CN104767357B - 一种绕组式永磁耦合传动装置 - Google Patents

一种绕组式永磁耦合传动装置 Download PDF

Info

Publication number
CN104767357B
CN104767357B CN201510146217.8A CN201510146217A CN104767357B CN 104767357 B CN104767357 B CN 104767357B CN 201510146217 A CN201510146217 A CN 201510146217A CN 104767357 B CN104767357 B CN 104767357B
Authority
CN
China
Prior art keywords
permanent magnet
magnetic patch
rotor
drive device
unit magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510146217.8A
Other languages
English (en)
Other versions
CN104767357A (zh
Inventor
漆复兴
黄海
徐俊峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Ci Gu Science And Technology Co Ltd
Original Assignee
Jiangsu Ci Gu Science And Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Ci Gu Science And Technology Co Ltd filed Critical Jiangsu Ci Gu Science And Technology Co Ltd
Priority to CN201510146217.8A priority Critical patent/CN104767357B/zh
Publication of CN104767357A publication Critical patent/CN104767357A/zh
Priority to EP15826345.9A priority patent/EP3176931B1/en
Priority to PCT/CN2015/085565 priority patent/WO2016015665A1/zh
Priority to US15/329,345 priority patent/US10498211B2/en
Priority to AU2015295926A priority patent/AU2015295926B2/en
Priority to BR112017001905A priority patent/BR112017001905A2/pt
Priority to CA2956106A priority patent/CA2956106A1/en
Priority to JP2017504812A priority patent/JP6513181B2/ja
Priority to RS20221097A priority patent/RS63769B1/sr
Priority to ZA2017/01453A priority patent/ZA201701453B/en
Application granted granted Critical
Publication of CN104767357B publication Critical patent/CN104767357B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/10Dynamo-electric clutches; Dynamo-electric brakes of the permanent-magnet type
    • H02K49/104Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element
    • H02K49/106Magnetic couplings consisting of only two coaxial rotary elements, i.e. the driving element and the driven element with a radial air gap
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/223Rotor cores with windings and permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/02Dynamo-electric clutches; Dynamo-electric brakes of the asynchronous induction type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K49/00Dynamo-electric clutches; Dynamo-electric brakes
    • H02K49/06Dynamo-electric clutches; Dynamo-electric brakes of the synchronous type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K51/00Dynamo-electric gears, i.e. dynamo-electric means for transmitting mechanical power from a driving shaft to a driven shaft and comprising structurally interrelated motor and generator parts
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/005Machines with only rotors, e.g. counter-rotating rotors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Abstract

本发明公开了一种绕组式永磁耦合传动装置,其包括永磁转子,以及与所述永磁转子同轴且二者之间可发生相对转动的绕组转子;其中,所述永磁转子和所述绕组转子之间存在有气隙;所述绕组转子连接有可对所述绕组转子的电流/电压进行调节的控制结构;本发明的控制结构可以对所述绕组转子的电流或电压进行控制,从而来调节该传动装置的输出转矩的大小,其并不需要设置相应的机械执行机构,因此该传动装置结构简单,能量损耗小。

Description

一种绕组式永磁耦合传动装置
技术领域
本发明涉及永磁耦合传动领域,具体的涉及一种绕组式永磁耦合传动装置。
背景技术
目前,在现有技术的大型旋转机械调速方面,永磁调速装置(也有叫永磁耦合器或永磁涡流调速器等等)产品已经得到了用户的认可和好评,其主要特点为:①通过气隙传递转矩,无机械接触。②能做到无极调速。③轻载软起动,减小电机起动对电网的冲击。④隔离负载振动,减缓冲击负载对设备的伤害。⑤具有过载保护功能。⑥安全可靠,减少设备的维修率和维护费用。⑦无电磁波干扰。这其中比较有代表性的是美国麦格纳驱动公司的相关产品(美国专利NO.5477094),上述的永磁调速装置的基本工作原理如下:导体转子盘与永磁转子盘有相对运动,导体转子盘在永磁转子盘产生的交变磁场中旋转切割磁力线,产生感应涡流,该感应涡流反过来产生反向感应磁场,该感应磁场与永磁盘磁场相互作用,从而在导体转子盘和永磁转子盘之间产生电磁转矩。通过调节两个转子盘之间的气隙大小或对于筒式的结构是通过调节两转子间的耦合面积来降低电磁转矩的大小。
另外,中国专利文献CN101931309A公开了一种高效的传动轴永磁耦合装置,其由至少一副电枢绕组转子盘和与其相适配的电枢绕组盘联轴机构、至少一副永磁转子盘和与其相适配的永磁盘联轴机构以及对应的输入联轴器和输出联轴器构成,电枢绕组转子盘由至少一组电枢绕组和用于装配电枢绕组的电枢绕组安装盘组成,电枢绕组嵌入或装配在电枢绕组安装盘一侧设置的电枢槽里,永磁转子盘由一组至少两个永磁体和装配永磁体的永磁体安装盘组成,永磁体分别以N、S极性交错地、均匀分布地镶嵌或装配在永磁体安装盘的圆周上,电枢绕组转子盘置有电枢绕组的一侧面对于永磁转子盘置有永磁体的一侧、以同一轴中心线形成电磁耦合安装,电枢绕组转子盘与永磁转子盘之间设置有气隙间距,电枢绕组转子盘通过相适配的电枢绕组盘联轴机构与对应的输入联轴器或输出联轴器相联接,永磁转子盘通过相适配的永磁盘联轴机构与对应的输出联轴器或输入联轴器相联接。该专利文献还公开了电枢绕组结构的五种具体方案(例如参见其权利要求3),纵观全部五种方案,无一例外地都在转子盘内部“首端和末端短接”,形成“闭环短路线圈”。工作原理与美国麦格纳驱动公司的产品是一样的,只不过是将导体转子盘中的涡流“归并”到电枢绕组线圈内,其电枢绕组转子盘与永磁转子盘之间的气隙间距的大小,决定了它们之间能传输电磁转矩的大小。也就是说现有技术公开的技术都是通过调节两转子间的气隙大小来调节输出转矩的大小,由于输出力矩与负载之间成正比关系,从而达到传动轴之间耦合或调节传输扭矩和驱动负载的目的。因此调节每个永磁耦合组件中转子盘之间的气隙间距的目的,从而实现调整负载转速的目标。
众所周知,在永磁调速技术中,永磁转子和导体转子之间都必须要有转速差的存在,否则两转子盘之间就不会有电磁转矩的产生。即输入转速n1始终大于输出转速n,则其转差率s为:s=(n1-n)/n1,将上式变换如下:n=n1(1-s)。显然输入转速n1对于永磁调速装置来说是没有办法改变的;从上面公式中可以看出,要想改变输出转速n,即实现调速功能,就只能改变转差率s,换句话说:永磁调速装置的调速实质是一种转差调速,也叫滑差调速。其调速原理就是:通过改变输出转矩的大小来改变s,当输出转矩小于负载转矩,转速就下降,反之转速就上升。现有技术中改变输出转矩的大小通常有两种做法:一是改变永磁转子和导体转子间的磁通面积,二是改变两者之间的气隙大小;而这两种方法都需要机械执行机构,而机械执行机构的设置不仅使得传动装置的结构更为复杂,也增加了体积,提高了后续维护工作量。
另外,现有技术中这类转差调速装置存在极大的转差功率损耗,若忽略机械损耗和杂散损耗,转差功率与输入功率的关系如下:Pm=sPm+(1-s)Pm,式中:Pm为输入功率,sPm为转差功率,(1-s)Pm为输出功率;从公式中可以看出:输入功率Pm不变时,当s越大,转差功率sPm也越大,输出功率(1-s)Pm就变小。在现有技术的永磁调速装置中,转差功率sPm都会作为热能在其上面散发掉,因此,当永磁调速装置调速越大发热越严重。例如:当s=0.5(即调速50%)时,忽略机械损耗和杂散损耗,永磁调速装置的传动效率只有50%;因此,这种永磁调速装置在其工作原理上就存在传动效率低、能量损耗大的缺陷。
发明内容
为此,本发明所要解决的技术问题在于现有技术的永磁调速装置中,改变输出转矩时,需要设置机械执行机构,不仅结构复杂,且增加了体积,提高了后续维护工作量;同时,存在转差功率的损耗,在输入功率一定的情况下,转差功率越大将导致输出功率越小,且转差功率以热能形式直接散发,当永磁调速装置调速越大时发热越严重、永磁调速装置的传动效率越低、能量损耗越大;进而提供一种结构简单、能量损耗小、传动效率高的绕组式永磁耦合传动装置。
为解决上述技术问题,本发明的一种绕组式永磁耦合传动装置,其包括永磁转子,以及与所述永磁转子同轴且二者之间可发生相对转动的绕组转子;其中,所述永磁转子和所述绕组转子之间存在有气隙;所述绕组转子连接有可对所述绕组转子的电流/电压进行调节的控制结构。
所述控制结构通过集电环和碳刷连接所述绕组转子。
所述控制结构包括变流装置,所述变流装置可对所述绕组转子中的电流进行调节。
所述变流装置通过将转差功率回收或消耗调节所述绕组转子的电流。其中,消耗可以通过绕组内部消耗,也可以通过外部消耗;回收可以回收到电网,也可以回收到其他用电或储能设备。
所述变流装置引入可控电动势,调节所述绕组转子的电流。
所述永磁转子包括永磁体和壳体;其中,所述永磁体包括若干互相配合形成径向磁极的永磁体阵列,各个所述永磁体阵列之间交错布置,且所述永磁体形成单边磁场。
所述永磁体阵列包括径向设置的第一永磁体阵列和与所述第一永磁体阵列周向正交设置的第二永磁体阵列。
所述第一永磁体阵列包括成对且间隔设置的第一单元磁块和第二单元磁块,所述第一单元磁块和所述第二单元磁块的磁场方向分别为沿所述永磁体半径方向向内和向外;所述第二永磁体阵列包括成对且间隔设置的第三单元磁块和第四单元磁块,所述第三单元磁块和第四单元磁块的磁场方向分别为沿所述永磁体圆周切向的顺时针和逆时针;所述第一单元磁块设置在相邻的所述第三单元磁块和所述第四单元磁块之间,所述第四单元磁块设置在相邻的所述第一单元磁块和所述第二单元磁块之间。。
所述永磁体还包括嵌入在所述第一永磁体阵列和所述第二永磁体阵列之间的2n个永磁体阵列(n=1,2,3……),并且他们与所述第一和第二永磁体阵列共同作用形成单边磁场。
永磁体阵列的单元磁块的磁化强度矢量M有规律地逐渐变化,即,θm=(1+p)θ或θm=(1-p)θ(p=1,2,3……),式中的p为永磁磁极对数,θm为磁化强度矢量M与X轴的夹角,θ为通过某一扇形单元磁块中心的半径与X轴的夹角。
所述永磁体阵列还包括嵌入的所述第一永磁体阵列和所述第二永磁体阵列之间的第三永磁体阵列;其中,所述第一永磁体阵列、所述第二永磁体阵列和所述第三永磁体阵列各自的磁场方向分别与相应半径形成非钝角的第一夹角、第二夹角和第三夹角,所述第一夹角、第二夹角与所述第三夹角之间的角度差分别为45度。
所述第三永磁体阵列包括依次间隔设置的第五单元磁块、第六单元磁块、第七单元磁块和第八单元磁块;其中,所述第五单元磁块嵌入在所述第三单元磁块和所述第一单元磁块之间,所述第六单元磁块嵌入在所述第一单元磁块和所述第四单元磁块之间,所述第七单元磁块嵌入在所述第四单元磁块和所述第二单元磁块之间,所述第八单元磁块嵌入在所述第二单元磁块和所述第三单元磁块之间。
所述绕组转子包括铁芯和以分数槽集中绕组方式缠绕在所述铁芯上的线圈绕组,且所述线圈绕组的线圈节距设为1。
每极每相槽数q为1/4~1/2。
所述线圈绕组设为双层绕组或单层绕组。
所述铁芯设为叠片铁芯,所述叠片铁芯上成型有若干个供所述线圈缠绕的槽。
所述铁芯设为卷绕铁芯,所述卷绕铁芯上成型有若干个供所述线圈缠绕的槽。
所述槽的个数设为3n(n=1,2,3……)个。
所述铁芯采用电工硅钢片制成。
本发明的上述技术方案相比现有技术具有以下优点:
1、在本发明中,所述绕组转子上连接有可对所述绕组转子的电流/电压进行调节的控制结构;在本发明的绕组式永磁耦合传动装置中,改变现有技术中采用机械结构调整转矩传递大小的思路,巧妙地通过设置绕组转子并利用绕组转子的控制结构,对绕组转子中的电流/电压进行调节,从而实现传递转矩大小的改变;本发明的控制结构可以对所述绕组转子的电流或电压进行控制,从而来调节该传动装置的输出转矩的大小,其并不需要设置相应的机械执行机构,因此该传动装置结构简单、体积小且维护简单。
2、在本发明中,所述控制结构包括变流装置,所述变流装置可对所述绕组转子中的电流进行调节。具体地,所述变流装置可以通过将转差功率回收或消耗调节所述绕组转子的电流,其中,消耗可以通过绕组内部消耗,也可以通过外部消耗;回收可以回收到电网,也可以回收到其他用电或储能设备。由于没有了现有技术中的永磁调速器技术中原理上存在的转差功率损耗发热的问题,这样就无需设置散热器和复杂的风冷、水冷系统。
3、在本发明中,所述变流装置也可以引入可控电动势,调节所述绕组转子的电流,即本发明的绕组转子与控制结构连接,在控制结构中引入一个可控电动势,这样就可以控制绕组转子电流的大小,也就控制了输出转矩的大小从而达到调速的目的;控制结构中可控电动势的引入必然在绕组回路中形成功率传送,这种功率传送是双向的,亦即:可以是转差功率传输到外电路中去,也可以是从外电路中吸收功率。这种调速方式从功率传送的角度来看,可以认为是用控制转差功率的大小和流向来实现对输出转速的调节。这样一来,绕组式永磁耦合传动装置安装在定速电机和负载系统之间,并通过集电环、碳刷与控制装置和变流装置相连接,转差功率通过变流装置,经过逆变变压器回馈电网,得到了全部的回收利用。因此,本发明的传动装置的效率非常高,不管s如何变化效率都能达到95%以上,从而实现了真正意义上的调速节能,进而解决了现有技术中永磁调速装置所存在的缺陷;综上可知,本发明所述的绕组式永磁耦合传动装置传动效率高、能量损耗小。
4、在本发明中,所述永磁体包括若干形成径向磁极的永磁体阵列;其中,各个所述永磁体阵列之间交错布置,且所述永磁体形成单边磁场;该种结构的所述永磁体形成了单边磁场,且该单边磁场为接近正弦分布,从而避免了传统结构中斜槽或斜极,很大程度上减少了加工量,降低了生产成本;同时,提高了气隙磁场密度,忽略制造引起的偏心影响,相对常规设计理论上可提高气隙磁通量41.4%(仿真计算),从而节约了所述永磁体的用量,气隙磁密基波幅值可以达到1.1~1.4T,甚至更高可到1.5~1.6T,整体的功率密度高,而且所述永磁转子的轭部可以采用导磁材料或非导磁材料,即永磁转子的轭部材料选择自由度提高,增加了设计的灵活性。
5、在本发明中,每个所述永磁体阵列包括若干单元磁块,各个所述单元磁块的磁化强度呈规律变化,可获得接近正弦形的气隙磁场不需采用传统方式如斜槽(或斜极)、非均匀气隙极靴或分布式定子电枢绕组等对气隙波形进行修正,简化了结构,降低了制造费用。
6、在本发明中,所述绕组转子包括铁芯和以分数槽集中绕组方式缠绕在所述铁芯上的线圈绕组,且所述线圈绕组的线圈节距设为1,每极每相槽数q为1/4~1/2;采用分数槽集中绕组后,每个线圈绕组的线圈只缠绕在所述铁芯的一个齿上,缩短了线圈周长和线圈端部伸出长度,线圈绕组电阻减小,铜耗随之降低,提高了装置的效率,同时又能降低时间常数、提高响应速率;另外,各个线圈端部没有重叠,不必设相间绝缘,节省了绝缘材料,降低了成本;同时,每个线圈只绕在一个齿上,更容易实现专用绕线机的自动化生产,取代传统手工嵌线工艺,提高生产效率。
7、在本发明中,当固定所述永磁转子或所述绕组转子时,该绕组式永磁耦合传动装置可以作为制动器使用,且该制动器为无摩擦制动器,其工作效率高,损耗小。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中
图1是实施例1中所述绕组式永磁耦合传动装置示意图;
图2是实施例1中所述永磁体示意图;
图3是实施例1中所述永磁体的磁场示意图;
图4是实施例1中所述铁芯示意图;
图5是实施例1中所述线圈绕组展开示意图;
图6是实施例2中所述永磁体示意图;
图7是实施例2中所述永磁体的磁场示意图;
图8是实施例3中所述永磁体示意图;
图9是实施例3中所述铁芯示意图;
图10是实施例4中所述绕组式永磁耦合传动装置示意图;
图11是实施例5中所述绕组式永磁耦合传动装置示意图;
图12是实施例6中所述绕组式永磁耦合传动装置示意图。
图中附图标记表示为:1-永磁体;2-第一转轴;3-壳体;4-铁芯;41-槽;5-线圈绕组;6-碳刷;7-集电环;8-第二转轴;9-气隙;10-固定盘;11-第一永磁体阵列;12-第二永磁体阵列;13-第一单元磁块;14-第二单元磁块;15-第三单元磁块;16-第四单元磁块;17-控制结构;20-第三永磁体阵列;21-第五单元磁块;22-第六单元磁块;23-第七单元磁块;24-第八单元磁块。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
实施例1
如图1-6所示,本实施例的一种绕组式永磁耦合传动装置,其包括永磁转子,以及与所述永磁转子同轴且二者之间可发生相对转动的绕组转子;其中所述永磁转子和所述绕组转子之间存在有气隙9;所述绕组转子上连接有可对所述绕组转子的电流进行调节的控制结构17;我们知道永磁耦合传动装置传递转矩的大小除了取决于(永磁转子提供)气隙磁密的大小之外,还取决于导体转子电流的大小,如果能控制导体转子电流的大小,不需要机械执行机构就能实现输出转矩的大小;
而在本实施例中,所述控制结构17可以对所述绕组转子的电流或电压进行控制,改变现有技术中采用机械结构调整转矩传递大小的思路,巧妙地通过设置绕组转子并利用绕组转子的控制结构17,对绕组转子中的电流/电压进行调节,从而实现传递转矩大小的改变;本实施例的控制结构可以对所述绕组转子的电流或电压进行控制,从而来调节该传动装置的输出转矩的大小,其并不需要设置相应的机械执行机构,因此该传动装置结构简单、体积小且维护简单。
具体地,本实施例优选所述控制结构17通过集电环7和碳刷6连接所述绕组转子;其中,所述控制结构17包括变流装置和逆变变压器,并引入有可控电动势,调节所述可控电动势的幅值即可调节所述绕组转子的电流。
进一步,本实施例的所述控制结构17包括变流装置,所述变流装置可对所述绕组转子中的电流进行调节。具体地,所述变流装置可以通过将转差功率回收或消耗调节所述绕组转子的电流,其中,消耗可以通过绕组内部消耗,也可以通过外部消耗;回收可以回收到电网,也可以回收到其他用电或储能设备。由于没有了现有技术中的永磁调速器技术中原理上存在的转差功率损耗发热的问题,这样就无需设置散热器和复杂的风冷、水冷系统。
在上述实施例的基础上,本实施例的所述变流装置也可以引入可控电动势,调节所述绕组转子的电流。即本实施例的绕组转子与控制装置连接,在控制装置中引入一个可控电动势并改变其幅值,这样就可以控制绕组转子电流的大小,也就控制了输出转矩的大小从而达到调速的目的;而可控电动势的引入必然在绕组回路中形成功率传送,这种功率传送是双向的,亦即:可以是转差功率传输到外电路中去,也可以是从外电路中吸收功率。这种调速方式从功率传送的角度来看,可以认为是用控制转差功率的大小和流向来实现对输出转速的调节。这样一来,绕组式永磁耦合传动装置安装在定速电机和负载系统之间,并通过集电环7、碳刷6与控制结构17和变流装置相连接,转差功率通过变流装置,经过逆变变压器回馈电网,得到了全部的回收利用。因此,本实施例的传动装置的效率非常高,不管s如何变化效率都能达到95%以上,从而实现了真正意义上的调速节能,进而解决了现有技术中永磁调速装置所存在的缺陷;综上可知,本实施例所述的绕组式永磁耦合传动装置传动效率高、能量损耗小。
具体地,所述永磁转子包括永磁体1和壳体3;其中,所述永磁体1包括若干互相配合形成径向磁极的永磁体阵列,各个所述永磁体阵列之间交错布置,且所述永磁体1形成单边磁场。即在本实施例中,在本发明中,只需要所述绕组转子的线圈绕组回路闭合,且安装所述永磁转子的第一转轴和安装所述绕组转子的第二转轴同向旋转、转速不同,就可以产生电磁转矩,从而用非常简便、可靠、价格低廉的方法实现了有效的转矩传递;同时在本发明中,所述永磁体1包括若干形成径向磁极的永磁体阵列;其中,各个所述永磁体阵列之间交错布置,且所述永磁体1形成单边磁场;该种结构的所述永磁体1形成了单边磁场,且该单边磁场为接近正弦分布,从而避免了传统结构中斜槽或斜极,很大程度上减少了加工量,降低了生产成本;同时,提高了气隙磁场密度,忽略制造引起的偏心影响,相对常规设计理论上可提高气隙磁通量41.4%(仿真计算),从而节约了所述永磁体1的用量,气隙磁密基波幅值可以达到1.1~1.4T,甚至更高可到1.5~1.6T,整体的功率密度高,而且所述永磁转子的轭部可以采用导磁材料或非导磁材料,即永磁转子的轭部材料选择自由度提高,增加了设计的灵活性。
绕组式永磁耦合传动装置的工作方式不同于电机的工作方式,前者是用来传递或断开动力转矩的,后者是用来产生动力转矩的。众所周知,对于电机,一般来说气隙磁场密度不能太高(一般气隙磁密基波幅值取0.7~1.05T),否则容易引起定子齿部磁密饱和,导致电机铁耗增加、发热、效率降低等。通常对于电机的常规设计,永磁体1布置方式分为两种:内置式和表贴式。内置式又分为并联磁路结构、串联磁路结构和串、并联混合式磁路结构。表贴式通常就是一种弧形或称为瓦片式径向充磁的N、S极交替分布的磁路结构,这两种方式都能达到气隙磁密基波幅值0.7~1.05T的要求;然而对于绕组式永磁耦合传动装置来说0.7~1.05T的气隙磁密基波幅值是很低的,对于绕组式永磁耦合传动装置来说,为了提高功率密度其气隙磁场密度可以取很高,气隙磁密基波幅值可以取1.1~1.4T,甚至最高可到1.5~1.6T。这是因为永磁转子和绕组转子之间的转速差很小,绕组转子的频率为sf(s为转差率,f为旋转磁场的频率),通常s在0.01~0.04之间,这样绕组转子的频率就很低,所以其齿部磁密高对铁耗没有多大影响,因此,本实施例绕组式永磁耦合传动装置中的这种永磁体排布方式将大大提高其功率密度,并降低成本,使得该种结构的绕组式永磁耦合传动装置可以得到广泛运用。
在本实施例中,当所述永磁转子和所述绕组转子之间有相对运动时,即所述第一转轴2和所述第二转轴8之间转速不同,则所述线圈绕组5就会在所述永磁转子产生的磁场中切割磁力线产生感应电动势,当所述线圈绕组5回路处于联通状态时,则此时线圈绕组5内就会产生感应电流,有电流的所述线圈绕组5在所述永磁体1产生的磁场中就会受到电磁力的作用从而实现转矩的传递,当线圈绕组5回路处于断开状态时,线圈绕组5内虽然有感应电势但没有感应电流,因而不会产生电磁转矩,相当于离合器处于分离状态。
所述永磁体1阵列包括径向设置的第一永磁体阵列11和与所述第一永磁体阵列11周向正交设置的第二永磁体阵列12。
具体的,所述第一永磁体阵列11包括成对且间隔设置的第一单元磁块13和第二单元磁块14,所述第一单元磁块13和所述第二单元磁块14的磁场方向分别为沿所述永磁体1半径方向向内和向外;所述第二永磁体阵列12包括成对且间隔设置的第三单元磁块15和第四单元磁块16,所述第三单元磁块15和所述第四单元磁块16的磁场方向分别为沿所述永磁体1圆周切向的顺时针和逆时针;其中,所述第一永磁体阵列11和所述第二永磁体阵列12之间的交错布置满足如下关系:所述第一单元磁块13设置在相邻的所述第三单元磁块15和所述第四单元磁块16之间,所述第四单元磁块16设置在相邻的所述第一单元磁块13和所述第二单元磁块14之间。
在本实施例中,如图2所示,优选所述第一永磁体阵列11包括八个所述第一单元磁块13和八个所述第二单元磁块14,而所述第二永磁体阵列12包括八个所述第三单元磁块15和八个所述第四单元磁块16;而上述结构的而该所述永磁体1可以得到图3所示的磁感线,即该磁场为单线磁场,并获得接近正弦的气隙磁场。
所述永磁体1还包括嵌入在所述第一永磁体阵列(11)和所述第二永磁体阵列(12)之间的2n个永磁体阵列(n=1,2,3……),并且他们与所述第一和第二永磁体阵列共同作用形成单边磁场;其中,永磁体阵列的单元磁块的磁化强度矢量M有规律地逐渐变化,即,θm=(1+p)θ或θm=(1-p)θ(p=1,2,3……),式中的p为永磁磁极对数,θm为磁化强度矢量M与X轴的夹角,θ为通过某一扇形单元磁块中心的半径与X轴的夹角。在本实施例中,每个所述永磁体阵列包括若干单元磁块,各个所述单元磁块的磁化强度呈规律变化,可获得正弦形的气隙磁场不需采用传统方式如斜槽(或斜极)、非均匀气隙极靴或分布式定子电枢绕组等对气隙波形进行修正,简化了结构,降低了制造费用。
进一步,在上述实施例的基础上,所述绕组转子包括铁芯4和以分数槽集中绕组方式缠绕在所述铁芯4上的线圈绕组5,且所述线圈绕组5的线圈节距设为一;所述绕组转子的线圈绕组5采用分数槽集中绕组后,一方面每相每级槽数相对于常规设计大大减小,而槽数的减少极大的缩小了该绕组式永磁耦合传动装置的体积,从而提供了功率密度。
在电机学理论中,绕组转子的极对数必须与定子的极对数相等,按常规分布绕组设计,例如三相16极电机的设计,绕组转子冲片最少得48个槽子,此时每极每相槽数q=1,按交流电机理论,为改善电动势波形,一般规定2≤q≤6,因此三相16极电机的理想设计至少得96个槽(q=2),为了保证放置足够的铜线,槽面积还需足够大,为了保证齿部磁密不过于饱和,还需保证齿部足够宽,这就必然要加大绕组转子的直径,导致整个装置的体积大,难以做到高功率密度。
绕组转子的线圈分布采用分数槽集中绕组后,每极每相槽数q可在1/4~1/2之间选取,与常规设计的2≤q≤6相比,绕组转子的冲片槽数只有它的1/8~1/2,例如上文所述的三相16极96槽的电机,就可以采用18槽16极的设计。而在本实施例中,设计的就是16极18槽。槽数的减少极大的缩小了装置的体积,提高了功率密度。
分数槽集中绕组在电机设计中也有应用,但有局限性,这是因为定速电机在设计的时候会受到工况对转速要求的限制,转速决定极数,也就是说电机设计在选择极数时会受到限制,而绕组式永磁转差离合器的工作方式与电机是不同的,它只是利用永磁转子与绕组转子间的转速差来传递转矩,因此,它本身对极数是没有限制的,可以任意选取,可以更方便地选择最合适的槽数和极数的组合。所以,分数槽集中绕组应用到绕组式永磁转差离合器中,大幅度地缩小结构装置的体积。
具体地,如图4所示,所述铁芯4设为叠片铁芯,所述叠片铁芯上成型有若干供所述线圈缠绕的槽。所述槽的个数设为3n(n=1,2,3……)个。本实施例采用三相绕组Y形接法,优选将n设为6,即所述槽的个数设为十八个。同时,由图5所示,优选所述线圈绕组5设为双层绕组;即设为A、B、C三相,每相具有六组线圈绕组;当然所述线圈绕组5也可以设为单层绕组。
本实施例中,优选所述铁芯4采用电工硅钢片制成;且任意两个所述电工硅钢片之间绝缘;采用分数槽集中绕组后,每个线圈绕组5的线圈只缠绕在所述铁芯4的一个齿上,短了线圈周长和线圈端部伸出长度,线圈绕组5电阻减小,铜耗随之降低,提高了装置的效率,同时又能降低时间常数、提高响应速率;另外,各个线圈端部没有重叠,不必设相间绝缘,节省了绝缘材料,降低了成本;同时,每个线圈只绕在一个齿上,更容易实现专用绕线机的自动化生产,取代传统手工嵌线工艺,提高生产效率。
实施例2
作为可变换的实施方式,本实施例与实施例1的不同之处在于:
在实施例1的基础上,本实施例中的所述永磁体阵列还包括嵌入的所述第一永磁体阵列11和所述第二永磁体阵列12之间的第三永磁体阵列20;其中,所述第一永磁体阵列11、所述第二永磁体阵列12和所述第三永磁体阵列20各自的磁场方向分别与相应半径形成非钝角的第一夹角、第二夹角和第三夹角,所述第一夹角、第二夹角与所述第三夹角之间的角度差分别为45度。
具体地,所述第三永磁体阵列20包括依次间隔设置的第五单元磁块21、第六单元磁块22、第七单元磁块23和第八单元磁块24;其中,所述第五单元磁块21嵌入在所述第三单元磁块15和所述第一单元磁块13之间,所述第六单元磁块22嵌入在所述第一单元磁块13和所述第四单元磁块16之间,所述第七单元磁块23嵌入在所述第四单元磁块16和所述第二单元磁块14之间,所述第八单元磁块24嵌入在所述第二单元磁块14和所述第三单元磁块15之间。
在本实施例中,如图6所示,优选所述第一永磁体阵列11包括四个所述第一单元磁块13和四个所述第二单元磁块14,所述第二永磁体阵列12包括四个所述第三单元磁块15和四个所述第四单元磁块16,所述第三永磁体阵列21包括四个所述第五单元磁块21、四个所述第六单元磁块22、四个所述第七单元磁块23和四个所述第八单元磁块24;而上述结构的所述永磁体1可以得到图7所示的磁感线,即该磁场为单线磁场,并获得正弦形的气隙磁场。
当然,还可以在本实施例中设置更多个永磁体阵列,如第四永磁体阵列,此时所述第一永磁体阵列11、所述第二永磁体阵列12、所述第三永磁体阵列20和所述第四永磁体阵列各自的磁场方向分别与相应半径形成非钝角的第一夹角、第二夹角、第三夹角和第四夹角,所述第一夹角、第二夹角、所述第三夹角和第四夹角之间的角度差分别为30度;当然,还可以同时设置第四永磁体阵列和第五永磁体阵列,而且各夹角之间的角度差也可设为30度。
作为可变换的实施例形式,可以在所述第一永磁铁阵列11和第二永磁铁阵列12之间插入更多的永磁铁阵列,并且插入永磁铁阵列之间有更小的角度变化值,以最终获得正弦形的单边磁场。
实施例3
作为可变换的实施方式,本实施例与实施例1的不同之处在于:
在本实施例中,永磁体阵列之间的具体结构如图8所示;上述结构的所述永磁体1可以得到单面磁场,并获得接近正弦的气隙磁场。
进一步,在本实施例中,所述铁芯4设为卷绕铁芯,所述卷绕铁芯上成型有若干供所述线圈缠绕的槽。所述槽的个数设为3n(n=1,2,3……)个。本实施例中,优选将n设为8,即所述槽的个数设为为24个,具体结构如图9所示。
实施例4
作为可变换的实施方式,本实施例与实施例1的不同之处在于:所述绕组转子与所述永磁转子同轴水平布置,所述绕组转子通过固定盘10安装在所述第二转轴8上,如图10所示。
实施例5
在实施例1-6的基础上,进一步提供一种实施例1-7所述的绕组式永磁耦合传动装置的应用,该绕组式永磁耦合传动装置作为制动器应用的原理如下:固定所述永磁转子,所述绕组转子的线圈绕组5回路闭合时,所述绕组转子的在第二转轴8的带动下逐步制动,实现制动器功能;如图11所示。
实施例6
在实施例1-6的基础上,进一步提供一种实施例1-7所述的绕组式永磁耦合传动装置的应用,该绕组式永磁耦合传动装置作为制动器应用的原理如下:固定所述绕组转子,所述线圈绕组5回路闭合时,所述永磁转子在第一转轴2的带动下逐步制动,实现制动器功能;如图12所示。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (17)

1.一种绕组式永磁耦合传动装置,其包括永磁转子,以及与所述永磁转子同轴且二者之间可发生相对转动的绕组转子;其中,所述永磁转子和所述绕组转子之间存在有气隙(9);其特征在于:所述绕组转子连接有可对所述绕组转子的电流/电压进行调节的控制结构(17),通过对所述绕组转子的电流/电压进行调节从而实现输出转矩大小的改变,所述绕组转子包括铁芯(4)和以分数槽集中绕组方式缠绕在所述铁芯(4)上的线圈绕组(5),且所述线圈绕组(5)的线圈节距设为1。
2.根据权利要求1所述的一种绕组式永磁耦合传动装置,其特征在于:每极每相槽数q为1/4~1/2。
3.根据权利要求1所述的一种绕组式永磁耦合传动装置,其特征在于:所述线圈绕组(5)设为双层绕组或单层绕组。
4.根据权利要求1所述的一种绕组式永磁耦合传动装置,其特征在于:所述铁芯(4)设为叠片铁芯,所述叠片铁芯上成型有若干供所述线圈缠绕的槽。
5.根据权利要求1所述的一种绕组式永磁耦合传动装置,其特征在于:所述铁芯(4)设为卷绕铁芯,所述卷绕铁芯上成型有若干供所述线圈缠绕的槽。
6.根据权利要求4或5所述的一种绕组式永磁耦合传动装置,其特征在于:所述槽的个数设为3n(n=1,2,3……)个。
7.根据权利要求1所述的一种绕组式永磁耦合传动装置,其特征在于:所述铁芯(4)采用电工硅钢片制成。
8.根据权利要求1-5,7所述的一种绕组式永磁耦合传动装置,其特征在于:所述控制结构(17)通过集电环(7)和碳刷(6)连接所述绕组转子。
9.根据权利要求1-5,7所述的一种绕组式永磁耦合传动装置,其特征在于:其中,所述控制结构(17)包括变流装置,所述变流装置可对所述绕组转子中的电流进行调节。
10.根据权利要求9所述的一种绕组式永磁耦合传动装置,其特征在于:所述变流装置通过将转差功率回收或消耗调节所述绕组转子的电流。
11.根据权利要求9所述的一种绕组式永磁耦合传动装置,其特征在于:所述变流装置引入可控电动势,调节所述绕组转子的电流。
12.根据权利要求1-5,7,10-11中任一项所述的绕组式永磁耦合传动装置,其特征在于:所述永磁转子包括永磁体(1)和壳体(3);其中,所述永磁体(1)包括若干互相配合形成径向磁极的永磁体阵列,各个所述永磁体阵列之间交错布置,且所述永磁体(1)形成单边磁场。
13.根据权利要求12所述的一种绕组式永磁耦合传动装置,其特征在于:所述永磁体阵列包括径向设置的第一永磁体阵列(11)和与所述第一永磁体阵列(11)周向正交设置的第二永磁体阵列(12)。
14.根据权利要求13所述的一种绕组式永磁耦合传动装置,其特征在于:所述第一永磁体阵列(11)包括成对且间隔设置的第一单元磁块(13)和第二单元磁块(14),所述第一单元磁块(13)和所述第二单元磁块(14)的磁场方向分别为沿所述永磁体(1)半径方向向内和向外;所述第二永磁体阵列(12)包括成对且间隔设置的第三单元磁块(15)和第四单元磁块(16),所述第三单元磁块(15)和第四单元磁块(16)的磁场方向分别为沿所述永磁体(1)圆周切向的顺时针和逆时针;所述第一单元磁块(13)设置在相邻的所述第三单元磁块(15)和所述第四单元磁块(16)之间,所述第四单元磁块(16)设置在相邻的所述第一单元磁块(13)和所述第二单元磁块(14)之间。
15.根据权利要求14所述的一种绕组式永磁耦合传动装置,其特征在于:所述永磁体(1)还包括嵌入在所述第一永磁体阵列(11)和所述第二永磁体阵列(12)之间的2n个永磁体阵列(n=1,2,3……),并且他们与所述第一和第二永磁体阵列共同作用形成单边磁场。
16.根据权利要求14所述的一种绕组式永磁耦合传动装置,其特征在于:所述永磁体阵列还包括嵌入在所述第一永磁体阵列(11)和所述第二永磁体阵列(12)之间的第三永磁体阵列(20);其中,所述第一永磁体阵列(11)、所述第二永磁体阵列(12)和所述第三永磁体阵列(20)各自的磁场方向分别与相应半径形成非钝角的第一夹角、第二夹角和第三夹角,所述第一夹角、第二夹角与所述第三夹角之间的角度差分别为45度。
17.根据权利要求16所述的一种绕组式永磁耦合传动装置,其特征在于:所述第三永磁体阵列(20)包括依次间隔设置的第五单元磁块(21)、第六单元磁块(22)、第七单元磁块(23)和第八单元磁块(24);其中,所述第五单元磁块(21)嵌入在所述第三单元磁块(15)和所述第一单元磁块(13)之间,所述第六单元磁块(22)嵌入在所述第一单元磁块(13)和所述第四单元磁块(16)之间,所述第七单元磁块(23)嵌入在所述第四单元磁块(16)和所述第二单元磁块(14)之间,所述第八单元磁块(24)嵌入在所述第二单元磁块(14)和所述第三单元磁块(15)之间。
CN201510146217.8A 2014-07-30 2015-03-30 一种绕组式永磁耦合传动装置 Active CN104767357B (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201510146217.8A CN104767357B (zh) 2014-07-30 2015-03-30 一种绕组式永磁耦合传动装置
PCT/CN2015/085565 WO2016015665A1 (zh) 2014-07-30 2015-07-30 一种绕组式永磁耦合传动装置
EP15826345.9A EP3176931B1 (en) 2014-07-30 2015-07-30 Winding type permanent magnet coupling transmission device
US15/329,345 US10498211B2 (en) 2014-07-30 2015-07-30 Winding-type permanent magnet coupling transmission device
AU2015295926A AU2015295926B2 (en) 2014-07-30 2015-07-30 Winding type permanent magnet coupling transmission device
BR112017001905A BR112017001905A2 (pt) 2014-07-30 2015-07-30 dispositivo de transmissão de acoplamento de ímã permanente do tipo enrolamento
CA2956106A CA2956106A1 (en) 2014-07-30 2015-07-30 Winding-type permanent magnet coupling transmission device
JP2017504812A JP6513181B2 (ja) 2014-07-30 2015-07-30 巻線型の永久磁石結合伝動装置
RS20221097A RS63769B1 (sr) 2014-07-30 2015-07-30 Uređaj za prenos spojnicom sa permanentnim magnetom navojnog tipa
ZA2017/01453A ZA201701453B (en) 2014-07-30 2017-02-27 Winding type permanent magnet coupling transmission device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN2014103714484 2014-07-30
CN201410371448.4A CN104135136A (zh) 2014-07-30 2014-07-30 绕组式永磁转差离合器及应用
CN201510146217.8A CN104767357B (zh) 2014-07-30 2015-03-30 一种绕组式永磁耦合传动装置

Publications (2)

Publication Number Publication Date
CN104767357A CN104767357A (zh) 2015-07-08
CN104767357B true CN104767357B (zh) 2018-01-02

Family

ID=51807706

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201410371448.4A Pending CN104135136A (zh) 2014-07-30 2014-07-30 绕组式永磁转差离合器及应用
CN201510146217.8A Active CN104767357B (zh) 2014-07-30 2015-03-30 一种绕组式永磁耦合传动装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201410371448.4A Pending CN104135136A (zh) 2014-07-30 2014-07-30 绕组式永磁转差离合器及应用

Country Status (10)

Country Link
US (1) US10498211B2 (zh)
EP (1) EP3176931B1 (zh)
JP (1) JP6513181B2 (zh)
CN (2) CN104135136A (zh)
AU (1) AU2015295926B2 (zh)
BR (1) BR112017001905A2 (zh)
CA (1) CA2956106A1 (zh)
RS (1) RS63769B1 (zh)
WO (2) WO2016015517A1 (zh)
ZA (1) ZA201701453B (zh)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160004876A (ko) * 2014-07-05 2016-01-13 한승주 가변동력전달장치
CN104135136A (zh) * 2014-07-30 2014-11-05 镇江市江南矿山机电设备有限公司 绕组式永磁转差离合器及应用
CN104362829A (zh) * 2014-12-05 2015-02-18 刁俊起 一种固定磁隙的永磁调速器
CN105015752B (zh) * 2015-08-06 2017-08-15 江苏磁谷科技股份有限公司 磁耦合推进系统及其在船舶推进上的应用
CN105119464A (zh) * 2015-08-13 2015-12-02 江苏磁谷科技股份有限公司 磁耦合轴带发电系统及其在船舶上的应用
CN105403341B (zh) * 2015-12-09 2018-10-19 江苏磁谷科技股份有限公司 一种转矩测试装置
CN105720792A (zh) * 2016-03-30 2016-06-29 江苏磁谷科技股份有限公司 一种磁性联轴器
CN105790545A (zh) * 2016-04-15 2016-07-20 江苏磁谷科技股份有限公司 一种具有单匝波绕组的大功率永磁耦合器
CN106374647A (zh) * 2016-11-02 2017-02-01 无锡岚凌卓维动力科技有限公司 三相永磁发电机的定子结构
GB2565267A (en) * 2017-06-21 2019-02-13 Vastech Holdings Ltd Improved magnetic clutch assembly
KR101858687B1 (ko) * 2017-09-14 2018-05-16 주식회사 포스코 가변 토크 마그네틱 커플링
CN107888051A (zh) * 2017-11-01 2018-04-06 山东洁盟节能环保技术有限公司 一种固定磁隙的永磁调速器
CN107979260A (zh) * 2017-11-01 2018-05-01 山东洁盟节能环保技术有限公司 一种固定磁隙的永磁调速器
CN107888050A (zh) * 2017-11-01 2018-04-06 山东洁盟节能环保技术有限公司 一种固定磁隙的永磁调速器
CN107800266A (zh) * 2017-11-01 2018-03-13 山东洁盟节能环保技术有限公司 一种固定磁隙的永磁调速器
CN108011494A (zh) * 2017-11-01 2018-05-08 山东洁盟节能环保技术有限公司 一种固定磁隙的永磁调速器
CN107863867A (zh) * 2017-11-01 2018-03-30 山东洁盟节能环保技术有限公司 一种固定磁隙的永磁调速器
CN108011495A (zh) * 2017-11-01 2018-05-08 山东洁盟节能环保技术有限公司 一种固定磁隙的永磁调速器
CN107863868A (zh) * 2017-11-01 2018-03-30 山东洁盟节能环保技术有限公司 一种固定磁隙的永磁调速器
CN108011493A (zh) * 2017-11-01 2018-05-08 山东洁盟节能环保技术有限公司 一种固定磁隙的永磁调速器
CN107834808A (zh) * 2017-11-01 2018-03-23 山东洁盟节能环保技术有限公司 一种固定磁隙的永磁调速器
CN107863874A (zh) * 2017-11-01 2018-03-30 山东洁盟节能环保技术有限公司 一种固定磁隙的永磁调速器
CN107769458A (zh) * 2017-11-24 2018-03-06 大连交通大学 一种永磁变速电机
CN108152034B (zh) * 2017-12-22 2023-11-10 江苏磁谷科技股份有限公司 永磁耦合传动设备运行状态监测装置及监测方法
CN107947524A (zh) * 2017-12-28 2018-04-20 南京工程学院 带狭缝斜槽结构的轴向磁通永磁涡流联轴器
US11056962B2 (en) * 2018-01-26 2021-07-06 Lockheed Martin Corporation Torque transfer across an air gap
CN108438138A (zh) * 2018-05-17 2018-08-24 华南理工大学 一种风力和太阳能混合驱动三体无人船
WO2020031101A1 (en) * 2018-08-08 2020-02-13 F.C. Di Francioni Cristiano & C. - S.R.L. Head for capping screw-top bottles
CN109114129B (zh) * 2018-09-28 2019-06-04 陈娟 一种智能安全联轴器及其工作方法
CN111416468A (zh) * 2019-12-24 2020-07-14 熵零技术逻辑工程院集团股份有限公司 一种传动机构及其动力系统
CN114123713A (zh) * 2020-06-17 2022-03-01 福州市长乐区汇智科技服务有限公司 一种非接触式变速器的工作方法
CN111853084B (zh) * 2020-07-13 2022-05-24 黄连好 一种电磁离合器
CN112460007A (zh) * 2020-08-19 2021-03-09 华能南京金陵发电有限公司 一种低加疏水泵节能调速装置及其方法
CN113067451B (zh) * 2021-05-19 2022-07-29 合肥工业大学 一种背铁开槽的盘式永磁传动装置
CN114362473A (zh) * 2021-11-29 2022-04-15 安徽沃弗永磁科技有限公司 一种可调绕组式永磁耦合传动装置
CN114696568A (zh) * 2022-03-29 2022-07-01 安徽理工大学 一种混合励磁涡流调速装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257243A (zh) * 2007-03-01 2008-09-03 桂林吉星电子等平衡动力有限公司 燃油发动机伺服加载装置及其最佳效率运行控制方法
CN101465592A (zh) * 2009-01-08 2009-06-24 清华大学 一种变频调速电磁式转矩耦合器及其应用
CN102255474A (zh) * 2011-07-23 2011-11-23 鞍山钦元节能设备制造有限公司 一种组合式电磁调速系统
CN102364824A (zh) * 2011-10-12 2012-02-29 泰豪科技股份有限公司 一种三相不等匝分数槽集中绕组
CN102497085A (zh) * 2011-12-23 2012-06-13 浙江大学 一种基于Halbach阵列的永磁涡流缓速器

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT312093B (de) * 1968-08-31 1973-12-10 Baermann Max Regulierbare Induktionsbremse und bzw. oder -kupplung
JPS5144255A (en) 1974-10-14 1976-04-15 Hitachi Condenser Kondensano hoansochi
US5477093A (en) 1993-05-21 1995-12-19 Magna Force, Inc. Permanent magnet coupling and transmission
CN1100574A (zh) * 1993-09-16 1995-03-22 申明增 离合无级变速装置
US5654602A (en) * 1996-05-13 1997-08-05 Willyoung; David M. Generator winding
JP3099769B2 (ja) 1997-03-24 2000-10-16 トヨタ自動車株式会社 動力出力装置およびその制御方法
JP3391750B2 (ja) * 1999-10-28 2003-03-31 株式会社デンソー 車両用補機駆動装置
JP3400776B2 (ja) * 1999-12-14 2003-04-28 三菱電機株式会社 交流発電機
AT408210B (de) 2000-01-28 2001-09-25 Wachauer Oskar Elektrischer antrieb für ein fahrzeug
JP4348982B2 (ja) * 2003-03-31 2009-10-21 株式会社富士通ゼネラル アキシャルギャップ型誘導電動機
US7265470B1 (en) * 2004-01-13 2007-09-04 Launchpoint Technologies, Inc. Magnetic spring and actuators with multiple equilibrium positions
DE102007001828A1 (de) * 2007-01-12 2008-07-17 Siemens Ag Getriebeeinrichtung mit einem inneren und einem äußeren Rotorteil, welche von einem inneren und einem äußeren Statorteil umgeben sind
CN101106308A (zh) * 2007-06-15 2008-01-16 哈尔滨工业大学 磁阻式四端口机电能量变换器
CN101345468B (zh) * 2007-07-09 2011-03-23 上海星之辰电气传动技术有限公司 伺服式离合装置及其运行方式
CN101931309A (zh) * 2009-06-22 2010-12-29 林贵生 一种高效的传动轴永磁耦合装置
CN101931308B (zh) * 2009-06-22 2012-09-26 余亚莉 一种筒型传动轴永磁耦合装置
DE202010013455U1 (de) 2010-09-23 2010-12-02 Ginzel, Lothar, Dipl.-Ing. Elektrische Maschine
CN102005835A (zh) * 2010-12-10 2011-04-06 上海电机学院 Halbach外转子双凸极电机
CN102355108B (zh) * 2011-09-26 2013-09-18 江西省迪普安数字功率技术发展有限公司 高品质三相交流永磁伺服同步电动机
GB201207754D0 (en) * 2012-05-03 2012-06-13 Rolls Royce Plc Electro-magnetic coupling system
US9362785B2 (en) * 2012-11-06 2016-06-07 Lcdrives Corp. Concentrated winding stator construction for high efficiency machine
CN204465317U (zh) 2014-07-30 2015-07-08 江苏磁谷科技股份有限公司 绕组式永磁转差离合器
CN104135136A (zh) * 2014-07-30 2014-11-05 镇江市江南矿山机电设备有限公司 绕组式永磁转差离合器及应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101257243A (zh) * 2007-03-01 2008-09-03 桂林吉星电子等平衡动力有限公司 燃油发动机伺服加载装置及其最佳效率运行控制方法
CN101465592A (zh) * 2009-01-08 2009-06-24 清华大学 一种变频调速电磁式转矩耦合器及其应用
CN102255474A (zh) * 2011-07-23 2011-11-23 鞍山钦元节能设备制造有限公司 一种组合式电磁调速系统
CN102364824A (zh) * 2011-10-12 2012-02-29 泰豪科技股份有限公司 一种三相不等匝分数槽集中绕组
CN102497085A (zh) * 2011-12-23 2012-06-13 浙江大学 一种基于Halbach阵列的永磁涡流缓速器

Also Published As

Publication number Publication date
BR112017001905A2 (pt) 2017-11-28
JP2017526324A (ja) 2017-09-07
RS63769B1 (sr) 2022-12-30
AU2015295926B2 (en) 2018-08-09
EP3176931A4 (en) 2018-03-21
ZA201701453B (en) 2018-04-25
WO2016015665A1 (zh) 2016-02-04
CN104135136A (zh) 2014-11-05
US20170222537A1 (en) 2017-08-03
CA2956106A1 (en) 2016-02-04
EP3176931A1 (en) 2017-06-07
JP6513181B2 (ja) 2019-05-15
AU2015295926A1 (en) 2017-03-16
CN104767357A (zh) 2015-07-08
EP3176931B1 (en) 2022-08-31
WO2016015517A1 (zh) 2016-02-04
US10498211B2 (en) 2019-12-03

Similar Documents

Publication Publication Date Title
CN104767357B (zh) 一种绕组式永磁耦合传动装置
JP2017526324A5 (zh)
CN105245073B (zh) 定子永磁型双凸极盘式电机
CN105406669B (zh) 一种多气隙轴向磁通‑磁场调制永磁电机
CN105703583B (zh) 一种多定子混合磁路永磁同步电机及方法
CN105164903A (zh) 同步电机
CN105790470B (zh) 一种双定子复合结构转子径轴向混合磁路永磁同步电机的控制方法
CN102570770A (zh) 低速大转矩永磁游标直线波浪发电机
CN101527470A (zh) 磁通切换型混合励磁横向磁通风力发电机
CN203289296U (zh) 一种双速绕组定子表面贴装式双凸极永磁电机
CN106374707A (zh) 电机
CN202405989U (zh) 低速大转矩永磁游标直线波浪发电机
CN202309460U (zh) 大容量外转子三面定子横向磁通永磁风力发电机
CN103618392B (zh) 一种定转子双永磁体激励谐波电机
CN205725388U (zh) 一种多定子混合磁路永磁同步电机
CN205681195U (zh) 一种双定子复合结构转子径轴向混合磁路永磁同步电机及电动汽车
CN106849573A (zh) 基于磁场调制原理的双动子双绕组圆筒型直线发电机
CN102684341B (zh) 磁场自增速永磁风力发电机
CN109256879A (zh) 一种内外层永磁体错位的双定子电机
CN102361379B (zh) 大容量双u型定子双盘式转子横向磁通永磁风力发电机
CN205123555U (zh) 一种电磁减速器
CN208489784U (zh) 一种电动汽车用多段轮辐交错转子永磁同步电机
CN102355110B (zh) 大容量外转子三面定子横向磁通永磁风力发电机
CN202503419U (zh) 直驱海浪发电用游标式直线电机
CN202424466U (zh) 一种单相磁通切换型变磁阻电机

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
EXSB Decision made by sipo to initiate substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A winding type permanent magnet coupling transmission device

Effective date of registration: 20230808

Granted publication date: 20180102

Pledgee: Bank of Suzhou Co.,Ltd. Zhenjiang Branch

Pledgor: JIANGSU MAGNET VALLEY TECHNOLOGIES Co.,Ltd.

Registration number: Y2023980051242

PE01 Entry into force of the registration of the contract for pledge of patent right