CN104781407A - 植物中内源基因的转录基因沉默 - Google Patents

植物中内源基因的转录基因沉默 Download PDF

Info

Publication number
CN104781407A
CN104781407A CN201380058018.0A CN201380058018A CN104781407A CN 104781407 A CN104781407 A CN 104781407A CN 201380058018 A CN201380058018 A CN 201380058018A CN 104781407 A CN104781407 A CN 104781407A
Authority
CN
China
Prior art keywords
plant
reticent
nucleic acid
thing
construct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201380058018.0A
Other languages
English (en)
Inventor
N-H·蔡
S·邓
H·代
Q-W·牛
H·王
C·阿雷纳斯维尔特罗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rockefeller University
Original Assignee
Rockefeller University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rockefeller University filed Critical Rockefeller University
Publication of CN104781407A publication Critical patent/CN104781407A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Virology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明涉及植物、植物组织和植物细胞中内源基因的转录基因沉默(TGS)。更具体地,本发明涉及能够进行植物、植物组织和植物细胞中内源基因的TGS的核酸构建体。本发明进一步涉及利用本发明的核酸构建体通过TGS减少植物、植物组织或植物细胞中的内源基因表达的方法。

Description

植物中内源基因的转录基因沉默
相关申请的交叉引用
本申请涉及并要求2012年9月7日提交的美国临时专利申请系列号61/698,203的优先权。该申请援引加入本文。
序列表
本申请与电子格式的序列表一起提交。序列表题为2312130PCTSequenceListing.txt,2013年8月26日创建,并且大小为14kb。电子格式的序列表的信息整体援引加入本文。
背景技术
本发明涉及植物、植物组织和植物细胞中内源基因的转录基因沉默(TGS)。更具体地,本发明涉及能够进行植物、植物组织和植物细胞中内源基因的TGS的核酸构建体。本发明进一步涉及利用本发明的核酸构建体通过TGS减少植物、植物组织或植物细胞中的内源基因表达的方法。
本文中用来说明本发明的背景或提供关于实践的额外细节的出版物和其他材料援引加入本文,并且为了方便,分别分组在参考文献中。
超过十年前,Matzke和同事报道了植物中转基因启动子(NOS)的转录基因沉默(TGS)和启动子DNA上的甲基化之间的关系(Matzke et al.,1989)。从那时开始,对于单子叶植物和双子叶植物中的转基因和内源基因,已广泛研究引起植物中TGS的机制(综述参见(Matzke and Matzke,2004;Eamenset al.,2008;Matzke et al.,2009)。目前TGS的观点提示通过双链RNA加工机器(AGO4、DCL3)产生的21-24nt小RNA(sRNA)靶向具有序列同源性的基因组区。这些sRNA通过DNA甲基转移酶(DRM1/2、MET1、CMT3)的作用指导DNA甲基化,并且推测这之后是涉及组蛋白甲基转移酶和脱乙酰酶的组蛋白修饰,以便建立甲基化基因座处的抑制性染色质状态。
利用转基因作为模式系统的早期研究发现了与植物中TGS相关的一些基本特征。(Mette et al.,2000;Jones et al.,2001;Sijen et al.,2001)这些研究证实需要长发夹结构产生靶向转基因启动子的sRNA。沉默的转基因的DNA分析显示对称和不对称的胞嘧啶甲基化增加,并且MET1参与沉默基因座的维持。相似地,还显示长反向重复序列(IR)介导水稻中35S启动子的高效TGS(Okano et al.,2008)。值得注意的是,正义(S)或反义(AS)方向的单链沉默物在烟草和拟南芥中产生sRNA和产生TGS中是无效的(Mette et al.,2000)。
虽然围绕转基因的TGS的事件的顺序是相对明确的,但是不知道相似的步骤是否也应用于内源基因座(此后为内源基因)的TGS。令人惊讶的是,到目前为止仅报道了几例内源基因座的TGS,它们全部使用IR RNA。Cigan等人(2005)报道了两个玉米内源基因的成功且强的沉默(Mark Cigan et al.,2005)。对于矮牵牛、马铃薯和水稻中的一些内源基因,观察到中等沉默(Sijenet al.,2001;Heilersig et al.,2006;Okano et al.,2008)。在利用模式单子叶植物水稻的综合研究中很好地说明了IR RNA触发内源基因的TGS的无效。有趣的是,水稻中检测的7个内源基因中的6个似乎抗拒通过产生自IRRNA结构的sRNA沉默(Okano et al.,2008)。相比之下,在相同实验中显示35S启动子可以通过靶向该启动子的IR RNA有效沉默。在拟南芥中也报道了其他不成功的试验(八氢番茄红素不饱和酶(PDS)和查耳酮合酶(CHS))(Eamens et al.,2008)。合在一起,这些结果提示内源基因座可能具有一些可以防止不期望的TGS的固有特性;或者,需要探索对内源基因座更有效的沉默策略。除了观察到的在内源基因座处基因沉默的低成功率,内源基因的TGS和DNA甲基化之间以及DNA甲基化和组蛋白修饰之间也有差异(Okano et al.,2008)。对于水稻中的大多数情况,靶向启动子区的IR RNA可以触发同源序列的DNA甲基化,但是它们不能诱导染色质修饰和TGS(Okano et al.,2008)。
需要开发植物中转录基因沉默的核酸构建体和方法。
发明内容
本发明涉及植物、植物组织和植物细胞中内源基因的转录基因沉默(TGS)。更具体地,本发明涉及能够进行植物、植物组织和植物细胞中内源基因的TGS的核酸构建体。本发明进一步涉及利用本发明的核酸构建体通过TGS减少植物、植物组织或植物细胞中的内源基因表达的方法。
在第一方面,本发明提供包含如本文所述的植物可操作启动子的核酸构建体,所述植物可操作启动子可操作地连接至本文所述的核酸沉默物分子。所述核酸构建体可以任选地包括其他调节序列,例如3’调节序列,或者如本文所述的其他序列。本发明的核酸沉默物分子包含植物内源基因靶标(即通过TGS下调的植物内源基因)的启动子区。所述核酸沉默物分子编码单链沉默物,其为转录自核酸构建体的RNA分子,或者编码反向重复沉默物,其转录自核酸构建体。所述单链沉默物或反向重复沉默物提供植物、植物组织和植物细胞中内源基因的TGS。在一实施方案中,所述单链沉默物为产生自植物内源基因靶标的启动子区的RNA分子(即,核酸沉默物分子),相对于核酸构建体中的植物可操作启动子,它是反义方向的。在另一实施方案中,所述单链沉默物为产生自植物内源基因靶标的启动子区的RNA分子(即,核酸沉默物分子),相对于核酸构建体中的植物可操作启动子,它是正义方向的。在这些实施方案的每个中,所述构建体、核酸沉默物分子和单链沉默物中不存在反向重复结构,即,核酸构建体和产生自它的产物中不存在反向重复结构或反向重复序列。在另一实施方案中,所述核酸沉默物为产生自植物内源基因靶标的启动子区的RNA分子,其一式两份提供,并且相对于核酸构建体中的植物可操作启动子,其以反向重复构型排列。核酸沉默物分子的表达产生初始单链RNA。这种单链RNA可以通过细胞机制或由于反向重复结构转化为双链RNA。
在一实施方案中,所述核酸沉默物分子包含靶内源基因的转录起始位点上游的核苷酸。在另一实施方案中,所述核酸沉默物分子包含靶内源基因的转录起始位点上游的核苷酸和转录起始位点下游的核苷酸。在一些实施方案中,所述核酸沉默物分子包含内源基因的约300个连续核苷酸-约1500个连续核苷酸的启动子区。在其他实施方案中,所述核酸沉默物分子包含内源基因的约400个连续核苷酸-约1200个连续核苷酸的启动子区。在另外的实施方案中,所述核酸沉默物分子包含内源基因的约425个连续核苷酸-约1100个连续核苷酸的启动子区。在进一步的实施方案中,所述核酸沉默物分子包含内源基因的约425个连续核苷酸-约1075个连续核苷酸的启动子区。
在植物中可操作的任何启动子均可以用于所述核酸构建体以驱动所述核酸沉默物分子的表达。在一些实施方案中,所述启动子为植物可操作启动子的单拷贝,包括本文所述的那些启动子。在其他实施方案中,所述启动子为双拷贝的植物可操作启动子以产生同源双启动子。在其他实施方案中,所述启动子为两个不同启动子的组合以产生异源双启动子。
在第二方面,本发明提供包含所述核酸构建体的转基因植物细胞。在一实施方案中,将所述核酸构建体稳定地整合入转基因植物细胞的基因组。在另一实施方案中,在转基因植物细胞中表达所述核酸。
在第三方面,本发明提供包含所述核酸构建体的转基因植物。在一实施方案中,将所述核酸构建体稳定地整合入转基因植物的基因组。在另一实施方案中,在转基因植物中表达所述核酸。
在第四方面,本发明提供一种通过转录基因沉默减少植物、植物组织或植物细胞中内源基因表达的方法。在一实施方案中,所述方法包括用所述核酸构建体转染植物细胞以产生如本文所述的转基因植物细胞。所述方法进一步包括在如本文所述的转基因植物细胞中表达所述核酸。在转基因植物细胞中切割表达的核酸,即本文所述的RNA单链正义沉默物、RNA单链反义沉默物或IR沉默物,以便产生一个或多个诱导转录基因沉默的小RNA(sRNA),从而减少感兴趣的基因的表达。在一些实施方案中,所述核酸沉默物分子的表达产生初始单链RNA。这种单链RNA可以在加工产生sRNA之前通过细胞机制或由于反向重复结构转化为双链RNA。所述方法可以任选地包括制备编码如本文所述的单链沉默物或IR沉默物的核酸构建体。在另一实施方案中,所述方法包括从转基因植物细胞再生转基因植物。在这个实施方案中,在转基因植物中表达所述核酸。在转基因植物细胞中切割所表达的核酸以产生一个或多个诱导转录基因沉默的sRNA,从而减少感兴趣的基因的表达。
在第五方面,本发明提供核酸构建体和方法以鉴定并获得来自内源基因的启动子区的其他TGS沉默物。根据这个方面,所述核酸构建体是适合转化想要鉴定TGS沉默物的植物物种的核酸构建体。在一实施方案中,所述核酸构建体可以包括在载体中。在一些实施方案中,所述载体适合农杆菌(Agrobacterium)介导的转化。在其他实施方案中,所述载体可以适合基因枪(biolistic)介导的转化。植物转化的其他合适载体是技术人员公知的。在另一实施方案中,所述核酸构建体可以直接用于根据本领域技术人员公知的技术转化植物。所述核酸构建体包含可操作地连接至推定的核酸沉默物分子的植物可操作启动子,所述推定的核酸沉默物分子可操作地连接至植物可操作的3’调节区。在一实施方案中,所述推定的核酸沉默物分子包含待测试的转录基因沉默的植物内源基因靶标的启动子区。在一些实施方案中,所述推定的核酸沉默物分子相对于如本文所述的植物可操作启动子是正义方向的。在其他实施方案中,所述推定的核酸沉默物分子相对于植物可操作启动子是反义方向的。在其他实施方案中,所述推定的核酸沉默物分子包含如本文所述的反向重复序列或反向重复结构。在一实施方案中,所述植物可操作启动子为双启动子,例如双35S CMV启动子。在另外的实施方案中,所述植物可操作启动子为单启动子,例如单35S CMV启动子。在一实施方案中,所述3’调节序列为TRV23’序列。在另一实施方案中,所述3’调节区为polyA添加序列。在一实施方案中,所述polyA添加序列为NOSpolyA。进一步根据这方面,合适的TGS沉默物是通过这样的方法鉴定的,所述方法包括以下步骤:制备核酸构建体,其包含如本文所述的感兴趣的内源基因的推定的核酸沉默物分子,用所述核酸构建体转化所关注的植物物种的细胞或组织,并且确定转化的植物物种的细胞或组织是否加工所述推定的核酸沉默物分子以产生所关注的内源基因的沉默。如果所述内源基因沉默,则感兴趣的内源基因的推定的核酸沉默物分子鉴定为TGS沉默物。在一实施方案中,通过培养转化的植物细胞用于表达推定的核酸沉默物分子并测试培养的转化植物细胞或组织中的转录基因沉默来进行确定。在另一实施方案中,通过从转化的植物细胞或组织再生转化的植物并测试转化的植物中的转录基因沉默来进行确定。根据本领域技术人员公知的技术进行转化的植物的再生。
附图说明
图1a-1d示出单链沉默物和IR沉默物可以在TMM基因座处诱导转录沉默。图1a:示出沉默物构建体的示意图。TMM启动子区的475bp(-483至-9)片段用作沉默物。a1:没有polyA添加序列的沉默物。TMM启动子区的TMM转录起始位点(TSS)用作沉默物,其由双35S以正义(S,正义沉默物)或反义(AS,反义沉默物)方向驱动。还制备了反向重复沉默物(IR)作为对照。a2:具有NOS polyA添加序列的沉默物。沉默物(S,AS和IR)转录自35S启动子。所有构建体的3’端均携带NOS polyA添加序列。图1b:示出在正义沉默物株系(S21)、反义沉默物株系(AS10)和反向重复沉默物株系(IR8)中观察到的典型的聚集气孔形态。WT,野生型Col-0。标尺=10μm。图1c和图1d:示出通过pTMM沉默物减少的TMM转录物水平。图1c:示出T1转化的植物中降低的TMM转录物水平。对于每个沉默物构建体,汇集并分析50-100株T1转化的植物。图1d:示出代表性S沉默物株系(S21、S26)、AS沉默物株系(AS4、AS10)和IR沉默物株系(IR8、IR44)中的TMMmRNA减少。AS10NI和IR8NI分别表示不带来自AS10和IR8的T2分离群体的任何转基因的子代植物株系。Vect:载体对照。示出的数据为3个技术重复的平均值±SD(标准差)。在另一独立实验中获得相似的结果。
图2示出转基因植物中单链沉默物的T-DNA插入位置。在每个株系中,箭头指示T-DNA插入位置。示意图示出破坏的拟南芥基因。白色的框,UTR;黑色的框,外显子区;黑线,内含子区。假基因At5G54045以灰色表示。At5G09730和At5G54045之间的虚线表示非常大的基因组距离。
图3a和3b示出定位至TMM启动子区的sRNA的克隆数和大小分布。图3a:归一化的定位至TMM启动子的sRNA的克隆数。将TMM启动子相关sRNA归一化至可以定位至拟南芥基因组的21-24nt sRNA的总数。正和负分别指正义链和反义链,rpm表示每百万次读取的读取数。图3b:定位至TMM启动子的sRNA的大小分布。
图4a-4e示出在内源TMM启动子和转基因沉默物区的DNA甲基化谱。图4a:示出所靶向的内源TMM启动子的重亚硫酸盐测序区。图4b、图4c和图4d:分别示出在CG、CHG(H=A、C或T)和CHH类型的胞嘧啶处的DNA甲基化水平。图4e:示出在转基因沉默物区的DNA甲基化。携带转基因沉默物而没有TGS的株系AS2用作对照。
图5a和5b示出在TMM启动子区的DNA甲基化是沉默物依赖性的。核酸内切酶McrBc切割含有(G/A)mC(N40-3000)(G/A)mC的DNA。图5a:示出测试DNA甲基化的TMM启动子的5’和3’区。图5b:有或无McrBc消化的qPCR结果。WT,野生型Col-0;AS4、AS10,反义沉默物株系。AS10NI,植物源自杂合AS10且不含沉默物。U,无McrBc处理。D,有McrBc处理。
图6a-6d示出在通过AS或IR沉默物沉默的植物中的TMM启动子和编码区的组蛋白H3修饰模式。图6a:为扩增DNA片段(约100bp)设计的Q-PCR引物,所述DNA片段对应于如图所示的TMM启动子和编码序列的3个不同区域。图6b:在TMM启动子5’区的组蛋白H3修饰模式。图6c:在TMM启动子3’区的组蛋白H3修饰模式。图6d:在TMM编码区的组蛋白H3修饰模式。Ace:H3K9/K14乙酰化。K4me3:组蛋白H3Lys 4三甲基化(H3K4)形式。K9me3:组蛋白H3Lys 9(H3K9)三甲基化形式。K27me3:组蛋白H3Lys 27(H3K27)三甲基化形式。
图7a-7d示出靶向FHY1启动子的单链FHY1沉默物可以诱导fhy1-表型。图7a:在5μmol/m2/s远红光(FR)下处理4天,与野生型(WT,Col-0)相比,下胚轴S沉默物株系(S3、S4)和反义沉默物株系(AS8、AS11)下胚轴长度较长。fhy1-3,FHY1功能丧失突变体。标尺=5mm。图7b:为图7a的定量,数据显示为20个个体的平均下胚轴长度±SD(标准差)。图7c:利用基因特异性引物通过q-RT-PCR检测的相对FHY1信使RNA转录物水平。图7d:FHY1DNA甲基化。柱状图为一式三份测定平均值,并且棒(bar)表示SD。
图8a-8d示出tmm-突变体表型的分类。图8a:WT,Col-0。图8b:弱表型。图8c:中等表型。图8d:强表型。
图9a-9c示出sRNA的大小分布。X-轴上的数字指sRNA的大小(nt)。(a)、(b)、(c)、(d)、(e)、(f)、(g)和(h)分别表示WT、S21、S26、AS4、AS10、AS10NI、IR8和IR8NI。
图10示出sRNA的DNA印迹分析。(a),溴化乙锭(EtBr)染色的rRNA用作上样对照。(b),通过正义探针检测的负链衍生的sRNA。(c),通过反义探针检测的正链衍生的sRNA。
图11a-11f示出内源TMM启动子区的DNA甲基化模式。图10a、图10b和图10c示出正义沉默物转基因株系的CG、CHG和CHH甲基化模式。图10d、图10e和图10f示出反义沉默物和反向重复沉默物转基因株系的CG、CHG和CHH甲基化模式。X-轴上的数字指TMM转录起始位点上游的核苷酸位置。
图12a-12c示出AS沉默物转基因植物的转基因沉默物区的DNA甲基化模式。(A)、(b)和(c)分别示出CG(图11a)、CHG(图11b)和CHH(图11c)甲基化模式。X-轴上的数字指35S启动子转录起始位点下游的核苷酸位置。
图13a-13b示出单链沉默物以及靶向HFR1启动子的反向重复沉默物可以诱导hfr1-表型。图13a:1.5μmol/m2/s远红光处理4天之后测量的下胚轴长度。图13b:通过qPCR检测的HFR1转录物水平降低。WT,野生型,Col-0。S2、S8,携带正义沉默物的转基因株系。AS2、AS5、AS6,携带反义沉默物的转基因株系。IR2。IR5,IR6,携带反向重复沉默物的转基因株系。这里使用的HFR1功能丧失突变体hfr1为hfr1-201。
图14a和14b示出内源FHY1启动子区的DNA甲基化模式。图14a、图14b和图14c分别示出CG、CHG和CHH甲基化模式。位置指FHY1转录起始位点。
图15a和15b示出靶向PhyB启动子的单链PhyB沉默物可以诱导phyB-表型。图15a:在15μmol/m2/s红光(RL)下处理5天,S沉默物株系(S11、S12、S13)和反义沉默物株系(AS9、AS10、AS11)的下胚轴长度比野生型(WT,Col-0)长。phyB-9,PhyB功能丧失突变体。图15b:为图15a的定量,数据显示为20个个体的平均值±SD(标准差)。
发明详述
本发明涉及植物、植物组织和植物细胞中内源基因的转录基因沉默(TGS)。更具体地,本发明涉及能够引起植物、植物组织和植物细胞中内源基因的TGS的核酸构建体。本发明还涉及利用本发明的核酸构建体通过TGS来减少植物、植物组织或植物细胞中的内源基因表达的方法。
除非另外定义,本文中使用的所有技术和科学术语具有本发明所属的技术领域的技术人员通常理解的相同含义。
根据相关的上下文,术语“多核苷酸”、“核苷酸序列”和“核酸”指核苷酸(A、C、T、U、G等或者天然存在或人工的核苷酸类似物)的聚合物,例如DNA或RNA或其表示法(representation),如字符串等。给定的多核苷酸或互补多核苷酸可以从任何指定的核苷酸序列确定。
当部分或完全地从通常相伴的组分(其他蛋白质、核酸、细胞、合成试剂等)分离时,多核苷酸、多肽或其他组分是“分离的”。当其是人工或工程化的,或者源自人工或工程化的蛋白质或核酸时,核酸或多肽是“重组的”。例如,插入载体或任何其他异源位点,例如重组生物体的基因组中,从而其与通常在自然界中发现的多核苷酸侧翼的核苷酸序列无关的多核苷酸是重组多核苷酸。从重组多核苷酸体外或体内表达的蛋白质是重组多肽的实例。同样,在自然界中未出现的多核苷酸序列,例如天然存在的基因的变体,是重组的。
术语“核酸构建体”或“多核苷酸构建体”表示单链或双链的核酸分子,其分离自天然存在的基因或者已经被修饰以自然界中不存在的方式含有核酸区段。当核酸构建体含有表达本发明的序列所需的控制序列时,术语核酸构建体与术语“表达盒”是同义的。
术语“控制序列”在本文中定义为包括对于表达本发明的多核苷酸必须或有利的所有元件。每个控制序列对于多核苷酸序列可以是天然的或外源的。最低限度而言,所述控制序列包括启动子和转录终止信号。所述控制序列可以提供有接头,其用于引入特异性限制位点以帮助控制序列与所述核苷酸序列的连接。
术语“可操作地连接”在本文中定义为这样的构型,其中控制序列置于相对于核酸构建体的核苷酸序列的合适位置,从而所述控制序列指导本发明的多核苷酸的表达。
在本发明的上下文中,术语“表达”包括多核苷酸的转录。在本发明的上下文中,术语“表达载体”涵盖线性或环状的DNA分子,其包含本发明的多核苷酸,并且可操作地连接至为其表达而提供的额外片段。
术语“植物”包括完整植物、芽营养器官/结构(如叶、茎和块茎)、根、花和花器官(如苞片、萼片、花瓣、雄蕊、心皮、花药和胚珠)、种子(包括胚、胚乳和种皮)和果实(成熟子房)、植物组织(如维管组织、基本组织等)和细胞(如保卫细胞、卵细胞、毛状体等)及其子代。可以用于本发明的方法的植物类型通常和可用于转化技术的高等和低等植物类型一样多,包括被子植物(单子叶和双子叶植物)、裸子植物、蕨类植物和多细胞藻类。其包括各种倍性水平的植物,包括非整倍体、多倍体、二倍体、单倍体和半合子。
本文所用的术语“异源”描述两种或更多种元件之间的关系,其表明元件通常不是在自然界中互相邻近地发现的。因此,例如多核苷酸序列与生物体或第二多核苷酸序列是“异源”的,如果其源自外源物种,或者如果源自相同物种,是从其来源修饰而成的。例如,可操作地连接至异源编码序列的启动子指编码序列来自与启动子来源的物种不同的物种,或者如果来自相同物种,编码序列与启动子不是天然相关的(例如,遗传工程化的编码序列或者来自不同生态型或品种的等位基因)。异源多肽的实例为在转基因生物体中从重组多核苷酸表达的多肽。异源多核苷酸和多肽为重组分子的形式。
本文所用的术语“转染”指有意地将核酸引入细胞。转染包括本领域技术人员已知的将核酸引入细胞的任何方法,包括但不限于农杆菌感染、基因枪(ballistic)、电穿孔、微注射等。
本文所用的术语“核酸沉默物分子”指本发明的核酸构建体的部分,其包含靶植物内源基因的启动子区。所述核酸沉默物分子被转录以初始地产生单链RNA,所述单链RNA在植物细胞中加工产生小RNA(sRNA),所述sRNA诱导靶植物内源基因的转录基因沉默。所述核酸沉默物分子可以置于所述核酸构建体的植物可操作的启动子的正义方向或反义方向,或者其可以置于所述核酸构建体的植物可操作的启动子的反向重复结构中。
本文所用的术语“单链正义沉默物”或“单链S沉默物”指相对于启动子的正义方向的核酸沉默物分子产生的单链RNA。
本文所用的术语“单链反义沉默物”或“单链AS沉默物”指相对于启动子的反义方向的核酸沉默物分子产生的单链RNA。
本文所用的术语“反向重复沉默物”或“IR沉默物”指核酸沉默物分子产生的RNA分子,所述核酸沉默物分子具有靶内源基因启动子序列的两个拷贝,一个拷贝相对于第二拷贝是方向的,并且优选地被间隔物分离。
“减少的基因表达”表示在含有稳定地整合入其基因组的核酸沉默物分子的转基因植物细胞或转基因植物中,植物内源基因的表达与不含该核酸沉默物分子的植物细胞或植物相比是减少的。“减少的基因表达”可以涉及植物内源基因的表达减少至少10%、20%、30%、40%、50%、60%、70%、75%、80%、85%、90%、95%或100%。
因此,在第一方面,本发明提供一种核酸构建体,其包含植物可操作的启动子,其如本文所述地可操作地连接至本文所述的核酸沉默物分子。所述核酸构建体可以任选地包含其他调节序列,例如3’调节序列,或者本文所述的其他序列。本发明的核酸沉默物分子包含植物内源基因靶标(即要通过TGS下调的植物内源基因)的启动子区。核酸沉默物分子编码单链沉默物或反向重复(IR)沉默物,它们中的任何一种初始是从核酸构建体转录的RNA分子。所述单链沉默物和IR沉默物在植物、植物组织和植物细胞中提供内源基因的TGS。在一实施方案中,所述单链沉默物是从植物内源基因靶标的启动子区产生的RNA分子(即,核酸沉默物分子),其处于所述核酸构建体中植物可操作的启动子的反义方向。在另一实施方案中,所述单链沉默物是从植物内源基因靶标的启动子区产生的RNA分子(即,核酸沉默物分子),其处于所述核酸构建体中植物可操作的启动子的正义方向。在每一个这些单链沉默物实施方案中,对于所述构建体、核酸沉默物分子和单链沉默物,不存在反向重复结构,即在核酸构建体及由其产生的产物中不存在反向重复结构或反向重复序列。或者,在另一实施方案中,核酸沉默物分子为反向重复沉默物,并且是从植物内源基因靶标的启动子区产生的RNA分子,其中所述RNA分子在核酸构建体中以一式两份提供并且以反向构型排列。在一实施方案中,所述反向重复结构中的靶序列的重复拷贝由间隔物分离。在一实施方案中,所述间隔物含有在植物细胞中具有功能的内含子。在另一实施方案中,所述间隔物是来自大豆7S启动子的片段。然而,应当理解,间隔物序列并不限于这些特征,并且可以是适合允许反向重复序列杂交的任何序列。这样的间隔物序列由SEQ ID NO:55所示例。在一些实施方案中,所述核酸沉默物分子的表达产生初始单链RNA。这种单链RNA可以通过细胞机制或者由于反向重复结构而转化为双链RNA。
在一实施方案中,所述启动子区包含靶基因的转录起始位点上游的核苷酸。在另一实施方案中,所述启动子区包含靶基因的转录起始位点上游的核苷酸和转录起始位点下游的核苷酸。在一些实施方案中,所述启动子区包含约300个核苷酸-约1500个核苷酸。在其他实施方案中,所述启动子区包含约400个核苷酸-约1200个核苷酸。在另外的实施方案中,所述启动子区包含约425个核苷酸-约1100个核苷酸。在进一步的实施方案中,所述启动子区包含约425个核苷酸-约1075个核苷酸。
植物中可操作的任何启动子可以用于所述核酸构建体。在一些实施方案中,所述启动子为植物可操作的启动子(包括本文所述的那些启动子)的单拷贝。在其他实施方案中,所述启动子为植物可操作的启动子的双拷贝以产生同源双启动子。在其他实施方案中,所述启动子为两个不同启动子的组合以产生异源双启动子。在一些实施方案中,所述植物可操作的启动子为双35S CMV启动子。在另外的实施方案中,所述植物可操作的启动子为单35S CMV启动子。所述双35S CMV启动子的序列如SEQ ID NO:54所示。所述核酸构建体还可以包含使核酸构建体能够克隆的序列或者帮助剪接的序列。在一实施方案中,另外的序列可以是植物中可操作的3’序列。在另一实施方案中,所述3’序列源自TRV2(烟草脆裂病毒2),其位于核酸沉默物分子的下游。所述TRV23’序列的序列如SEQ ID NO:53所示。
所述核酸构建体还可以包含植物可操作的3’调节序列。在一实施方案中,所述植物可操作的3’调节序列为polyA添加序列。在另一实施方案中,所述polyA添加序列为NOS polyA序列。
在第二方面,本发明提供一种包含所述核酸构建体的转基因植物细胞。在一实施方案中,所述核酸构建体稳定地整合入所述转基因植物细胞的基因组中。所述转基因植物细胞通过本领域熟知的方法用核酸构建体转染植物细胞来制备,包括但不限于本文描述的那些。很多植物物种的植物细胞可以用本发明的核酸构建体转染。含有所述核酸构建体的植物细胞根据常规技术进行选择,包括但不限于本文描述的那些。利用本领域熟知的生长条件,使植物细胞在适合于所述核酸在转染的植物细胞中表达的条件下生长。
本发明可以用于转染很多植物物种的植物细胞,包括但不限于单子叶植物和双子叶植物。感兴趣的植物的实例包括但不限于玉米(Zea mays);芸苔属植物(Brassica sp.)(如油菜(B.napus)、芜菁(B.rapa)、芥菜(B.juncea)),特别是用作种子油来源的那些芸苔物种;苜蓿(Medicago sativa);稻(Oryzasativa);黑麦(Secale cereale);高粱(Sorghum bicolor、Sorghum vulgare);粟(如珍珠稷(Pennisetum glaucum)、黍(Panicum miliaceum)、小米(Setara italica)、龙爪稷(Eleusine coracana);向日葵(Helianthus annuus);红花(Carthamustinctorius);小麦(Triticum aestivum);大豆(Glycine max);烟草(Nicotianatabacum);马铃薯(Solanum tuberosum);花生(Arachis hypogaea);棉花(Gossypium barbadense,Gossypium hirsutum);甘薯(Ipomoea batatus);木薯(Manihot esculenta);咖啡(Coffea spp.);椰子(Cocos nucifera);菠萝(Ananascomosus);柑橘(Citrus spp.);可可(Theobroma cacao);茶(Camellia sinensis);香蕉(Musa spp.);鳄梨(Persea americana);无花果(Ficu scasica);番石榴(Psidium guajava);芒果(Mangifera indica);橄榄(Olea europaea);番木瓜(Carica papaya);腰果(Anacardium occidentale);夏威夷果(Macadamiaintegrifolia);扁桃(Prunus amygdalus);甜菜(Beta vulgaris);甘蔗(Saccharumspp.);燕麦(Avena sativa);大麦(Hordeum vulgare);柳枝稷(Panicumvirgatum);蔬菜;观赏植物;和针叶树。参见美国专利号7,763,773列出的可以用于本发明的其他植物物种。
蔬菜包括番茄(Lycopersicon esculentum)、莴苣(如Lactuca sativa)、青豆(Phaseolus vulgaris)、利马豆(Phaseolus limensis)、豌豆(Lathyrus spp.)以及黄瓜属的成员,如黄瓜(C.sativus)、哈密瓜(C.cantalupensis)和甜瓜(C.melo)。观赏植物包括杜鹃(Rhododendron spp.)、绣球(Macrophylla hydrangea)、木槿(Hibiscus rosasanensis)、玫瑰(Rosa spp.)、郁金香(Tulipa spp.)、水仙(Narcissusspp.)、矮牵牛(Petunia hybrida)、康乃馨(Dianthus caryophyllus)、一品红(Euphorbia pulchernima)和菊花。可以用于实施本发明的针叶树包括例如松树,如火炬松(Pinus taeda)、湿地松(Pinus elliotii)、西黄松(Pinus ponderosa)、美国黑松(Pinus contorta)和辐射松(Pinus radiata);花旗松(Pseudotsugamenziesil);西部铁杉(Tsuga canadensis);北美云杉(Picea glauca);红杉(Sequoia sempervirens);冷杉,如胶冷杉(Abies amabilis)和香脂冷杉(Abiesbalsamea);以及雪松如西部红雪松(Thuja plicata)和阿拉斯加黄杉(Chamaecyparis nootkatensis)。
在第三方面,本发明提供一种包含所述核酸构建体的转基因植物。在一实施方案中,所述核酸构建体稳定地整合入所述转基因植物的基因组中。所述转基因植物利用本领域技术人员熟知的常规技术,通过包括体细胞胚胎发生和器官发生在内的各种途径从本文所述的转基因植物细胞再生。通过包括上文讨论的转化技术在内的植物转化技术获得的转化的植物细胞可以进行培养以再生具有转化的基因型及由此具有的想要的表型的完整植物。这样的再生技术通常取决于组织培养生长培养基中某些植物激素的操作,例如取决于与想要的核苷酸序列一起引入的标记物。参见,例如美国专利号7,763,773、美国专利申请公开号2010/0199371和国际公开申请号WO 2008/094127及其引用的参考文献。利用本领域熟知的生长条件,使转基因植物在适合于在转染的植物中表达所述核酸的条件下生长。
在第四方面,本发明提供一种通过转录基因沉默减少植物、植物组织或植物细胞中内源基因表达的方法。在一实施方案中,所述方法包括用核酸构建体转染植物细胞以产生本文所述的转基因植物细胞。所述方法还包括在本文所述的转基因植物细胞中表达核酸沉默物分子。表达的核酸沉默物分子,即本文所述的RNA单链正义沉默物、RNA单链反义沉默物或RNAIR沉默物,在转基因植物细胞中被切割以产生一种或多种小RNA(sRNA),其诱导转录基因沉默以减少感兴趣的靶基因的表达。在一些实施方案中,所述核酸沉默物分子的表达产生初始单链RNA。通过细胞机制或者由于反向重复结构,这种单链RNA可以转化为双链RNA,然后进行加工以产生sRNA。所述方法可以任选地包括制备编码本文所述的核酸构建体。在另一实施方案中,所述方法包括从转基因植物细胞再生转基因植物。在这个实施方案中,所述核酸在所述转基因植物中表达。表达的核酸在转基因植物细胞中切割以产生一种或多种sRNA,其诱导转录基因沉默以减少感兴趣的靶基因的表达。
根据本发明,编码单链沉默物或IR沉默物并且被插入植物的核酸分子(感兴趣的核酸分子)对于转化方法并不是关键的。通常,引入植物的感兴趣的核酸分子是本文所述的构建体的一部分。所述构建体通常包含可操作地连接至感兴趣的核酸分子的5’侧和/或感兴趣的核酸分子的3’侧的调节区域。包含所有这些元件的盒在本文中又称为表达盒。在表达盒构建体中,表达盒可以另外含有5’前导序列。所述调节区域(即启动子、转录调节区域和转录终止区域)可以对宿主细胞或对彼此而言是原生/同功的。或者,所述调节区域对于宿主细胞或对彼此而言是异源的。参见美国专利号7,205,453和7,763,773以及美国专利申请公开号2006/0218670、2006/0248616和20090100536及其引用的参考文献。
植物可操作的启动子控制之下的感兴趣的核酸分子可以是本文所定义的任何核酸分子,并且可以用于通过转录基因沉默以下调靶基因的机制来改变引入所述感兴趣的核酸分子的植物物种的任何特征或性状。靶基因可以编码调控蛋白如转录因子等、结合或相互作用蛋白或者改变转基因植物细胞或转基因植物的表型性状的蛋白质。靶基因的下调可以增强、改变或修饰植物的性状,如农艺性状。所述农艺性状可以涉及植物形态学、生理学、生长和发育、产量、营养、疾病或害虫抗性或者环境或化学品耐受性。在一些方面,所述性状选自水利用效率、温度耐受性、产量、氮利用效率、种子蛋白、种子油和生物量。产量可以包括在非胁迫条件下增加的产量和环境胁迫条件下增强的产量。胁迫条件可以包括例如干旱、阴暗、真菌病、病毒病、细菌病、昆虫感染、线虫感染、极端温度暴露(冷或热)、渗透性胁迫、减少的氮营养可用性、减少的磷营养可用性以及高植物密度。在一些实施方案中,所述感兴趣的核酸分子可以用于修饰代谢途径,如种子中的脂肪酸生物合成或脂质生物合成途径,或者用于修饰植物中对病原体的抗性。
通常,所述表达盒可以额外地包含可选择的标记物基因用于选择转化的细胞。可选择的标记物基因用于选择转化的细胞或组织。通常,植物可选择的标记物基因会编码抗生素抗性,合适的基因包括编码对抗生素壮观霉素的抗性的至少一组基因、编码链霉素抗性的链霉素磷酸转移酶(spt)基因、编码卡那霉素或遗传霉素抗性的新霉素磷酸转移酶(nptII)基因、编码潮霉素抗性的潮霉素磷酸转移酶(hpt或aphiv)基因、乙酰乳酸合酶(als)基因。或者,植物可选择的标记物基因编码除草剂抗性,例如对磺酰脲型除草剂、草铵膦、草甘膦、铵、溴苯腈、咪唑啉酮和2,4-二氯苯氧乙酸(2,4-D)的抗性,包括编码对抑制谷氨酰胺合酶的作用的除草剂如草丁膦或basta的抗性的基因(例如bar基因)。一般地,参见国际公开号WO 02/36782、美国专利号7,205,453和7,763,773以及美国专利申请公开号2006/0218670、2006/0248616、2007/0143880和20090100536及其引用的参考文献。还参见Jefferson et al.(1991);De Wet et al.(1987);Goff et al.(1990);Kain et al.(1995)和Chiu et al.(1996)。所列的可选择的标记物基因并不是限制性的。可以使用任何可选择的标记物基因。所述可选择的标记物基因也在要转化的植物物种中可操作的启动子的控制之下。这样的启动子包括国际公开号WO2008/094127及其引用的参考文献中描述的启动子。还参见,美国专利申请公开号2008/0313773和2010/0199371,其示例了可以用于本发明的其他标记物。
一些启动子可以用于实施本发明。所述启动子可以基于想要的结果加以选择。也就是说,所述核酸可以与组成型、组织偏爱或其他启动子组合以在感兴趣的宿主细胞中进行表达。这样的组成型启动子包括例如,Rsyn7的核心启动子(WO 99/48338和美国专利号6,072,050);核心CaMV35S启动子(Odell et al.,1985);稻肌动蛋白(McElroy et al.,1990);泛素(Christensen andQuail,1989;Christensen et al.,1992);pEMU(Last et al.,1991);MAS(Velten etal.,1984);ALS启动子(U.S.Patent No.5,659,026)等。其他组成型启动子包括例如美国专利号5,608,149、5,608,144、5,604,121、5,569,597、5,466,785、5,399,680、5,268,463和5,608,142中公开的启动子。
其他启动子包括诱导型启动子。诱导型启动子响应内源或外源刺激的存在,例如通过化合物(化学诱导物),或者响应环境、激素、化学和/或发育信号,选择性地表达可操作地连接的DNA序列。诱导型或调节的启动子包括例如由光、热、胁迫、水淹或干旱、植物激素、创伤或化学物如乙醇、茉莉酸、水杨酸或安全剂。病原体诱导型启动子包括来自发病机理相关蛋白(PR蛋白)的启动子,其在病原体感染后被诱导,例如PR蛋白、SAR蛋白、β-1,3-葡聚糖酶、几丁质酶等。其他启动子包括在病原体感染位点处或附近局部表达的启动子。在其他实施方案中,启动子可以是伤害诱导型启动子。在其他实施方案中,化学物调节的启动子可以用于通过施用外源化学调节剂来调节植物中基因的表达。所述启动子可以是化学物诱导型启动子,其中所述化学物的施用诱导基因表达,或者可以是化学物抑制型启动子,其中所述化学物的施用抑制基因表达。此外,组织偏爱型启动子可以用于靶向特定的植物组织中感兴趣的多核苷酸的增强的表达。每一个这些启动子描述于美国专利号6,506,962、6,575,814、6,972,349和7,301,069以及美国专利申请公开号2007/0061917和2007/0143880。还参见,美国专利申请公开号2008/0313773和2010/0199371,示例了可以用于本发明的其他启动子。本领域技术人员已知的可用于植物的其他启动子也可以用于本发明。
用于本发明的启动子可以包括:RIP2、mLIP15、ZmCOR1、Rab17、CaMV 35S、RD29A、B22E、Zag2、SAM合成酶、泛素、CaMV 19S、nos、Adh、蔗糖合酶、R-等位基因、维管组织偏爱型启动子S2A(Genbank登录号EF030816)和S2B(Genbank登录号EF030817)以及来自玉米的组成型启动子GOS2。其他启动子包括根偏爱型启动子,如玉米NAS2启动子、玉米Cyclo启动子(美国专利申请公开号2006/0156439)、玉米ROOTMET2启动子(国际公开号WO05/063998)、CR1BIO启动子(国际公开号WO06/055487)、CRWAQ81启动子(国际公开号WO05/035770)和玉米ZRP2.47启动子(NCBI登录号:U38790;GI No.1063664)。在一些实施方案中,所用的启动子为双启动子,例如双CaMV 35S启动子。本文公开的任何启动子的双启动子以及本领域技术人员已知的可用于植物的其他启动子可以用于本发明。
在制备表达盒时,可以操作各种DNA片段,从而提供正确的方向,以及若合适,正确的读框的DNA序列。为了这个目的,可以使用适配头或接头以连接DNA片段,或者可以进行其他操作以提供适当的限制性位点、除去多于的DNA、除去限制性位点等。为此目的,可以使用体外诱变、引物修复、限制、退火、重取代如转换和颠换。
将核酸克隆入表达载体后,则可以将其利用常规转化(或转染)方法引入植物细胞。术语“植物细胞”意图涵盖源自植物的任何细胞,包括未分化的组织如胼胝和悬浮培养物,以及植物种子、花粉或植物胚。适合于转化的植物组织包括叶组织、根组织、分生组织、原生质体、下胚轴、子叶、盾片、茎尖、根、幼胚、花粉和花药。“转化”表示通过外部施用来自不同基因型的其他细胞的重组DNA来直接修饰细胞的基因组,从而导致该重组DNA的摄取和整合入对象细胞的基因组。通过这种方式,可以获得遗传修饰的植物、植物细胞、植物组织、种子等。
本发明的DNA构建体可以用于转化任何植物。所述构建体可以通过各种常规技术引入想要的植物宿主的基因组。用于转化许多高等植物物种的技术是熟知的并且描述于技术和科学文献。如本领域人员熟知的,转化方法可以根据转化的目标植物或植物细胞的类型而变化,即单子叶或双子叶植物,。例如,DNA构建体可以利用诸如电穿孔和植物细胞原生质体的微注射的技术直接引入植物细胞的基因组DNA;或者DNA构建体可以利用诸如DNA颗粒轰击的基因枪方法直接引入植物组织。或者,DNA构建体可以与合适的T-DNA侧翼区域组合并引入常规根瘤农杆菌(Agrobacteriumtumefaciens)宿主载体。当细胞被细菌感染时,根瘤农杆菌宿主的病毒性功能会引起构建体和相邻标记物插入植物细胞DNA中。因此,可以使用提供有效的转化/转染的任何方法。参见,例如美国专利号7,241,937、7,273,966和7,291,765以及美国专利申请公开号2007/0231905和2008/0010704及其引用的参考文献援。还参见国际公开的申请号WO 2005/103271和WO2008/094127及其引用的参考文献。还参见美国专利申请公开号2008/0313773和2010/0199371示例的可用于本发明的各种植物物种的转化方法。
通过任何上述转化技术获得的转化的植物细胞可以进行培养以再生具有转化的基因型并由此产生期望表型的完整植物,例如转基因植物。“转基因植物”是引入了外源DNA的植物。“转基因植物”涵盖所有的后代、杂种及其杂交品种(cross),无论是有性或无性繁殖的,并且其继续带有外源DNA。再生技术取决于组织培养生长培养基中某些植物激素的操作,通常取决于与期望的核苷酸序列一起引入的杀生物剂和/或除草剂标记物。参见,例如国际公开申请号WO 2008/094127及其引用的参考文献和美国专利申请公开号2010/0199371。
用于转化的前述方法通常用于产生其中稳定整合表达盒的转基因品种。当表达盒稳定地整合入转基因植物后,其可以通过有性杂交转移至其他植物。在一实施方案中,可以使转基因品种与其他(未转化或转化)品种杂交,以产生新的转基因品种。或者,已经利用前述转化技术工程化引入特定的棉花株系的遗传形状可以利用植物育种领域熟知的传统回交技术转移入其他株系中。例如,回交方法可以用于将改造的性状从公开的非优良品种转移入优良品种中,或者从基因组中含有外源基因的品种转移入不包含该基因的一个或多个品种中。如本文所用,本文所用的“杂交”可以指简单的X与Y杂交,或者回交的过程。根据要进行杂交的物种,可以使用任何标准育种技术。
产生这种类型的转基因植物后,植物自身可以根据常规方法进行培养。当然,转基因种子可以从转基因植物回收。然后可以将这些种子种植在土壤中并根据常规方法培养以产生转基因植物。培养的转基因植物会表达本文所述的核酸并且其会被切割以产生sRNA。
在第五方面,本发明提供核酸构建体和方法以从内源基因的启动子区鉴定和获得其他TGS沉默物。根据这一方面,所述核酸构建体是适合于转化想要从其鉴定TGS沉默物的植物物种的核酸构建体。在一实施方案中,所述核酸构建体可以包含在载体中。在一些实施方案中,所述载体适合于农杆菌介导的转化。在其他实施方案中,所述载体可以适合于基因枪介导的转化。其他适合于植物转化的载体是本领域技术人员熟知的。在另一实施方案中,所述核酸构建体可以用于根据本领域技术人员熟知的技术直接转化植物。所述核酸构建体包含植物可操作的启动子,所述启动子可操作地连接至推定的核酸沉默物分子,所述沉默物分子可操作地连接至植物可操作的3’调节区域。在一实施方案中,所述推定的核酸沉默物分子包含植物内源基因靶标的启动子区,所述内源基因靶标要被测试转录基因沉默。在一些实施方案中,所述推定的核酸沉默物分子相对于本文所述的植物可操作启动子处于正义方向。在其他实施方案中,所述推定的核酸沉默物分子相对于植物可操作启动子处于反义方向。在进一步的实施方案中,所述核酸沉默物分子可以含有本文所述的反向重复序列或反向重复结构。在一实施方案中,所述植物可操作启动子为单启动子、双同源启动子或双异源启动子。在一实施方案中,所述植物可操作启动子为单或双35S CMV启动子。在一实施方案中,所述3’序列为TRV23’序列。在另一实施方案中,所述3’调节区域为polyA添加序列。在一实施方案中,所述polyA序列为NOSpoly A序列。沉默的测试可以根据本领域熟知的方法进行。这些方法包括但不限于RT-PCR、PCR、RNA印迹分析、免疫测定和酶测定。在一实施方案中,可以分析靶启动子的甲基化状况。在另一实施方案中,可以通过McrBc酶促消化分析靶启动子的甲基化状况。在另一实施方案中,通过使用针对组蛋白甲基化或乙酰化位点的抗体的免疫测定来测试染色质修饰的状态。
根据这一方面,进一步通过包括以下步骤的方法鉴定合适的TGS沉默物:制备核酸构建体,其包含如本文所述的感兴趣的内源基因的推定核酸沉默物分子,用所述核酸构建体转化感兴趣的植物物种的细胞或组织,以及确定所述推定的核酸沉默物分子是否被所述植物物种转化的细胞或组织加工产生感兴趣的内源基因的沉默。如果内源基因被沉默,则所述感兴趣的内源基因的推定核酸沉默物分子被鉴定为TGS沉默物。在一实施方案中,所述确定通过以下步骤进行:培养转化的植物细胞以表达所述推定的核酸沉默物分子,以及测试培养的转化植物细胞或组织中的转录基因沉默。在另一实施方案中,所述确定通过以下步骤进行:从转化的植物细胞或组织再生转化的植物,以及测试转化的植物的转录基因沉默。转化的植物的再生通过本领域技术人员熟知的技术进行。沉默的测试可以根据本领域熟知的方法进行。这些方法包括但不限于RT-PCR、PCR、RNA印迹分析、免疫测定和酶测定。在一实施方案中,可以分析靶启动子的甲基化状况。在另一实施方案中,可以通过McrBc酶促消化分析靶启动子的甲基化状况。在另一实施方案中,通过使用针对组蛋白甲基化或乙酰化位点的抗体的免疫测定来测试染色质修饰的状态。
除非另外指明,本发明的实施使用化学、分子生物学、微生物学、重组DNA、遗传学、免疫学、细胞生物学、细胞培养和转基因生物学的常规技术,这些在本领域技术人员的水平之内。参见,例如Maniatis et al.,1982,Molecular Cloning(Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York);Sambrook et al.,1989,Molecular Cloning,2nd Ed.(Cold SpringHarbor Laboratory Press,Cold Spring Harbor,New York);Sambrook andRussell,2001,Molecular Cloning,3rd Ed.(Cold Spring Harbor LaboratoryPress,Cold Spring Harbor,New York);Green and Sambrook,2012,MolecularCloning,4th Ed.(Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York);Ausubel et al.,1992),Current Protocols in Molecular Biology(JohnWiley&Sons,including periodic updates);Glover,1985,DNA Cloning(IRLPress,Oxford);Russell,1984,Molecular biology of plants:a laboratory coursemanual(Cold Spring Harbor Laboratory Press,Cold Spring Harbor,N.Y.);Anand,Techniques for the Analysis of Complex Genomes,(Academic Press,New York,1992);Guthrie and Fink,Guide to Yeast Genetics and MolecularBiology(Academic Press,New York,1991);Harlow and Lane,1988,Antibodies,(Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York);NucleicAcid Hybridization(B.D.Hames&S.J.Higgins eds.1984);Transcription AndTranslation(B.D.Hames&S.J.Higgins eds.1984);Culture Of Animal Cells(R.I.Freshney,Alan R.Liss,Inc.,1987);Immobilized Cells And Enzymes(IRLPress,1986);B.Perbal,A Practical Guide To Molecular Cloning(1984);thetreatise,Methods In Enzymology(Academic Press,Inc.,N.Y.);Methods InEnzymology,Vols.154and 155(Wu et al.eds.),Immunochemical Methods InCell And Molecular Biology(Mayer and Walker,eds.,Academic Press,London,1987);Handbook Of Experimental Immunology,Volumes I-IV(D.M.Weir andC.C.Blackwell,eds.,1986);Riott,Essential Immunology,6th Edition,Blackwell Scientific Publications,Oxford,1988;Fire et al.,RNA InterferenceTechnology:From Basic Science to Drug Development,Cambridge UniversityPress,Cambridge,2005;Schepers,RNA Interference in Practice,Wiley–VCH,2005;Engelke,RNA Interference(RNAi):The Nuts&Bolts of siRNATechnology,DNA Press,2003;Gott,RNA Interference,Editing,andModification:Methods and Protocols(Methods in Molecular Biology),HumanPress,Totowa,NJ,2004;Sohail,Gene Silencing by RNA Interference:Technology and Application,CRC,2004。
实施例
本发明参照以下实施例进行描述,其仅为示例目的而提供,并非意图以任何方式限制本发明。使用本领域中公知的标准技术或者下文特别描述的技术。
实施例1
材料和方法
构建体:利用标准PCR和克隆技术,将来自AT1G80080(TMM)的启动子区的475bp基因组DNA片段(-483to-9,转录起始位点为+1)(SEQ IDNO:1)克隆入二元质粒pBAV3。后一种质粒源自pBA002(Kost et al.,1998),通过用来自pTRV2的片段代替T-DNA的右边界附近的NOS polyA添加序列,并且用来自pBCO-DC-CFP的重复的35S启动子代替35S启动子(Wu etal.,2010)。以相对于TMM编码序列的正义(S沉默物)或反义(AS沉默物)方向,将TMM启动子片段插入双35S启动子的下游。为了获得反向重复结构,首先将TMM启动子DNA片段克隆入载体pSRS,其通过用大豆启动子序列代替内含子(Mette et al.,2000)从pSK-int(Guo et al.,2003)获得。将反向重复结构(IR沉默物)克隆入pBAV3,在双35S启动子的控制下。还将靶向TMM启动子的S-、AS-和IR-沉默物克隆入常规pBA002mRNA表达载体(Kost etal.,1998)以产生另一系列具有NOS polyA添加序列的沉默物。通过类似的策略,产生用于FHY1(-449至-1)(SEQ ID NO:2)、HFR1(-1025至-1)(SEQ IDNO:3)和PhyB(-945至+112)(SEQ ID NO:4)的沉默物构建体。
植物材料和转化:我们在这个研究中使用拟南芥(Arabidopsis thaliana)Columbia(Col-0)生态型作为野生型(WT)。所有的拟南芥突变体已经进行了描述:rdr2-2(SALK_059661,(Herr et al.,2005))、sgs2-1/rdr6(Elmayan et al.,1998)、dcl3-1(SALK_005512,(Xie et al.,2004))、ago4-2(Agorio and Vera,2007)、nrpd1a-3(SALK_128428,(Herr et al.,2005))、nrpd1b-1/nrpe1-1(SALK_029919,(Pontier et al.,2005))、ddc(drm1/crm2/cmt3三突变体,(Zhanget al.,2006b))、PhyB-9(Reed et al.,1993)、hfr1-201(Soh et al.,2000)和fhy1-3(Zeidler et al.,2004)。所有的突变体都是Columbia(Col-0)生态型背景。
使植物在长日照条件下(16小时光照/8小时黑暗)于生长室中生长,通过冷白荧光灯进行照明,直至开花。根据Zhang et al.(Zhang et al.,2006a)进行标准浸花法转化。
tmm-表型观察:收获后,将T1幼苗在BASTA平板上进行筛选。形态学表型在显微镜下进行评分。对于每个独立的转基因系,从40-80个随机选取的3周龄幼苗计算穿透率。根据簇集气孔的频率和数目,我们将tmm-表型大体上分为3类:弱、中等和强(图8a-8d)。当来自一个转化事件的植物主要表现出二簇集气孔和偶尔地三簇集气孔时,我们将其评分为弱表型。如果频繁地观察到三簇集气孔时,转基因植物表现出中等tmm-表型。具有强tmm-表型的转基因植物表现出多于四的簇集气孔并且通常无法观察到单气孔(图8a-8d)
DNA甲基化分析:通过DNeasy Plant Mini Kit(Qiagen,Cat.No.69104)从2周龄幼苗提取拟南芥基因组DNA。
重硫酸盐处理的DNA样品的测序如下进行。重亚硫酸盐DNA转化利用1μg基因组DNA和EpiTech Bisulfite Kit(Qiagen,Cat.No.59104)按照生厂商的指导进行。PCR利用靶区域之外的引物进行,并且所述引物为单链甲基化检测而设计。实施例中所用的引物如表1所示。然后将PCR产物利用TA克隆试剂盒(Invitrogen,Cat.No.K2020-40)克隆入pCR2.1。对于每个基因型,利用M13R引物测序至少20个独立的克隆。数据通过Cymate(Hetzlet al,2007)进行分析。
表1引物
McrBc消化如下进行。将250ng基因组DNA在20μl的总体积中通过McrBc(NewEngland Lab,Cat no M0272S)按照生产商的指导进行消化。然后将处理和未处理的对照样品在实时PCR反应中用作模板。
染色质免疫沉淀(CHIP):如Gendrel(Gendrel et al.2005)所述将3克3周龄的幼苗用于免疫沉淀实验,但进行少量修改。将重悬浮于核裂解缓冲液中的交联染色质沉淀在Bioruptor(Bioruptor UCD 200,Diagenode)中以最大水平超声处理10min。在处理过程中,每次处理将样品超声30秒的时间段,处理间隔为30s。组蛋白H3三甲基Lys4(K4me3)抗体来自Active Motif(Cat.No.39159)。组蛋白H3乙酰化、组蛋白H3三甲基Lys9(K9me3)和组蛋白H3三甲基Lys27(K27me3)抗体来自Milipore(Cat.No.06-599,07-442,07-449)。
RNA分离和RT-PCR:通过RNeasy Plant Mini Kit(Qiagen,Cat.No.74904),按照生产商的指导,从2周龄幼苗提取RNA。利用Superscript III Firststrand合成系统(Invitrogen,Cat.No.18080051),按照生产商的指导,进行cDNA合成。
实时PCR:利用SYBR Premix Ex Taq(Takara,Cat.No.RR401A),在Biorad CFX96实时PCR系统中进行实时PCR。ACTIN2用作内参。所用的引物如表1所示。实时定量PCR用2-4个生物学重复进行重复,并且每个样品通过PCR一式三份进行分析。每个图表中的误差棒表示3个技术重复的SD。
小RNA分析:通过Trizol Reagent(Invitrogen,Cat.No.15596-026),按照生产商的指导,从2周龄幼苗提取总RNA。通过TruSeq Small RNA SamplePrep Kit(Illumina,Cat.No.RS-200-0024),按照生产商的指导,构建小RNA文库。简言之,将1μg总RNA或纯化的小RNA用3’和5’适配头进行连接,并且用作RT-PCR的模板。PCR扩增后,每个样品取6μl,并在6%聚丙烯酰胺凝胶上分离。通过Rockefeller University的IlluninaHiSeqin基因组中心测定序列。sRNA测序数据可在Gene Expression Omnibus获得。适配头序列通过局部Perl脚本进行修剪(trim),并且仅长于15nt的读取用于进一步分析。通过不允许错配的C程序,将所有保留的读取定位于拟南芥基因组(TAIR 9版本)。
每泳道10μg使用总RNA分析RNA凝胶印迹。RNA通过17%PAGE/8M Urea/0.5X TBE缓冲液进行分离。将凝胶与Hybond N+膜(Amersham,Piscataway,NJ)电转染(electroblot),然后进行UV交联。探针通过来自候选启动子区的4个片段(来自正义链的2个片段和来自反义链的2个片段)的体外转录进行制备。于UltraHyb杂交溶液(Ambion,Austin,TX)中,根据供应商的指导,在42℃下杂交过夜。杂交后,将膜在具有0.1%SDS的2X SSC中洗涤,并用BioMax MS胶片(Kodak)进行分析。
下胚轴表型观察:下胚轴表型如之前所述(Jang et al.,2007)进行观察。简言之,将灭菌的种子播种在Murashige and Skoog(MS)平板上,并在4℃下避光层积(stratified)4天,然后暴露于白光1小时,随后在远红外下于22℃下培养4天。随后记录下胚轴的长度。
实施例2单链沉默物以及靶向Tmm启动子的反向重复沉默物可以诱导tmm-表型
虽然Mette et al.利用双链反向重复(IR)RNA沉默物的转基因的TGS的成功(Mette et al.,2000),但是他们也提及了,正义(S)或反义(AS)方向的单链沉默物(分别或共同表达)是无效的。我们利用拟南芥Too Many Mouths(TMM)内源基因作为模型比较了这三种类型的沉默物的效率。我们选择TMM是因为功能丧失型tmm突变体在子叶上表现出簇集气孔的表型,这便于进行评分。我们构建了以S、AS(相对于编码序列)和IR构型表达TMM启动子序列(pTMM-9至-483)的沉默物(图1a)。第一系列的沉默物含有TRV2RNA的3’末端(图1a“a1”),而第二系列含有NOS polyA添加序列(图1a“a2”)。
图1a-1d表明,单独的单链沉默物以及反向双链沉默物能够在拟表型tmm突变体的子叶上诱导典型的气孔簇集(图1b)。从T1转化子群体确定的tmm-表型的穿透率表明单链AS沉默物的沉默效率与双链IR沉默物相当,而单链S沉默物的效率则低得多(表2)。通过qRT-PCR进行的定量转录物分析表明,TMM转录物水平在表达AS和IR沉默物的转基因植物中明显降低(图1c和1d)。TMM转录物水平在转基因沉默物由于遗传杂交而分离时恢复到WT水平(图1d中的AS10NI和IR8NI),表明TGS是沉默物依赖的。
表2T1的tmm-表型的穿透
为了测试TRV23’序列(SEQ ID NO:53)对于观察到的TGS是否是必需的,我们使用35S启动子来表达相同的pTMM序列,但是其具有pBA002二元表达载体中的NOS 3’polyA添加序列(Kost et al.,1998)。在表达pBA002-S、-AS和-IR系列的沉默物的转基因植物中观察到类似的tmm-表型,但是穿透略低(表3)。总的来说,这些结果表明诱导TMM内源基因的TGS的单链S和AS沉默物的效率不依赖于3’末端结构。
表3pBA002构建体T1转化子的tmm-表型的穿透
实施例3单链沉默物的基因组插入位置
我们对每个构建体选择两个具有T2代中接近3:1的分离比的独立株系以用于进一步的表型研究。有很小的可能性,单链沉默物的两个拷贝可能已经插入基因组中相反的方向。渗漏转录通读(Leaky transcriptional readthrough)能够产生与pTMM序列互补的RNA,从而形成双链IR RNA。为了排除这样的可能性,我们通过TAIL-PCR(Liu et al.,1995)定位几个转基因株系的插入位置。结果表明,所有测试的株系带有单个插入,除了AS4(AS系列,株系4)以外,其带有两个插入(图2)。S21(正义系列,株系21)的T-DNA位于编码未知功能的蛋白质的At2g46940的末端附近。S26的T-DNA位于编码甘氨酸切割T蛋白家族的蛋白质的At1g11860的5’非翻译区域(UTR)。AS4的一个插入发现于At5g09720和At5g09730之间的基因间区域,所述At5g09720编码镁转运蛋白CorA-样家族的蛋白质,所述At5g09730编码与β-木糖酶类似的蛋白质,并且其他插入位于UF3GT的假基因At5g54045的第一内含子中。AS10的T-DNA插入编码结合FAD/NAD(P)的氧化还原酶家族的蛋白质的At3g44190的5’UTR。目前为止,没有证据表明,这些基因的突变对TMM的表达或tmm-表型有作用。
实施例4单链沉默物可以产生的大部分是与IR-相关的sRNA不同的24ntsRNA
有文献记载,可以通过RNA-指导的DNA甲基化(RdDM),用sRNA诱导TGS,所述sRNA大部分为24-26nt,源自外源/内源双链RNA(Wasseneggeret al.,1994;Mette et al.,2000;Hamilton et al.,2002)。在另一方面,较短的sRNA种类(21-22nt)主要介导具有序列同源性的靶RNA的降解,导致转录后基因沉默(PTGS)(Hamilton et al.,2002;Vaucheret,2006)。
为了通过单链和双链沉默物研究可能的与TMM沉默关联的sRNA,我们通过Illumina高通量测序平台,确定了小RNA的序列。除了样品S21(对其我们获得了868,571个读取),我们对每个其他样品产生了多于1百万个读取。从纯化的sRNA开始的AS10和IR8的读取数目比其他未分级分离的样品多一个数量级(表4)。除去不相关的序列后,~80%的读取可以定位于拟南芥基因组(TAIR 9)(表4)。对于所有样品,24nt sRNA代表定位的小RNA群体的优势种类(图9)。没有样品产生对应于TMM编码区的任何sRNA。在未转化的WT样品中,我们没有回收任何定位于TMM启动子区的sRNA。相比之下,我们确实回收了大量可以定位于所沉默的转基因植物中的pTMM的sRNA(表5,图3a)。sRNA的产生取决于沉默物的存在。当沉默物转基因通过遗传杂交而分离时,sRNA消失(表6,AS10NI和IR8NI)。我们还发现,在所有3类沉默物中,大部分sRNA源自负链(表5,图10a-10c)。在可以定位于TMM启动子区的sRNA中,几乎所有的长度都是21-24nt。对于带有单链沉默物的转基因植物,超过70%的sRNA的产物为24nt。这与源自双链沉默物的sRNA不同,其中可以检测到显著比例的21-23ntsRNA,占所有sRNA的~45%(图3b)。小RNA的RNA印迹表现出类似的模式(图10a-10c),提示单链沉默物和双链沉默物产生的不同的sRNA生物发生机理。
表4sRNA测序总结
表5sRNA定位结果
表6不同的拟南芥突变体中T1转化子的tmm-表型穿透
实施例5AS沉默物来源的sRNA不仅在内源pTMMBut也在沉默物基因座诱导从头开始的DNA甲基化
siRNA靶向的启动子区处增加的DNA甲基化通常视为TGS的标志(Aufsatz et al.,2002),虽然其并不总是与成功的沉默相关(Okano et al.,2008)。Mette et al.(Mette et al.,2000)报道了单链反义触发物/沉默物可以在触发物/沉默物转基因处但不在所靶向的启动子处轻微地诱导DNA甲基化。为了确定观察到的与TMM启动子相关的sRNA实际上是否可以在靶启动子和沉默物基因座处诱导DNA甲基化,我们进行了重亚硫酸盐处理的DNA的测序以详细地研究甲基化状态。
与野生型Col-0对照相比,在S-沉默物株系(S21、S26)、AS-沉默物株系(AS4、AS10)和双链RNA(IR)-沉默物株系(IR8)中的内源TMM启动子区处,观察到所有3种类型的胞嘧啶CG、CHG(H表示A、C或T)和CHH的甲基化的明显增加(图4a-4e,图11a-11f)。对于沉默物区域的DNA甲基化分析,将AS-沉默物转基因株系AS27用作对照,其不产生任何sRNA,也不表现出任何tmm-表型(数据未显示)。图4e示出具有sRNAs和tmm-表型的AS-沉默物株系中CG和CHG甲基化的明显增加(图4e,图12a-12c)。观察到CHH甲基化的轻微升高,这与靶区域不同(图4d、4e、11f、4c)。
为了确定TMM启动子区的DNA甲基化是否是沉默物-sRNA依赖性的,我们使用McrBc消化分析作为快速测定。在AS10NI株系中没有明显的DNA甲基化,其从杂合AS10亲本分离并且不带有T-DNA插入或沉默物(图5a和5b)。因此,这些数据表明,TMM启动子区的DNA甲基化可能需要从其产生sRNA的沉默物的存在。
实施例6在TMM启动子区观察到的组蛋白修饰
核小体上组蛋白的特定位置的修饰对于在植物中形成染色质结构和调节转录活性具有重要作用(Loidl,2004)。已经鉴定了两组组蛋白修饰:1)与活跃表达的基因的区域相关的活性或常染色质标记物;2)与常染色质中的失活区域或异染色质相关的抑制性或异染色质标记物(Loidl,2004;Bernatavichute et al.,2008;Liu et al.,2010)。在稻中,所靶向的内源启动子的DNA甲基化多半与TGS无关也与抑制性染色质的形成无关(Okano et al.,2008)。
为了确定在TMM启动子处观察到的DNA甲基化改变是否伴随着组蛋白修饰的改变,我们使用染色质免疫沉淀(ChIP)测定来研究活性标记物的H3乙酰化、H3K4三甲基化以及抑制性标记物的H3K9me3和H3K27me3。设计三个引物对来检查内源TMM基因座的启动子(5’和3’)和编码区域(图6a)。在AS-沉默物和IR-沉默物转基因植物的启动子区中,与未转化的WT植物相比,观察到活性标记物H3K9/14Ac和H3K4me3的明显减少(图6b和6c)。相应地,在TMM启动子的3’区域观察到高水平的H3K9me3和H3K27me3,但是这些抑制性标记物这样的富集在5’启动子和编码区域较不明显(图6b、6c和6d)。总体上,AS-沉默物和IR-沉默物植物具有类似的组蛋白修饰模式,其与sRNA介导的TMM启动子区的DNA甲基化相关。
实施例7靶向FHY1、HFR1和PhyB启动子的单链沉默物可以诱导靶基因的TGS
FHY1(far-red elongated hypocotyl)和HFR1(long hypocotyl in far red)编码的蛋白质参与光敏色素A信号传导途径的正调控。在远红光条件下,在fhy1和hfr1突变体的幼苗中观察到延长的下胚轴(Whitelam et al.,1993;Fairchild et al.,2000;Soh et al.,2000)。PhyB是拟南芥中的5种光敏色素之一,并且phyB无效突变体在红光下与WT相比表现出更长的下胚轴。与TMM-沉默物类似,我们构建了靶向FHY1、HFR1和PhyB的启动子的S-和AS-沉默物载体,并且为了表型观察产生转基因植物。对于FHY1,我们也制备了IR-沉默物,并且同时收获对应的转基因植物。
图7a和7b以及图13a示出带有靶向FHY1或HFR1的S-沉默物或AS-沉默物的转基因株系中的下胚轴长度。与fhy1-3和hfr1-201的无效突变体相比,下胚轴长度的增加是明显的,但是表型的增加是中等的。定量RT-PCR结果证实转基因株系中的FHY1和HFR1转录物的减少(图7c、图13b)。重亚硫酸盐处理的DNA的测序揭示转基因植物中S-沉默物(S3、S4)和AS-沉默物(AS8、AS11)中内源FHY1启动子处的DNA甲基化的明显增加(图7d、图14a-14c)。红光下带有靶向PhyB启动子的S-沉默物和AS-沉默物的转基因植物的延长的下胚轴证实这种TGS策略对于PhyB基因座同样发挥作用(图15a和15b)。
实施例8讨论
我们已经证实通过使用常规IR沉默,两种拟南芥内源基因TMM和HFR1可以被有效地沉默(图1、图13)。这与对稻报道的结果不同,其中7个内源基因中仅1个能够被IR沉默物中等地沉默。此外,利用靶向启动子区域的单链沉默物,我们能够沉默4个拟南芥内源基因:TMM、FHY1、HFR1和PhyB。结果表明,单链AS沉默物与双链IR沉默物具有相当的效率,而单链S沉默物的效果则弱得多(图1a-1d、表2)。这个结果与之前的报导不同,即利用转基因系统,单链沉默物无法引发如反向重复沉默物的有效的TGS(Mette et al.,2000)。由于Mette et al.(2000)使用转基因作为靶标,因此差异可能是由于内源基因与转基因之间的TGS的差异。
之前,Mette et al.(2000)指出转基因的TGS中sRNA与DNA甲基化之间良好的相关性。双链IR沉默物可以有效地产生~24nt sRNA并反式引发同源序列的DNA甲基化和TGS。然而,在转基因植物中,对于单独的单链S-或AS-沉默物,或者甚至共同转录的S-和AS-沉默物,都没有观察到DNA甲基化或TGS(Mette et al.,2000)。除了烟草和拟南芥以外,在矮牵牛(Sijenet al.,2001)和玉米(Cigan et al.,2005)中也观察到靶向启动子的sRNA引发的TGS。然而,在单子叶植物稻中,靶向启动子的sRNA没有引发内源基因的TGS,虽然观察到启动子DNA甲基化(Okano et al.,2008)。这个结果表明,单独的sRNA-介导的DNA甲基化不足以诱导TGS,至少在某些情况下是如此。在这里,我们发现,靶向TMM启动子的sRNA对于DNA甲基化和基因沉默是必须的。在WT中,通过sRNA测序,没有回收到与TMM基因座相关的sRNA(图3a、表5)。与这一致的是,没有检测到启动子DNA甲基化(图4),并且启动子保持活性。所有所测试的沉默的转基因株系产生启动子相关的sRNA并且表现出启动子DNA甲基化(图3a、4)。不具有启动子相关的sRNA的转基因株系如AS27也没有表现出任何TMM启动子的DNA甲基化(图5)。而且,在所沉默的株系中,当转基因沉默物通过遗传杂交分离时,tmm突变体表型回复到WT,例如AS10NI和IR8NI(图1),并且在不携带沉默物转基因的子代植物中没有检测到TMM启动子相关的sRNA(图3a、表5)。
在描述本发明的上下文(特别是下述权利要求的上下文中),除非本文中另外指出或者上下文明显冲突,术语“一个(a)”、“一个(an)”和“所述(the)”以及类似的所指对象的使用应当理解为涵盖单数和复数形式。除非另外指出,术语“包含”、“具有”、“包括”和“含有”应当理解为开放式术语(即,表示“包括但不限于”)。除非本文中另外指明,本文中值的范围的使用仅意图充当落入该范围的每个单独的值的简写方法,并且每个单独的值并入本说明书中,如同其被单独地列入本文中。例如,如果公开范围10-15,那么同样也公开了11、12、13和14。本文所述的所有方法可以以任何合适的顺序进行,除非本文另外指出或者上下文明显冲突。本文使用的任何和所有实例或者示例性语言(如,“例如”)仅意图更好地示例本发明,并不意图限制本发明的范围,除非权利要求中表明。说明书中没有内容可以被理解为表示任何没有在权利要求中出现的要素对于本发明的实施是不可或缺的。
应当理解,本发明的方法和组合物可以体现为各种实施方案的形式,但本文仅公开了其中一部分。本文描述了本发明的实施方案,包括发明人已知的用于实施本发明的最佳方式。这些实施方案的变体对于本领域技术人员阅读前述说明书后是明显的。本发明人预期本领域技术人员适当地使用这样的变体,并且本发明人意图以除了本发明详细描述的方式以外的方式实施本发明。因此,本发明包括所附的权利要求中所列举的主题的可行的法律所允许的所有修饰和等同。而且,除非本文中另外指出或者上下文明显冲突,本发明涵盖上述元素的所有可能的变体的任何组合。
参考文献
Agorio,A.,and Vera,P.(2007).ARGONAUTE4 is required for resistance toPseudomonas syringae in Arabidopsis.The Plant Cell 19,3778-3790.Aufsatz,W.,Mette,M.F.,Van Der Winden,J.,Matzke,A.J.M.,and Matzke,M.(2002).RNA-directed DNA methylation in Arabidopsis.Proceedings of theNational Academy of Sciences of the United States of America 99,16499-16506.
Bernatavichute,Y.V.,Zhang,X.,Cokus,S.,Pellegrini,M.,and Jacobsen,S.E.(2008).Genome-wide association of histone H3 lysine nine methylation withCHG DNA methylation in Arabidopsis thaliana.PLoS One 3,e3156.
Chiu,W.et al.(1996).Engineered GFP as a vital reporter in plants.CurrentBiology 6:325-330.
Christensen,A.H.and Quail,P.H,(1989).Sequence analysis andtranscriptional regulation by heat shock of polyubiquitin transcripts from maize.Plant Mol Biol 12:619-632.
Christensen,A.H.et al.(1992).Maize polyubiquitin genes:structure,thermalperturbation of expression and transcript splicing,and promoter activityfollowing transfer to protoplasts by electroporation.Plant Mol Biol18:675-689.
Cigan,A.M.,Unger‐Wallace,E.,and Haug‐Collet,K.(2005).Transcriptionalgene silencing as a tool for uncovering gene function in maize.The PlantJournal 43,929-940.
Daxinger,L.,Kanno,T.,Bucher,E.,Van Der Winden,J.,Naumann,U.,Matzke,A.J.M.,and Matzke,M.(2009).A stepwise pathway for biogenesis of 24-ntsecondary siRNAs and spreading of DNA methylation.The EMBO Journal 28,48-57.
De Wet,J.R.et al.(1987).Firefly luciferase gene:structure and expression inmammalian cells.Mol Cell Biol 7:725-737.
Eamens,A.,Wang,M.B.,Smith,N.A.,and Waterhouse,P.M.(2008).RNAsilencing in plants:yesterday,today,and tomorrow.Plant Physiology 147,456-468.
Elmayan,T.,Balzergue,S.,Béon,F.,Bourdon,V.,Daubremet,J.,Guénet,Y.,Mourrain,P.,Palauqui,J.C.,Vernhettes,S.,and Vialle,T.(1998).Arabidopsismutants impaired in cosuppression.The Plant Cell 10,1747-1758.
Fairchild,C.D.,Schumaker,M.A.,and Quail,P.H.(2000).HFR1 encodes anatypical bHLH protein that acts in phytochrome A signal transduction.Genes&Development 14,2377-2391.
Garcia-Ruiz,H.,Takeda,A.,Chapman,E.J.,Sullivan,C.M.,Fahlgren,N.,Brempelis,K.J.,and Carrington,J.C.(2010).Arabidopsis RNA-dependent RNApolymerases and dicer-like proteins in antiviral defense and small interferingRNA biogenesis during Turnip Mosaic Virus infection.The Plant Cell 22,481-496.
Goff,S.A.et al.(1990).Transactivation of anthocyanin biosynthetic genesfollowing transfer of B regulatory genes into maize tissues.EMBO J9:2517-2522.
Guo,H.S.,Fei,J.F.,Xie,Q.,and Chua,N.H.(2003).A chemical‐regulatedinducible RNAi system in plants.The Plant Journal 34,383-392.
Haag,J.R.,and Pikaard,C.S.(2011).Multisubunit RNA polymerases IV and V:purveyors of non-coding RNA for plant gene silencing.Nature ReviewsMolecular Cell Biology 12,483-492.
Hamilton,A.,Voinnet,O.,Chappell,L.,and Baulcombe,D.(2002).Two classesof short interfering RNA in RNA silencing.The EMBO Journal 21,4671-4679.Havecker,E.R.,Wallbridge,L.M.,Hardcastle,T.J.,Bush,M.S.,Kelly,K.A.,Dunn,R.M.,Schwach,F.,Doonan,J.H.,and Baulcombe,D.C.(2010).TheArabidopsis RNA-directed DNA methylation argonautes functionally divergebased on their expression and interaction with target loci.The Plant Cell 22,321-334.
Heilersig,B.H.J.B.,Loonen,A.E.H.M.,Janssen,E.M.,Wolters,A.M.A.,andVisser,R.G.F.(2006).Efficiency of transcriptional gene silencing of GBSSI inpotato depends on the promoter region that is used in an inverted repeat.Molecular Genetics and Genomics 275,437-449.
Henderson,I.R.,and Jacobsen,S.E.(2008).Tandem repeats upstream of theArabidopsis endogene SDC recruit non-CG DNA methylation and initiatesiRNA spreading.Genes&Development 22,1597.
Henderson,I.R.,Zhang,X.,Lu,C.,Johnson,L.,Meyers,B.C.,Green,P.J.,andJacobsen,S.E.(2006).Dissecting Arabidopsis thaliana DICER function in smallRNA processing,gene silencing and DNA methylation patterning.NatureGenetics 38,721-725.
Herr,A.,Jensen,M.,Dalmay,T.,and Baulcombe,D.(2005).RNA polymeraseIV directs silencing of endogenous DNA.Science 308,118-120.
Jefferson,R.A.et al.(1991).Plant Molecular Biology Manual,ed.Gelvin etal.,Kluwer Academic Publishers,pp.1-33.
Jones,L.,Ratcliff,F.,and Baulcombe,D.C.(2001).RNA-directedtranscriptional gene silencing in plants can be inherited independently of theRNA trigger and requires Met1 for maintenance.Current Biology 11,747-757.
Kain,S.R.et al.(1995).Green fluorescent protein as a reporter of geneexpression and protein localization.BioTechniques 19,650-655.
Kanno,T.,Mette,M.F.,Kreil,D.P.,Aufsatz,W.,Matzke,M.,and Matzke,A.J.M.(2004).Involvement of putative SNF2 chromatin remodeling protein DRD1 inRNA-directed DNA methylation.Current Biology 14,801-805.
Kanno,T.,Huettel,B.,Mette,M.F.,Aufsatz,W.,Jaligot,E.,Daxinger,L.,Kreil,D.P.,Matzke,M.,and Matzke,A.J.M.(2005).Atypical RNA polymerasesubunits required for RNA-directed DNA methylation.Nature Genetics 37,761-765.
Kost,B.,Spielhofer,P.,and Chua,N.H.(1998).A GFP‐mouse talin fusionprotein labels plant actin filamentsin vivoand visualizes the actin cytoskeleton ingrowing pollen tubes.The Plant Journal 16,393-401.
Last,D.I.et al.(1991).pEmu:an improved promoter for gene expression incereal cells.Theor Appl Genet 81:581-588.
Law,J.A.,and Jacobsen,S.E.(2010).Establishing,maintaining and modifyingDNA methylation patterns in plants and animals.Nature Reviews Genetics 11,204-220.
Liu,C.,Lu,F.,Cui,X.,and Cao,X.(2010).Histone methylation in higher plants.Annual Review of Plant Biology 61,395-420.
Liu,Y.G.,Mitsukawa,N.,Oosumi,T.,and Whittier,R.F.(1995).Efficientisolation and mapping of Arabidopsis thaliana T‐DNA insert junctions bythermal asymmetric interlaced PCR.The Plant Journal 8,457-463.
Loidl,P.(2004).A plant dialect of the histone language.Trends in Plant Science9,84-90.
Mallory,A.,and Vaucheret,H.(2010).Form,function,and regulation ofARGONAUTE proteins.The Plant Cell 22,3879-3889.
Matzke,M.,Primig,M.,Trnovsky,J.,and Matzke,A.(1989).Reversiblemethylation and inactivation of marker genes in sequentially transformedtobacco plants.The EMBO Journal 8,643-649.
Matzke,M.,Kanno,T.,Daxinger,L.,Huettel,B.,and Matzke,A.J.M.(2009).RNA-mediated chromatin-based silencing in plants.Current Opinion in CellBiology 21,367-376.
Matzke,M.A.,and Matzke,A.J.M.(2004).Planting the seeds of a new paradigm.PLoS Biology 2,e133.
McElroy,D.et al.(1990).Isolation of an efficient actin promoter for use inrice transformation.Plant Cell 2:163-171.
Mette,M.,Aufsatz,W.,Van der Winden,J.,Matzke,M.,and Matzke,A.(2000).Transcriptional silencing and promoter methylation triggered by double-strandedRNA.The EMBO Journal 19,5194-5201.
Miura,A.,Nakamura,M.,Inagaki,S.,Kobayashi,A.,Saze,H.,and Kakutani,T.(2009).An Arabidopsis jmjC domain protein protects transcribed genes fromDNA methylation at CHG sites.The EMBO Journal 28,1078-1086.
Mlotshwa,S.,Pruss,G.J.,Gao,Z.,Mgutshini,N.L.,Li,J.,Chen,X.,Bowman,L.H.,and Vance,V.(2010).Transcriptional silencing induced by Arabidopsis T‐DNA mutants is associated with 35S promoter siRNAs and requires genesinvolved in siRNA‐mediated chromatin silencing.The Plant Journal 64,699-704.
Odell,J.T.et al.(1985).Identification of DNA sequences required for activityof the cauliflower mosaic virus 35S promoter.Nature 313:810-812.
Okano,Y.,Miki,D.,and Shimamoto,K.(2008).Small interfering RNA(siRNA)targeting of endogenous promoters induces DNA methylation,but notnecessarily gene silencing,in rice.The Plant Journal 53,65-77.
Pontier,D.,Yahubyan,G.,Vega,D.,Bulski,A.,Saez-Vasquez,J.,Hakimi,M.A.,Lerbs-Mache,S.,Colot,V.,and Lagrange,T.(2005).Reinforcement of silencingat transposons and highly repeated sequences requires the concerted action oftwo distinct RNA polymerases IV in Arabidopsis.Genes&Development 19,2030-2040.
Reed,J.W.,Nagpal,P.,Poole,D.S.,Furuya,M.,and Chory,J.(1993).Mutationsin the gene for the red/far-red light receptor phytochrome B alter cell elongationand physiological responses throughout Arabidopsis development.The PlantCell 5,147-157.
Sijen,T.,Vijn,I.,Rebocho,A.,van Blokland,R.,Roelofs,D.,Mol,J.N.M.,andKooter,J.M.(2001).Transcriptional and posttranscriptional gene silencing aremechanistically related.Current Biology 11,436-440.
Soh,M.S.,Kim,Y.M.,Han,S.J.,and Song,P.S.(2000).REP1,a basichelix-loop-helix protein,is required for a branch pathway of phytochrome Asignaling in Arabidopsis.The Plant Cell 12,2061-2074.
Vaucheret,H.(2006).Post-transcriptional small RNA pathways in plants:mechanisms and regulations.Genes&Development 20,759-771.
Velten,J.et al.(1984).Isolation of a dual plant promoter fragment from the Tiplasmid of Agrobacterium tumefaciens.EMBO J 3,2723-2730.
Wassenegger,M.,Heimes,S.,Riedel,L.,andH.L.(1994).RNA-directed de novo methylation of genomic sequences in plants.Cell 76,567-576.
Whitelam,G.C.,Johnson,E.,Peng,J.,Carol,P.,Anderson,M.L.,Cowl,J.S.,andHarberd,N.P.(1993).Phytochrome A null mutants of Arabidopsis display awild-type phenotype in white light.The Plant Cell 5,757-768.
Willmann,M.R.,Endres,M.W.,Cook,R.T.,and Gregory,B.D.(2011).TheFunctions of RNA-Dependent RNA Polymerases in Arabidopsis.TheArabidopsis Book 9,e0146.
Wu,H.W.,Lin,S.S.,Chen,K.C.,Yeh,S.D.,and Chua,N.H.(2010).Discriminating mutations of HC-Pro of Zucchini yellow mosaic virus withdifferential effects on small RNA pathways involved in viral pathogenicity andsymptom development.Molecular Plant-Microbe Interactions 23,17-28.
Xie,Z.,Johansen,L.K.,Gustafson,A.M.,Kasschau,K.D.,Lellis,A.D.,Zilberman,D.,Jacobsen,S.E.,and Carrington,J.C.(2004).Genetic andfunctional diversification of small RNA pathways in plants.PLoS Biology 2,e104.
Zeidler,M.,Zhou,Q.,Sarda,X.,Yau,C.P.,and Chua,N.H.(2004).The nuclearlocalization signal and the C‐terminal region of FHY1 are required fortransmission of phytochrome A signals.The Plant Journal 40,355-365.
Zhang,X.,Henriques,R.,Lin,S.S.,Niu,Q.W.,and Chua,N.H.(2006a).Agrobacterium-mediated transformation of Arabidopsis thaliana using the floraldip method.Nature Protocols 1,641-646.
Zhang,X.,Yazaki,J.,Sundaresan,A.,Cokus,S.,Chan,S.W.L.,Chen,H.,Henderson,I.R.,Shinn,P.,Pellegrini,M.,and Jacobsen,S.E.(2006b).Genome-wide high-resolution mapping and functional analysis of DNAmethylation in Arabidopsis.Cell 126,1189-1201.
Zilberman,D.,Gehring,M.,Tran,R.K.,Ballinger,T.,and Henikoff,S.(2006).Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers aninterdependence between methylation and transcription.Nature Genetics 39,61-69.

Claims (45)

1.一种核酸构建体,其包含可操作地连接至核酸沉默物分子的植物可操作启动子,所述核酸沉默物分子可操作地连接至植物可操作的3’调节区,其中所述核酸沉默物分子包含至少一个植物内源基因靶标的启动子区,其中在转基因植物中表达所述核酸沉默物分子导致所述植物内源基因靶标的转录基因沉默。
2.权利要求1的核酸构建体,其中所述至少一个启动子区为启动子区的单拷贝。
3.权利要求1的构建体,其中所述核酸沉默物分子相对于所述植物可操作启动子处于正义方向。
4.权利要求3的构建体,其中所述核酸沉默物分子的转录产生单链正义沉默物。
5.权利要求1的构建体,其中所述核酸沉默物分子相对于所述植物可操作启动子处于反义方向。
6.权利要求5的构建体,其中所述核酸沉默物分子的转录产生单链反义沉默物。
7.权利要求1的构建体,其中所述核酸沉默物分子以反向重复构型提供。
8.权利要求7的构建体,其中所述反向重复核酸沉默物分子的转录产生双链沉默物。
9.权利要求7的构建体,其中所述核酸构建体在所述反向重复沉默物区之间额外地包含间隔序列。
10.权利要求1-9中任一项的构建体,其中所述植物可操作启动子为单启动子、双同源启动子或双异源启动子。
11.权利要求1-10中任一项的构建体,其中所述3’调节区为3’病毒序列。
12.权利要求1-11中任一项的构建体,其中所述3’调节区为polyA添加序列。
13.权利要求1-12中任一项的构建体,其中所述启动子区包含所述内源基因的约300个连续核苷酸-约1500个连续核苷酸,所述内源基因的约400个连续核苷酸-约1200个连续核苷酸,所述内源基因的约425个连续核苷酸-约1100个连续核苷酸或者所述内源基因的约425个连续核苷酸-约1075个连续核苷酸。
14.权利要求13的构建体,其中所述启动子区包含选自SEQ IDNO:1、SEQ ID NO:2、SEQ ID NO:3和SEQ ID NO:4的核苷酸序列。
15.一种核酸构建体,其包含可操作地连接至核酸沉默物分子的植物可操作启动子,所述核酸沉默物分子可操作地连接至植物可操作的3’调节区,其中所述核酸沉默物分子包含至少一个植物内源基因靶标的启动子区,其中所述至少一个启动子区不以反向重复的形式存在,并且其中在转基因植物中表达所述核酸沉默物分子导致所述植物内源基因靶标的转录基因沉默。
16.权利要求15的核酸构建体,其中所述至少一个启动子区为启动子区的单拷贝。
17.权利要求15的构建体,其中所述核酸沉默物分子的启动子区相对于所述植物可操作启动子处于正义方向。
18.权利要求17的构建体,其中所述核酸沉默物分子的启动子区的转录产生单链正义沉默物。
19.权利要求17的构建体,其中所述核酸沉默物分子相对于所述植物可操作启动子处于反义方向。
20.权利要求19的构建体,其中所述核酸沉默物分子的转录产生单链反义沉默物。
21.权利要求15-20中任一项的构建体,其中所述植物可操作启动子为单启动子、双同源启动子或双异源启动子。
22.权利要求15-21中任一项的构建体,其中所述3’调节区为3’病毒序列。
23.权利要求15-22中任一项的构建体,其中所述3’调节区为polyA添加序列。
24.权利要求15-23中任一项的构建体,其中所述启动子区包含所述内源基因的约300个连续核苷酸-约1500个连续核苷酸,所述内源基因的约400个连续核苷酸-约1200个连续核苷酸,所述内源基因的约425个连续核苷酸-约1100个连续核苷酸或者所述内源基因的约425个连续核苷酸-约1075个连续核苷酸。
25.权利要求24的构建体,其中所述启动子区包含选自SEQ IDNO:1、SEQ ID NO:2、SEQ ID NO:3和SEQ ID NO:4的核苷酸序列。
26.一种包含权利要求1-25中任一项的核酸构建体的植物转化载体。
27.一种转基因植物细胞,其包含稳定地整合入其基因组的权利要求1-25中任一项的核酸构建体或者权利要求26的植物转化载体。
28.一种转基因植物,其包含稳定地整合入其基因组的权利要求1-25中任一项的核酸构建体或者权利要求26的植物转化载体。
29.一种通过植物细胞中的转录基因沉默减少植物内源基因表达的方法,所述方法包括在适合表达所述核酸沉默物分子的条件下培养权利要求27的转基因植物细胞,从而使所述植物内源基因的表达减少。
30.权利要求29的方法,其中所述核酸沉默物的表达导致产生初始单链转录物,然后加工所述初始单链转录物以在所述转基因植物细胞中产生小RNA,然后通过所述转基因植物细胞中的小RNA进行所述植物内源基因的转录基因沉默。
31.一种通过植物中的转录基因沉默减少植物内源基因表达的方法,所述方法包括使权利要求28的转基因植物在适合表达所述核酸沉默物分子的条件下生长,从而使所述植物内源基因的表达减少。
32.权利要求31的方法,其中所述核酸沉默物的表达导致产生初始单链转录物,然后加工所述初始单链转录物以在所述转基因植物中产生小RNA,然后通过所述小RNA进行所述转基因植物中所述植物内源基因的转录基因沉默。
33.一种通过植物细胞中的转录基因沉默减少植物内源基因表达的方法,所述方法包括
用权利要求1-25中任一项的核酸构建体或权利要求26的植物转化载体转化植物细胞以产生转基因植物细胞,所述转基因植物细胞具有稳定地整合入其基因组的所述核酸构建体或所述植物转化载体,以及
在适合表达所述核酸沉默物分子的条件下培养所述转基因植物细胞,从而使所述植物内源基因的表达减少。
34.权利要求33的方法,其中所述核酸沉默物的表达导致产生初始单链转录物,然后加工所述初始单链转录物以在所述转基因植物细胞中产生小RNA,然后通过所述转基因植物细胞中的小RNA进行所述植物内源基因的转录基因沉默。
35.一种通过植物中的转录基因沉默减少植物内源基因表达的方法,所述方法包括
用权利要求1-25中任一项的核酸构建体或权利要求26的植物转化载体转化植物细胞以产生转基因植物细胞,所述转基因植物细胞具有稳定地整合入其基因组的所述核酸构建体或所述植物转化载体,
从所述转基因植物细胞再生转基因植物,其中所述转基因植物具有稳定地整合入其基因组的所述核酸构建体或所述植物转化载体,以及
使所述转基因植物在适合表达所述核酸沉默物分子的条件下生长,从而使所述植物内源基因的表达减少。
36.权利要求35的方法,其中所述核酸沉默物的表达导致产生初始单链转录物,然后加工所述初始单链转录物以在所述转基因植物中产生小RNA,然后通过所述小RNA进行所述转基因植物中所述植物内源基因的转录基因沉默。
37.一种鉴定可用于植物内源基因的转录基因沉默的植物启动子片段的方法,所述方法包括
(a)用权利要求1-25中任一项的构建体或权利要求26的植物转化载体转化植物细胞,以及
(b)测试转化的植物细胞中的转录基因沉默。
38.权利要求37的方法,其中所述测试包括使用一种或多种以下方法:RT-PCR、PCR、RNA印迹、免疫测定或酶促测定。
39.权利要求38的方法,其中所述测试包括使用免疫测定。
40.权利要求39的方法,其中所述免疫测定包括使用针对组蛋白乙酰化或组蛋白甲基化位点的抗体。
41.权利要求38的方法,其中所述测试包括使用酶促测定。
42.权利要求41的方法,其中所述酶促测定包括用McrBc消化DNA。
43.权利要求37的方法,其进一步包括
(a1)在适合表达推定的核酸沉默物分子的条件下培养所述转化的植物细胞。
44.权利要求37的方法,其进一步包括
(a1)从所述转化的植物细胞再生转化的植物,以及
(a2)使所述转化的植物在适合于转化的植物细胞中表达推定的核酸沉默物分子的条件下生长。
45.权利要求37-44中任一项的方法,其进一步包括如果在所述转化的植物细胞中有转录基因沉默,则将所述推定的核酸沉默分子鉴定为靶植物内源基因的核酸沉默分子。
CN201380058018.0A 2012-09-07 2013-08-27 植物中内源基因的转录基因沉默 Pending CN104781407A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261698203P 2012-09-07 2012-09-07
US61/698,203 2012-09-07
PCT/US2013/056865 WO2014039330A1 (en) 2012-09-07 2013-08-27 Transcriptional gene silencing of endogenes in plants

Publications (1)

Publication Number Publication Date
CN104781407A true CN104781407A (zh) 2015-07-15

Family

ID=50237541

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380058018.0A Pending CN104781407A (zh) 2012-09-07 2013-08-27 植物中内源基因的转录基因沉默

Country Status (5)

Country Link
US (1) US20150252375A1 (zh)
CN (1) CN104781407A (zh)
BR (1) BR112015004965A2 (zh)
CA (1) CA2884296A1 (zh)
WO (1) WO2014039330A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106148330A (zh) * 2016-04-27 2016-11-23 山东农业大学 一种ChIP实验中鸡卵巢组织超声破碎的方法
CN107245497A (zh) * 2017-07-24 2017-10-13 中国科学院植物研究所 鉴定牡丹类黄酮糖基转移酶基因的vigs沉默体系
CN113406221A (zh) * 2021-05-27 2021-09-17 重庆水务集团水质检测有限公司 一种利用离子色谱法同时检测水体中11种常见物质的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017083092A1 (en) * 2015-11-10 2017-05-18 Dow Agrosciences Llc Methods and systems for predicting the risk of transgene silencing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053050A1 (en) * 1998-04-08 1999-10-21 Commonwealth Scientific And Industrial Research Organisation Methods and means for obtaining modified phenotypes
US20110131668A1 (en) * 2007-08-14 2011-06-02 Commonwealth Scientific And Industrial Research Organisation Improved gene silencing methods

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999053050A1 (en) * 1998-04-08 1999-10-21 Commonwealth Scientific And Industrial Research Organisation Methods and means for obtaining modified phenotypes
US20110131668A1 (en) * 2007-08-14 2011-06-02 Commonwealth Scientific And Industrial Research Organisation Improved gene silencing methods

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
FEDERSPIEL,N.A.ET AL.: "AC009322.1", 《GENBANK》 *
FEDERSPIEL,N.A.ET AL.: "AC064879.3", 《GENBANK》 *
LIN,X. ET AL.: "AC005724.3", 《GENBANK》 *
METTE, M ET AL.: "Transcriptional Silencing and Promoter Methylation Triggered by Double-Stranded RNA", 《THE EUROPEAN MOLECULAR BIOLOGY ORGANIZATION JOURNAL》 *
ROUNSLEY,S.D. ET AL.: "AC004684.3", 《GENBANK》 *
哀建国等: "RNA介导的植物基因沉默作用及其应用", 《浙江林学院学报》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106148330A (zh) * 2016-04-27 2016-11-23 山东农业大学 一种ChIP实验中鸡卵巢组织超声破碎的方法
CN107245497A (zh) * 2017-07-24 2017-10-13 中国科学院植物研究所 鉴定牡丹类黄酮糖基转移酶基因的vigs沉默体系
CN107245497B (zh) * 2017-07-24 2019-08-23 中国科学院植物研究所 鉴定牡丹类黄酮糖基转移酶基因的vigs沉默体系
CN113406221A (zh) * 2021-05-27 2021-09-17 重庆水务集团水质检测有限公司 一种利用离子色谱法同时检测水体中11种常见物质的方法

Also Published As

Publication number Publication date
CA2884296A1 (en) 2014-03-13
WO2014039330A8 (en) 2015-04-30
WO2014039330A1 (en) 2014-03-13
BR112015004965A2 (pt) 2017-07-04
US20150252375A1 (en) 2015-09-10

Similar Documents

Publication Publication Date Title
CN106995819B (zh) 用于调控靶基因表达的重组dna构建体和方法
Cotsaftis et al. Transposon-mediated generation of T-DNA-and marker-free rice plants expressing a Bt endotoxin gene
US20130117885A1 (en) Novel Microrna Precursor and Methods of Use for Regulation of Target Gene Expression
AU2005323166A2 (en) Recombinant DNA constructs and methods for controlling gene expression
CN110144363B (zh) 抗虫耐除草剂玉米转化事件
Buck et al. Transgene silencing of invertedly repeated transgenes is released upon deletion of one of the transgenes involved
US20160194659A1 (en) Self-Reproducing Hybrid Plants
Petri et al. A high‐throughput transformation system allows the regeneration of marker‐free plum plants (Prunus domestica)
CN114008203A (zh) 使用基因组编辑产生显性等位基因的方法和组合物
CN104781407A (zh) 植物中内源基因的转录基因沉默
CN104884624A (zh) Dirigent基因EG261及其直系同源物和旁系同源物以及它们在植物中用于病原体抗性的用途
WO2013190322A1 (en) Regulation of seed dormancy
BR112013020427B1 (pt) molécula de sirna, molécula de rna artificial, vetor e método de conferir resistência à nematódeo do cisto da soja compreendendo a referida molécula de sirna
Kahrizi Reduction of EPSP synthase in transgenic wild turnip (Brassica rapa) weed via suppression of aro A
CN104994724A (zh) 基因沉默
CN112795571B (zh) 抗除草剂玉米转化体及其创制方法
US9101100B1 (en) Methods and materials for high throughput testing of transgene combinations
CN114846144A (zh) 将dna或突变精确引入小麦基因组
Kaur et al. Role of microRNAs and their putative mechanism in regulating potato (Solanum tuberosum L.) life cycle and response to various environmental stresses
Zhao et al. Integration and expression stability of transgenes in hybriding transmission of transgenic rice plants produced by particle bombardment
US9121028B2 (en) Selective gene expression in plants
US20230091338A1 (en) Intra-genomic homologous recombination
US20230183733A1 (en) Multiple virus resistance
Liu et al. Tapping RNA silencing for transgene containment through the engineering of sterility in plants
US10947558B2 (en) Compositions and methods for inducing resistance to soybean cyst nematode via RNAi

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150715