CN104781935A - 银基透明电极 - Google Patents

银基透明电极 Download PDF

Info

Publication number
CN104781935A
CN104781935A CN201380056605.6A CN201380056605A CN104781935A CN 104781935 A CN104781935 A CN 104781935A CN 201380056605 A CN201380056605 A CN 201380056605A CN 104781935 A CN104781935 A CN 104781935A
Authority
CN
China
Prior art keywords
layer
electrode
nitride
oxygen
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380056605.6A
Other languages
English (en)
Inventor
N·麦克斯波兰
G·R·尼寇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pilkington Group Ltd
Original Assignee
Pilkington Group Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pilkington Group Ltd filed Critical Pilkington Group Ltd
Publication of CN104781935A publication Critical patent/CN104781935A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3618Coatings of type glass/inorganic compound/other inorganic layers, at least one layer being metallic
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3626Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer one layer at least containing a nitride, oxynitride, boronitride or carbonitride
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3642Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating containing a metal layer
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3644Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the metal being silver
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3671Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use as electrodes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • C03C17/3602Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer
    • C03C17/3668Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties
    • C03C17/3678Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal the metal being present as a layer the multilayer coating having electrical properties specially adapted for use in solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022491Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of a thin transparent metal layer, e.g. gold
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Surface Treatment Of Glass (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

公开了具有涂层堆叠体结构的透明导电电极,其包括介电层、基于银的功能层、阻挡层和另一个介电层。独特的涂层堆叠体提供了电极,其具有必需的电性质和承受与例如在光伏器件的制造中进一步处理相关的提高温度的能力。

Description

银基透明电极
本发明涉及适合应用于(例如)器件例如光伏电池中的透明电极。
使用光伏电池用于产生电能是众所周知的。这些电池包含表现出光生伏打效应的半导体材料并且它们通常在包含电池阵列的太阳能板中实现。太阳能代表清洁、环境友好的电来源。在这个时间的大规模生产中的薄膜光生伏打技术当中CuIn1-xGaxSe2-ySy(CIGS)和CuInS2(CIS)显示出最高的效率。
通常通过在透明衬底(通常为玻璃)上沉积连续的材料层来制造光伏电池。这些包括上面提及的半导体,以及被布置来捕获由半导体产生的电流的一组电极。由于半导体层位于电极之间,至少一个电极必须为透明的从而光可穿过其中并且到达组件的半导体区域。这种结构通常通过首先在玻璃衬底上沉积透明电极接着另外的层以提供缓冲层、界面层等和半导体区域来得到。通常将透明电极作为沉积层的“堆叠体”而实现。
在工作期间,玻璃基材提供器件的最外部的表面,即面向光源的表面。因此,光可以穿过玻璃和透明电极以到达半导体区域。
溅射沉积是在光伏器件的制造中经常采用的物理气相沉积(PVD)技术。通过非反应性溅射,包含待沉积的材料的“靶材”和衬底(例如玻璃)位于溅射室中并且使用惰性气体例如氩轰击该靶材。这种作用导致靶材材料的原子和、或离子被释放,它们随后沉积在该衬底上。
在反应性溅射中,通过靶材材料与作为气体引入溅射室的一种或多种额外的反应物之间的化学反应来形成沉积材料。经常通过反应性溅射来沉积氧化物膜和氮化物膜。
根据目前的意见,多个品质在透明电极中是需要的。除了必需的低薄层电阻和高透明性以外,还应该提供合适的“生长”层,这适宜于在其上沉积随后的层。
特别是对于CdTe器件,具有光滑形态的生长层提供随后CdS层的改进生长和器件中减少的由“针孔”所致的电短路。(“针孔”是与粗糙下层中的高点结合的CdS层中的小孔)。
此外,制造方法涉及在沉积透明导电电极之后使器件经受高温,所以能够承受这样的温度的电极设计是需要的。
申请人的共同未决申请GB1102724.0描述了可热处理的银基涂层堆叠体,其设计用于低发射率(低E)或太阳控制窗玻璃。这些堆叠体包含下减反射层;银基功能层;阻挡层和上减反射层。该下减反射层包含基于硅的(氧)氮化物((oxi)ni tride)和/或铝的(氧)氮化物的基底层;基于Zn和Sn的氧化物的层;基于金属氧化物和/或硅的(氧)氮化物的分隔层和基于Zn的氧化物的顶层。
由GB1102724.0公开的经涂覆的玻璃板提供了良好的可热处理性,而不需要银基功能层上的NiCrOx牺牲阻挡层。
下介电(下减反射层和分隔层)提供了在提高温度下的良好稳定性、保护银层,并且还提供了良好(即低)的薄层电阻。阻挡层提供了物理稳健性和良好的薄层电阻。然而,下介电层提供了对于电器件为不合适的电性质,因此GB1102724.0中公开的涂层堆叠体不适合用作透明导电电极。
FR2919114公开了一种铬基光伏电池,其中透明电极具有以特定布置与各种减反射层组合的金属性功能层。该出版物包括具有铝掺杂的氧化锌作为上介电层的顶部涂层的透明电极堆叠体并且教导了这种涂层应具有0.35-2.5×10-3Ω.cm的电阻率。
在本发明中起重要作用的涂层堆叠体包含层的组合,其提供了必需的光学透明性、低薄层电阻、在提高温度下的稳定性和物理稳健性。
根据本发明,用于光伏电池的透明电极包含于此所附的权利要求1所述的特征。
优选地,该电极包含第二阻挡层,其进而包含额外的ZnO:Al层。更优选地,ZnO:Al层与阻挡层直接接触,但是可包括另外的ZnSnOx层并且该层可位于ZnO:Al层与阻挡层之间。
在本发明以下的讨论中,与所述值之一比另一个值更高度优选的指示结合的参数所允许的范围的上限或下限的替代值的公开应视为隐含说明:位于较多优选和较少优选的所述替代物之间的所述参数的每个中间值相对于所述较少优选的值并且还相对于位于所述较少优选的值和所述中间值之间的每个值本身为优选的。
在本发明的上下文中,在据说层为“基于”特定的一种材料或多种材料时,这意味着该层主要由相应的所述一种材料或多种材料组成,这通常意味着它包含至少50原子%的所述一种材料或多种材料。
基于硅的(氧)氮化物和/或铝的(氧)氮化物的基底层可具有至少5nm、优选从5nm到60nm、更优选从10nm到50nm、甚至更优选从20nm到40nm、最优选从25nm到35nm的厚度。这个基底层在其它用途中充当玻璃侧扩散阻挡。
术语“硅的(氧)氮化物”包括Si氮化物(SiNx)和Si氧氮化物(SiOxNy)两者,同时术语“铝的(氧)氮化物”包括Al氮化物(AlNx)和Al氧氮化物(AlOxNy)两者。Si氮化物、Si氧氮化物、Al氮化物和Al氧氮化物层优选基本上为化学计量的(例如Si氮化物=Si3N4,x=1.33),但是还可为亚化学计量的或甚至超化学计量的,只要涂层的可热处理性不会由此受到负面影响。基于硅的(氧)氮化物和/或铝的(氧)氮化物的基底层的一种优选组成为基本上化学计量混合的氮化物Si90Al10Nx
可在含有氮和氩的溅射气氛中分别由Si基靶材和/或Al基靶材反应性溅射硅的(氧)氮化物和/或铝的(氧)氮化物的层。基于硅的(氧)氮化物和/或铝的(氧)氮化物的基底层的氧含量可源于溅射气氛中的残余氧或源于在所述气氛中添加的氧的受控含量。如果(氧)氮化硅和/或(氧)氮化铝的氧含量显著低于其氮含量,即如果该层中的原子比O/N保持显著小于1,则通常是优选的。最优选的是对于下减反射层的基底层使用具有可忽略的氧含量的氮化硅和/或氮化铝。可以通过确保该层的折射率不显著区别于不含氧的氮化硅和/或氮化铝层的折射率来控制这种特征。
使用混合的Si和/或Al靶材或者以其它方式向该层的Si和/或Al组分添加金属或半导体处于本发明的范围内,只要下减反射层的基底层的基本阻挡和保护性质不丧失。混合Al靶材与Si靶材是熟知并且得到良好证明的,不排除其它混合靶材。额外的组分可通常以至多约10-15wt.%的量存在。Al通常以约10wt.%的量存在于混合的Si靶材中。
通过提供致密和热稳定的层,下减反射层的基于Zn和Sn的氧化物的层起到改进热处理期间的稳定性的作用,并且有助于减少热处理之后的雾度。下减反射层的基于Zn和Sn的氧化物的层可具有至少0.5nm、优选从0.5nm到10nm、更优选从0.5nm到9nm、甚至更优选从1nm到8nm、甚至更优选从1nm到7nm、甚至更优选从2nm到6nm、甚至更优选从3nm到6nm、最优选从3nm到5nm的厚度。由于光学干涉条件和由于基底层的厚度(需要其维持用于使功能层减反射的光学干涉边界条件)所得的减少所致的可热处理性的降低,约8nm的厚度上限是优选的。
下减反射层的基于Zn和Sn的氧化物的层优选直接位于基于硅的(氧)氮化物和/或铝的(氧)氮化物的基底层上。
下减反射层的基于Zn和Sn的氧化物(缩写:ZnSnOx)的层优选包含约10-90wt.%Zn和90-10wt.%Sn、更优选约40-60wt.%Zn和约40-60wt.%Sn、优选Zn和Sn各约50wt.%,以其总金属含量的wt.%计。可以在O2存在下通过混合ZnSn靶材的反应性溅射来沉积基于Zn和Sn的氧化物的层。
基于金属氧化物和/或硅的(氧)氮化物的分隔层可具有至少0.5nm、优选从0.5nm到6nm、更优选0.5nm到5nm、甚至更优选从0.5nm到4nm、最优选从0.5nm到3nm的厚度。这些优选的厚度能够进一步改进在热处理时的雾度。该分隔层在沉积过程期间和在随后的热处理期间提供保护。该分隔层要么在其沉积后立即被基本上完全氧化,要么在沉积随后的氧化物层期间其氧化成基本上完全氧化的层。
可以通过以下方式沉积该分隔层:由基于例如略微亚化学计量的氧化钛的陶瓷靶材(例如TiO1.98靶材)作为基本上化学计量的或作为略微亚化学计量氧化物使用非反应性溅射,通过在O2存在下反应性溅射基于Ti的靶材,或者通过沉积基于Ti的薄层(其随后被氧化)。在本发明的上下文中,“基本上化学计量的氧化物”意指至少为95%但是至多为105%化学计量的氧化物,同时“略微亚化学计量的氧化物”意指至少为95%但是小于100%化学计量的氧化物。
当分隔层基于金属氧化物时,所述分隔层可以包含基于Ti、NiCr、InSn、Zr、Al和/或Si的氧化物的层。
分隔层还可包括一种或多种其它化学元素用作例如掺杂剂或合金化剂(al loyant),所述一种或多种其它化学元素选自以下元素Ti、V、Mn、Co、Cu、Zn、Zr、Hf、Al、Nb、Ni、Cr、Mo、Ta中的至少一种或选自基于这些材料中的至少一种的合金。
基于Zn的氧化物的顶层主要充当对于任何随后沉积的银基功能层的生长促进层。优选该层包含Zn的氧化物,其任选混合有至多约10wt.%(wt.%意指靶材金属含量)的量的金属例如Al或Sn。所述金属例如Al或Sn的典型含量为约2wt.%,Al为实际优选的。证明ZnO和混合的Zn氧化物作为以给定厚度的随后沉积的银基功能层辅助得到低薄层电阻的生长促进层是非常有效的。如果在O2存在下由Zn靶材反应溅射下减反射层的顶层或者如果通过在不含有或仅少量含有通常不超过约5体积%的氧的气氛中溅射例如基于ZnO:Al的陶瓷靶材来沉积它,则是优选的。基于Zn的氧化物的顶层可具有至少2nm、优选从2nm到15nm、更优选3nm到12nm、甚至更优选从4nm到10nm、甚至更优选从5nm到8nm的厚度。
(一个或多个)银基功能层可基本上由银而没有任何添加剂组成,在低e和/或太阳控制涂层的区域中通常是这样。然而,通过添加掺杂剂、合金添加剂等或甚至添加非常薄的金属或金属化合物层来改变(一个或多个)银基功能层的性质处于本发明的范围内,只要对于(一个或多个)银基功能层充当高度光透射和低光吸收的(一个或多个)IR反射层而言(一个或多个)银基功能层所必要的性质没有由此受到显著损害。
银基功能层的厚度由其技术目的控制。对于典型的低e和/或太阳控制目的,单个银基层的优选层厚度为从5nm到20nm,更优选从5nm到15nm,甚至更优选从5nm到13nm,甚至更优选从8nm到12nm,最优选从10nm到11nm。采用这样的层厚度,对于单个银涂层可以容易地得到在热处理之后高于86%的光透射率值和低于0.05的法向发射率。如果旨在较好的太阳控制性质,如下面进一步解释的,那么可以适当地增加银基功能层的厚度或者可以提供几个间隔的功能层。
优选地下减反射层中基于Zn的氧化物的顶层与银基功能层直接接触。优选地,玻璃衬底与银基功能层之间的层由上面列出的下减反射层的四个层组成。
阻挡层可包含基于金属氧化物例如ZnO:Al的一个或多个层。该阻挡层可具有从0.5nm到20nm、优选从1nm到10nm、更优选从1nm到8nm、甚至更优选从1nm到7nm、最优选从2nm到6nm的总厚度。这样的阻挡层厚度能够容易沉积。已发现如果该阻挡层包含由混合金属氧化物靶材溅射的混合金属氧化物层,那么可得到在沉积过程期间银基功能层的优异保护和在热处理期间的高光学稳定性。
由于期望光伏电池在热处理期间仅经历最少的颜色(和光透射率)改变,包含基本上化学计量的金属氧化物的阻挡层为优选的。使用基于金属氧化物的阻挡层而不是金属性或极大亚氧化性阻挡层导致涂层在热处理期间极高的光学稳定性并且有效地辅助在热处理期间保持光学改变少。
优选使用氧化性靶材的非反应性溅射来沉积与银基功能层直接接触的至少一部分阻挡层以避免银损坏。
现在将参考以下非限制性实施例描述本发明。
通过溅射沉积来制备根据本发明的玻璃衬底上的一系列银基涂层堆叠体。表1显示了所得的堆叠体结构连同每个样品的各种测量性质。包括具有溅射的25nm ZnO:Al层的NSG TECTM C15的样品用于对比。
ZnO:Al代表锌氧化物和铝氧化物的反应溅射混合物(主要是前者),在氧/氩气氛中使用锌/铝靶材制备。ZAO代表锌氧化物和铝氧化物的非反应性溅射混合物(主要是前者),使用包含这些氧化物的专用靶材获得。
表1
在热处理前后(分别称为AD和HT)测量每个样品。设计这种热处理来重复在CdS/CdTe器件的沉积期间经历的温度并且其由将每个样品置于600℃下的马弗炉中持续约5分钟构成。每个样品的测量性质定义如下
●LT:这是涂层堆叠体在热处理前后的光透射率
●Rs:这是涂层堆叠体在热处理前后的薄层电阻
●雾度:这是应用于实施例的主观可见雾度评分体系。该体系使用0(完美,无缺陷)最高至5(致密的雾度,对于裸眼经常已经可见)之间的分数。5+意指特别差的外观。
使用热处理提供关于在高温加工之后每个样品会表现如何的指示。从表1可以清楚在这种热处理之后没有一个样品看起来为视觉上有前景的,实施例1显示最差的视觉损坏。然而所有样品都显示薄层电阻的降低,预期这对于光伏器件的工作为有益的。
(雾度评价的详细描述)-评价体系考虑涂层中可见缺陷(其在涂层损坏或不完美时引起局部颜色变化)的更宏观的效果。通过在明光下观察样品来主观评价在热处理后(在热处理前所有样品都没有表现出雾度)涂层中可见缺陷的宏观效果。该评价基于使用0(完美,无缺陷)经过3(高数目的清楚可见的缺陷和/或点)最高至5(致密的雾度,对于裸眼经常已经可见)之间的分数的完美度评分(评级)体系,从而对涂覆的玻璃样品在热处理后的视觉外观进行评级。通过使用以在两个正交平面中介于约-90℃与约+90℃之间的入射角(相对于法向入射)指向布置在黑箱前部的涂覆的玻璃板上的250万烛光束(火炬)(即首先在水平面中翻转火炬,然后在垂直面中翻转火炬)来进行该视觉评价。该黑箱具有足够大的尺寸使得可以同时评价几个涂覆的玻璃样品。观察涂覆的玻璃板并且通过改变如上所述的入射角(通过将光束从观察者指向涂覆的玻璃板)来评价它们的视觉品质。在黑箱的前部布置涂覆的玻璃板,使得它们的涂层面向观察者。具有任何≥3的分数的热处理的涂覆的玻璃板被认为没有通过测试。
实施例1-3的每个包含:
-衬底;
-下减反射层,其离开该衬底按顺序包含
○SixNy基底层,
○ZnSnOx层,
○TiO2层,和
○ZnO:Al顶层;
-银层和
-阻挡层,其离开该银层按顺序包含
○ZAO层,
○ZnSnOx层和
○ZAO层。
除了上述以外,实施例1还包括ZnO:Al层,实施例3还包括ZnSnOx层和ZnO:Al层。
随后将包含CdS/CdTe的光伏器件沉积到由实施例1-3代表的每个堆叠体上,在沉积和退火期间的最大温度为至多~600℃。大致的器件结构为~120nm CdS和~2μm CdTe,金用作背部接触。
在器件制作之后,如类似于本领域技术人员所熟悉的那样进行了太阳电池的表征并且结果显示在表2中。对于这些测量,采用NSG TECTMC15样品作为基准并且相对于此显示每个实施例的分析的结果。
显示了多个器件的峰结果和平均结果。
表2
在实施例1中Voc值明显增加,这表明该堆叠体上CdS/CdTe的优异生长。该堆叠体上沉积的器件的效率还比基准器件高。考虑到表1中描述的热处理测试中其差的性能,实施例1的优良性能出乎预料。
在上AR层中纳入ZnSnOx的实施例2显示出比其它器件次的性能。然而,获得了工作器件并且如下详述器件的进一步优化可给出改进的性能。
显示出ZnO:Al比ZAO优异的生长,但是ZAO器件(实施例3)显示出比NSG TECTM C15器件优异的性能,其本质上是明显的。
此外,实施例1的良好性能还出乎发明人的预料,因为根据他们的经验,反应性溅射的ZnO:Al涂层会具有非常高的电阻率-尽管先前提及的FR2919114的教导。
为了进一步调查它们的电阻率,制备了四个样品,包括在玻璃衬底和NSG TECTM C15两者上的非反应性溅射的ZAO和反应性溅射的ZnO:Al的样品。
这些样品与测量和计算的电性质一起列在表3中。第3-5列视具体情况分别是指ZAO或ZnO:Al顶层的薄层电阻、厚度和电阻率。
表3
表3中的数据符合发明人的预期:反应性溅射的ZnO:Al具有高电阻率因此其作为用于光伏电池的透明电极堆叠体上的顶部涂层的适合性是更加出乎预料的。
可示出通过使用更优化的光学设计可进一步改进银堆叠体的JSC。在实施例1-3中显示的设计中,使用了~50nm的上AR层,当在这些的顶部上沉积CdS层时,由于增加的反射,其不是优化的。光学建模结果给出以下:
●具有120nm CdS的非优化顶部AR层(~50nm)
○太阳透射率=33.52%
●具有120nm CdS的优化顶部AR层(~120nm)
○太阳透射率=35.55%
通过下面的测量结果显示了光学性质的这种改进。这里在实施例1中沉积具有~50nm顶部AR层的120nm CdS层并且在修改的实施例1中沉积具有120nm顶部AR层的120nm CdS层。与基准TEC15/ZnO:Al对比的归一化透射率结果如下:
当使用120nm的顶部AR层时存在明确的改进,预期这会产生JSC值的改进。
对于本发明的优选实施方案,采用在110nm与130nm之间的顶部AR层。

Claims (20)

1.用于光伏电池的透明电极,其包含以下顺序的层:
-衬底;
-第一介电层,其离开该衬底按顺序包含
○基于硅的(氧)氮化物和/或铝的(氧)氮化物的基底层,
○基于Zn和Sn的氧化物的层,
○基于金属氧化物和/或硅的(氧)氮化物的分隔层,
○基于Zn的氧化物的顶层;
-银基功能层和
-阻挡层
-
-其中每个层直接位于按顺序在其之前直接出现的层上。
2.根据权利要求1的电极,还包含第二介电层,该第二介电层包含ZnO:Al层。
3.根据权利要求2的电极,其中该第二介电层还包含位于阻挡层与ZnO:Al层之间的ZnSnOx层。
4.根据权利要求1-3中任一项的电极,其中基于硅的(氧)氮化物和/或铝的(氧)氮化物的基底层具有从20nm到40nm的厚度。
5.根据权利要求1-4中任一项的电极,其中下减反射层的基于Zn和Sn的氧化物的层具有从1nm到8nm的厚度。
6.根据前述任一项权利要求的电极,其中下减反射层的基于Zn和Sn的氧化物的层直接位于基于硅的(氧)氮化物和/或铝的(氧)氮化物的基底层上。
7.根据前述任一项权利要求的电极,其中基于金属氧化物和/或硅的(氧)氮化物的分隔层具有从0.5nm到5nm的厚度。
8.根据前述任一项权利要求的电极,其中当分隔层基于金属氧化物时,所述分隔层包含Ti、NiCr、InSn、Zr、Al和/或Si的氧化物层。
9.根据前述任一项权利要求的电极,其中分隔层还包括一种或多种其它化学元素,该一种或多种其它化学元素选自以下元素Ti、V、Mn、Co、Cu、Zn、Zr、Hf、Al、Nb、Ni、Cr、Mo、Ta中的至少一种或选自基于这些材料中的至少一种的合金。
10.根据前述任一项权利要求的电极,其中基于Zn的氧化物的顶层具有从3nm到10nm的厚度。
11.根据前述任一项权利要求的电极,其中银基功能层具有从5nm到13nm的厚度。
12.根据前述任一项权利要求的电极,其中下减反射层中基于Zn的氧化物的顶层与银基功能层直接接触。
13.根据前述任一项权利要求的电极,其中阻挡层具有从1nm到10nm的厚度。
14.根据权利要求1的电极,其包含:
-衬底;
-第一介电层,其离开该衬底按顺序包含
○SixNy基底层,
○ZnSnOx层,
○TiO2层,和
○ZnO:Al顶层;
-银层和
-阻挡层,其离开该银层按顺序包含
○ZAO层,
○ZnSnOx层和
○ZAO层。
15.根据权利要求14的电极,其还包含第二介电层,该第二介电层包含ZnO:Al层。
16.根据权利要求15的电极,其中该第二介电层还包含ZnSnOx层。
17.根据权利要求16的电极,其中该ZnSnOx层位于ZnO:Al层与最顶上的ZAO层之间。
18.根据前述任一项权利要求的电极,其中该第二减反射层厚度小于130nm。
19.根据权利要求18的电极,其中该第二减反射层厚度大于110nm。
20.光伏电池,其包含根据前述任一项权利要求的电极。
CN201380056605.6A 2012-10-30 2013-10-29 银基透明电极 Pending CN104781935A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GB1219499.9 2012-10-30
GBGB1219499.9A GB201219499D0 (en) 2012-10-30 2012-10-30 Silver based transparent electrode
PCT/GB2013/052815 WO2014068297A1 (en) 2012-10-30 2013-10-29 Silver based transparent electrode

Publications (1)

Publication Number Publication Date
CN104781935A true CN104781935A (zh) 2015-07-15

Family

ID=47358870

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380056605.6A Pending CN104781935A (zh) 2012-10-30 2013-10-29 银基透明电极

Country Status (6)

Country Link
US (1) US20150255647A1 (zh)
EP (1) EP2915193B1 (zh)
JP (1) JP6522506B2 (zh)
CN (1) CN104781935A (zh)
GB (1) GB201219499D0 (zh)
WO (1) WO2014068297A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106847942A (zh) * 2017-02-20 2017-06-13 江西师范大学 一种透明电极及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108611610A (zh) * 2016-12-02 2018-10-02 北京有色金属研究总院 一种双介质层太阳光谱选择性吸收薄膜及其制备方法
WO2020056361A2 (en) * 2018-09-14 2020-03-19 Ubiquitous Energy, Inc. Method and system for multilayer transparent electrode for transparent photovoltaic devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1442872A (zh) * 2003-04-17 2003-09-17 上海交通大学 多层纳米透明导电膜及其制备方法
WO2012007737A1 (en) * 2010-07-13 2012-01-19 Pilkington Group Limited Transparent front electrode for a photovoltaic device
CN102544126A (zh) * 2010-12-14 2012-07-04 三菱综合材料株式会社 薄膜太阳能电池用背面电极带及薄膜太阳能电池制造方法
WO2012143704A1 (en) * 2011-04-21 2012-10-26 Pilkington Group Limited Heat treatable coated glass pane

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2939563B1 (fr) * 2008-12-04 2010-11-19 Saint Gobain Substrat de face avant de panneau photovoltaique, panneau photovoltaique et utilisation d'un substrat pour une face avant de panneau photovoltaique
US20120048372A1 (en) * 2010-08-25 2012-03-01 Hyungseok Kim Solar cell
GB201102724D0 (en) * 2011-02-17 2011-03-30 Pilkington Group Ltd Heat treatable coated glass pane

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1442872A (zh) * 2003-04-17 2003-09-17 上海交通大学 多层纳米透明导电膜及其制备方法
WO2012007737A1 (en) * 2010-07-13 2012-01-19 Pilkington Group Limited Transparent front electrode for a photovoltaic device
CN102544126A (zh) * 2010-12-14 2012-07-04 三菱综合材料株式会社 薄膜太阳能电池用背面电极带及薄膜太阳能电池制造方法
WO2012143704A1 (en) * 2011-04-21 2012-10-26 Pilkington Group Limited Heat treatable coated glass pane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106847942A (zh) * 2017-02-20 2017-06-13 江西师范大学 一种透明电极及其制备方法
CN106847942B (zh) * 2017-02-20 2018-05-25 江西师范大学 一种透明电极及其制备方法

Also Published As

Publication number Publication date
US20150255647A1 (en) 2015-09-10
WO2014068297A1 (en) 2014-05-08
GB201219499D0 (en) 2012-12-12
JP2015534282A (ja) 2015-11-26
EP2915193B1 (en) 2021-03-17
EP2915193A1 (en) 2015-09-09
JP6522506B2 (ja) 2019-05-29

Similar Documents

Publication Publication Date Title
US9196772B2 (en) Layered element and photovoltaic device comprising such an element
JP6066929B2 (ja) 熱処理可能な被覆ガラス板
JP2011513101A (ja) 反射防止コーティングを有する透明基材
JP2011512665A (ja) 光起電力セルおよび光起電力セル基板
US20100243046A1 (en) Method of forming a protective layer on thin-film photovoltaic articles and articles made with such a layer
CN104969362B (zh) 带表面电极的透明导电玻璃基板及其制造方法、以及薄膜太阳能电池及其制造方法
CN102918434A (zh) 阳光控制门窗玻璃
JP2010534929A (ja) 太陽電池の前面基板と太陽電池の前面基板の使用方法
EP2699523A1 (en) Heat treatable coated glass pane
US9845262B2 (en) Glazing comprising a substrate coated with a stack comprising at least one functional layer made from zinc-doped silver
CN111559875A (zh) 一种镀膜玻璃及其制备方法
CN112074492B (zh) 涂覆的玻璃板
MX2011005813A (es) Sustrato para la superficie frontal de un panel fotovoltaico, panel fotovoltaico y uso de un sustrato para la superficie frontal de un panel fotovoltaico.
ES2966817T3 (es) Sustrato de vidrio recubierto
Cho et al. Color tuning in Cu (In, Ga) Se2 thin‐film solar cells by controlling optical interference in transparent front layers
CN104781935A (zh) 银基透明电极
Theelen et al. Damp heat induced degradation mechanisms occurring in coloured oxide/metal/oxide films for thin-film solar cells
US20110088774A1 (en) Photovoltaic cell and photovoltaic cell substrate
WO2012021593A1 (en) Photovoltaic device with oxide layer
KR20180021675A (ko) 저방사율 코팅용 티타늄 니켈 니오브 합금 배리어
CN103998388B (zh) 形成具有稳定金属氧化物层的光电器件的方法
WO2012104656A2 (en) Growth layer for photovoltaic applications
KR101466621B1 (ko) 투과율과 내구성이 향상된 다층코팅을 갖는 태양전지용 투명 기판 및 그 제조방법
Ma et al. Superstrate design for increased CdS/CdTe solar cell efficiencies

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20150715

RJ01 Rejection of invention patent application after publication