN103794801A (zh) * 2014-01-27 2014-05-14 中原工学院 等离子体喷涂高分子复合ptc粉体制备锂电池集流体的方法
CN104157880A (zh) * 2014-08-29 2014-11-19 合肥国轩高科动力能源股份公司 一种导电金属陶瓷修饰锂离子电池集流体的方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016110108A1 (zh) * 2015-01-06 2016-07-14 宁波南车新能源科技有限公司 一种纳米级锂离子复合正极的等离子喷射制备方法
CN106784796A (zh) * 2017-01-20 2017-05-31 中盐安徽红四方锂电有限公司 一种高温三元材料动力电池及其制备方法
CN106848200A (zh) * 2017-01-23 2017-06-13 北京鼎能开源电池科技股份有限公司 一种锂离子电池磷酸铁锂正极材料的制备方法
CN107086299A (zh) * 2017-05-16 2017-08-22 苏州思创源博电子科技有限公司 一种包覆型钴酸锂正极材料的制备方法
CN108766789A (zh) * 2018-05-07 2018-11-06 中国东方电气集团有限公司 一种超级电容电极极片的制备方法
CN109560244A (zh) * 2018-08-07 2019-04-02 深圳市电科电源股份有限公司 磷酸铁锂锂离子电池制备方法及磷酸铁锂锂离子电池
CN110182807A (zh) * 2019-04-23 2019-08-30 宁波中车新能源科技有限公司 一种锆掺杂多孔碳材料及制备锂离子电容电池用复合正极的制备方法
CN114899355A (zh) * 2022-06-29 2022-08-12 深圳市一众自动化技术有限公司 一种锂离子电池电极及其制备方法

Also Published As

Publication number Publication date
WO2016110108A1 (zh) 2016-07-14
AU2015101545A4 (en) 2015-11-19
DE102015122946A1 (de) 2016-07-07

Similar Documents

Publication Publication Date Title
CN104795542A (zh) 一种纳米级锂离子复合正极的等离子喷射制备方法
Zhao et al. Conductive polymer binder for nano-silicon/graphite composite electrode in lithium-ion batteries towards a practical application
Brutti et al. A high power Sn–C/C–LiFePO4 lithium ion battery
Chen et al. High-power LiFePO4 cathode materials with a continuous nano carbon network for lithium-ion batteries
Qiao et al. Synthesis and improved electrochemical performances of porous Li3V2 (PO4) 3/C spheres as cathode material for lithium-ion batteries
US10020513B2 (en) Slurry composition for forming lithium secondary battery electrode containing cellulose fiber as binder, and lithium secondary battery electrode
CN102468515B (zh) 一种锂离子电池及其制备方法
CN103311541B (zh) 一种锂离子电池复合正极材料及其制备方法
Adepoju et al. High C-rate performance of LiFePO4/carbon nanofibers composite cathode for Li-ion batteries
CN101573812A (zh) 非水电解质二次电池用正极材料、具备该正极材料的非水电解质二次电池及其制造方法
Hassoun et al. A lithium ion battery using nanostructured Sn–C anode, LiFePO4 cathode and polyethylene oxide-based electrolyte
CN107482182B (zh) 碳包覆离子掺杂磷酸锰锂电极材料及其制备方法
Huang et al. Effect of carbon coating on cycle performance of LiFePO4/C composite cathodes using Tween80 as carbon source
Qiao et al. Freeze-drying synthesis of Li3V2 (PO4) 3/C cathode material for lithium-ion batteries
CN101937994A (zh) 锂离子电池的石墨烯/铝复合负极材料及其制备方法
CN106099080A (zh) 一种基于ncm三元复合材料的锂离子电池及其制备方法
WO2020111201A1 (ja) リチウムイオン二次電池用正極組成物、リチウムイオン二次電池用正極、及びリチウムイオン二次電池
Liao et al. Electrochemical study on lithium iron phosphate/hard carbon lithium-ion batteries
CN109037659A (zh) 一种双层碳包覆磷酸铁锂材料的制备方法
CN103137942B (zh) 一种磷酸铁锂电池用集流体及正极片的制备方法
Huang et al. Layer-stacked Sb@ graphene micro/nanocomposite with decent Na-storage, full-cell and low-temperature performances
Kim et al. Synthesis of LiFePO4/C cathode materials through an ultrasonic-assisted rheological phase method
Peng et al. Regulation of an Inner Helmholtz Plane by hierarchical porous biomass activated carbon for stable cathode electrolyte interphase films
CN102306754B (zh) 一种防止正极片脱落的锂离子电池的制作方法
CN105633403A (zh) 一种高倍率磷酸铁锂正极材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150722