CN104755703B - 无涵道的推力产生系统 - Google Patents

无涵道的推力产生系统 Download PDF

Info

Publication number
CN104755703B
CN104755703B CN201380055486.2A CN201380055486A CN104755703B CN 104755703 B CN104755703 B CN 104755703B CN 201380055486 A CN201380055486 A CN 201380055486A CN 104755703 B CN104755703 B CN 104755703B
Authority
CN
China
Prior art keywords
generation system
blade
thrust generation
span
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201380055486.2A
Other languages
English (en)
Other versions
CN104755703A (zh
Inventor
A.布里泽-斯特林费罗
S.A.克哈利
L.H.小史密斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN104755703A publication Critical patent/CN104755703A/zh
Application granted granted Critical
Publication of CN104755703B publication Critical patent/CN104755703B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/001Shrouded propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/16Blades
    • B64C11/18Aerodynamic features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/46Arrangements of, or constructional features peculiar to, multiple propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/46Arrangements of, or constructional features peculiar to, multiple propellers
    • B64C11/48Units of two or more coaxial propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/20Adaptations of gas-turbine plants for driving vehicles
    • F02C6/206Adaptations of gas-turbine plants for driving vehicles the vehicles being airscrew driven
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/36Power transmission arrangements between the different shafts of the gas turbine plant, or between the gas-turbine plant and the power user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/46Nozzles having means for adding air to the jet or for augmenting the mixing region between the jet and the ambient air, e.g. for silencing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/025Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the by-pass flow being at least partly used to create an independent thrust component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D2027/005Aircraft with an unducted turbofan comprising contra-rotating rotors, e.g. contra-rotating open rotors [CROR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/10Stators
    • F05B2240/12Fluid guiding means, e.g. vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/96Preventing, counteracting or reducing vibration or noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/324Application in turbines in gas turbines to drive unshrouded, low solidity propeller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/325Application in turbines in gas turbines to drive unshrouded, high solidity propeller
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/90Application in vehicles adapted for vertical or short take off and landing (v/stol vehicles)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/20Rotors
    • F05D2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05D2240/301Cross-sectional characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/51Inlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/70Shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/14Preswirling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05D2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Abstract

一种无涵道的推力产生系统具有带有旋转轴线的旋转元件和固定元件。该旋转元件包括多个叶片,这多个叶片中的每一个均具有位于轴线附近的叶片根部、远离轴线的叶片尖端、和在叶片根部与叶片尖端之间测量到的叶片翼展。该旋转元件具有载荷分布,使得在叶片根部与30%翼展之间的任一位置处,空气流中的ΔRCu的数值均大于或等于空气流中的峰值ΔRCu的60%。

Description

无涵道的推力产生系统
相关申请的交叉引用
本申请涉及2013年10月23日提交的代理案卷号为No.264549-2、名为“无涵道的推力产生系统体系结构”的PCT/US13/XXXXX和2013年10月23日提交的代理案卷号为No.265517-2、名为“用于推进系统的翼片(vane)组件”的PCT/US13/XXXXX。
背景技术
本说明书中所述的技术涉及一种无涵道的(unducted)推力产生系统,特别是用于与固定元件配对的旋转元件的展向气动载荷分布。该技术在应用于“开式转子”燃气涡轮发动机时是特别有益的。
利用开式转子设计体系结构的燃气涡轮发动机是已知的。涡轮风扇发动机按照下列原理运转,即:中央燃气涡轮机芯部(core)驱动旁路风扇,该风扇定位在位于发动机的机舱与发动机芯部之间的径向位置处。而开式转子发动机则按照下列原理运转,即:使旁路风扇定位于发动机机舱的外侧。这允许使用与涡轮风扇发动机相比能够对更大的空气体积起作用的大型风扇叶片,并且由此与常规发动机设计相比改进了推进效率。
在开式转子设计具有由两个反转的转子组件提供的风扇,每一个转子组件承载定位于发动机机舱外侧的翼型件叶片的阵列的情况下,已经发现了最佳性能。如在本说明书中所使用的那样,“反转关系”意指将第一和第二转子组件的叶片设置成彼此反向旋转。通常,将第一和第二转子组件的叶片设置成围绕共同的轴线沿相反的方向旋转,并且沿该轴线轴向间隔开。例如,第一转子组件和第二转子组件的相应叶片可以是同轴安装且间隔开的,第一转子组件的叶片构造成围绕该轴线顺时针旋转并且第二转子组件的叶片构造成围绕该轴线逆时针旋转(或者反之亦然)。在外表上,开式转子发动机的风扇叶片类似于常规涡轮螺旋桨发动机的推进器叶片。
反转的转子组件的使用在从动力涡轮机传递动力以便沿相反的方向驱动相应的两个转子组件的翼型件叶片的方面中产生了技术难题。
所希望的是,提供一种开式转子推进系统,该系统利用类似于传统旁路风扇的单个旋转的推进器组件,这降低了设计复杂度,更是产生了与反转的推进设计相等或比之更好的推进效率水平。
发明内容
一种无涵道的推力产生系统具有带有旋转轴线的旋转元件和固定元件。该旋转元件包括多个叶片,这多个叶片中的每一个均具有位于该轴线附近的叶片根部、远离该轴线的叶片尖端、和在该叶片根部与该叶片尖端之间测量到的叶片翼展。旋转元件具有载荷分布,使得在叶片根部与30%翼展之间的任一位置处,空气流中的ΔRCu的数值大于或等于该空气流中的峰值ΔRCu的60%。
附图说明
结合在专利说明书中并构成该专利说明书的一部分的附图示出了一个或多个实施例并且与说明书一起说明这些实施例。在附图中:
图1示出了示例性的无涵道的推力产生系统的横断面正视图;
图2是用于无涵道的推力产生系统的示例性翼片组件的替代实施例的说明图;
图3描绘了矢量图,其示出了穿过用于两个示例性实施例的两排的Cu;
图4用曲线图描绘了与常规构造相比的无涵道的推力产生系统的两个示例性实施例的气动转子载荷分布;
图5用曲线图描绘了与两个常规构造相比的用于无涵道的推力产生系统的两个示例性实施例的出口涡旋速度和轴向速度;
图6用曲线图描绘了如何相对于叶片或翼片限定诸如弯度(camber)和交错角(stagger angle)之类的多个参数;
图7用曲线图描绘了与常规翼型件叶片相比的与翼型件叶片的示例性实施例相关联的代表性的参数;
图8是用于无涵道的推力产生系统的示例性翼型件叶片的正视图,其中,确定了剖面线位置1至11;以及
图9至19是与穿过先前参照的常规翼型件叶片的类似剖面相比的图8的示例性翼型件叶片处于剖面线位置1至11处的横断面视图。
具体实施方式
在下列视图中的所有视图中,相似的附图标记用于遍及附图中描绘的多个实施例指代相似的元件。
图1示出了示例性的无涵道的推力产生系统10的横断面正视图。如从图1所见,无涵道的推力产生系统10呈开式转子推进系统的形式,并具有描绘成推进器组件的旋转元件20,该旋转元件20包括围绕无涵道的推力产生系统10的中央纵向轴线11的叶片21的阵列。在示例性实施例中,无涵道的推力产生系统10还包括不旋转的固定元件30,该固定元件30包括同样围绕中央轴线11设置的翼片31的阵列。这些翼片可被设置成使得它们并非全部与推进器间隔开相等的距离,并且可以可选择地包括远离轴线11的环形护罩或涵道(duct)100(如图2中所示)或者可以是无护罩的。这些翼片可安装于固定框架并且并不相对于中央轴线11旋转。出于说明的目的,图1还描绘了以箭头F表示的前向方向。
如图1中所示,示例性的无涵道的推力产生系统10还包括驱动机构40,该驱动机构40通过传动装置50向旋转元件20提供扭矩和动力。在多个实施例中,该驱动机构40可以是燃气涡轮发动机、电动马达、内燃机、或者任何其它适用的扭矩和动力源,并且可定位在旋转元件20的附近或者可利用适当构造的传动装置50远程定位。传动装置50将来自驱动机构40的动力和扭矩传送至旋转元件20并且可包括一个或多个轴、齿轮箱、或其它机械或流体驱动系统。
旋转元件20的翼型件叶片21被确定尺寸、成形、并构造成当旋转元件20沿给定方向围绕纵向轴线11旋转时,通过使诸如空气之类的工作流体如在图1中所示沿方向Z移动来产生推力。这样一来,叶片21使得流体在它沿方向Z行进时产生一定程度的涡旋。固定元件的翼片31被确定尺寸、成形、并构造成减小流体的涡旋幅度,以便增大产生推力从而向旋转元件提供给定的轴动力输入的动能。对于叶片和翼片而言,翼展被定义为根部与尖端之间的距离。翼片31可具有比叶片21短的翼展,如图1中所示,例如,叶片21的翼展的50%,或者可按照要求具有比叶片21长的翼展或与叶片21相同的翼展。翼片31可附接于与推进系统相关联的航空器结构,如图1中所示,或者附接于诸如机翼、外挂架(pylon)、或机身之类的另一航空器结构。固定元件的翼片31可在数量上比旋转元件的叶片21的数量少或多或者在数量上与旋转元件的叶片21的数量相同,并且通常在数量上大于两个或大于四个。
固定元件30的翼片31可在空气动力学方面定位在叶片21的上游,以便用作反向涡旋翼片,即,产生与旋转元件20的旋转方向相反的切向速度。作为选择,并且如图1中所示,翼片31可在空气动力学方面定位在叶片21的下游,以便用作去除涡旋翼片,即,使得切向速度产生变化,该变化与旋转元件20的切向速度的变化相反。在推进系统10的下游的空气流中残存的任何涡旋均等同于产生动能的推力的损失。
可以希望的是,这多组叶片21和翼片31中的任一者或两者结合有变距机构,使得叶片和翼片可以或者单独地或者彼此一起相对于桨距旋转轴线旋转。这种变距可被用于在多种运行状况下改变推力和/或涡旋效应,包括提供在诸如航空器着陆时之类的特定运行状况中会是有用的反推力特征。
图3描绘了越过旋转元件和固定元件的Cu的变化,其中,Cu是圆周平均切向速度。矢量图在坐标系中示出,在该坐标系中,轴向方向是沿向下的方向,切向方向是左至右。使Cu乘以空气流半径R得到特性RCu。在给定半径R处加载的叶片或翼片现在被定义为(在恒定的半径处或沿气流管)越过叶片排的RCu的变化,此后称之为ΔRCu并且是所述叶片排的基本比扭矩的量度。期望的是,用于旋转元件的ΔRCu应该贯穿翼展处于旋转方向上。
图4是示例性的无涵道的推力产生系统10的旋转元件20的气动载荷分布对翼展的曲线图。图4示出了三条曲线。带有菱形的曲线是用于常规推进器组件的载荷分布,其对于用于不带有去除涡旋系统的单个旋转推进器的最小浪费的/未用过的动能而言是优化的。带有方形的曲线和带有三角形的曲线是用于本说明书中所述的无涵道的推力产生系统10的示例性实施例的载荷分布。如在图4中所示,用于示例性实施例的两条曲线在翼展上、特别是在叶片根部与中间翼展之间的区域中具有更为均匀的ΔRCu。事实上,30%翼展的位置处的ΔRCu的数值大于或等于ΔRCu的最大值的60%,优选地大于或等于ΔRCu的最大值的70%,并且更为优选地大于或等于ΔRCu的最大值的80%。以常规的方式越过旋转元件(推进器叶片排)测量ΔRCu。叶片21被确定尺寸、成形、并构造成利用本领域技术人员已知的技术来传递该载荷分布。
本说明书中所述的示例性实施例描绘了越过旋转元件的叶片或包括固定元件的推进器组件的ΔRCu的具体分布,该固定元件包括去除涡旋翼片或上游反向涡旋翼片。在该设计过程中,该ΔRCu将与航空器飞行速度、转子的旋转速度、和为限定空气的矢量图而从该组件所需的全部推力一起使用。
图5描绘了在无涵道的推力产生系统的出口处的涡旋、Cu、和轴向速度Vz。图5示出了四条曲线。带有菱形的曲线和带有“x”标记的曲线分别用于两个常规构造,这两个常规构造为仅转子和带有去除涡旋翼片的常规转子。带有方形的曲线和带有三角形的曲线用于本说明书中所述的两个示例性实施例。与常规构造相比,这些实施例具有较小的出口涡旋和更为均匀的轴向速度,从而表明出口气流中的浪费的动能更少并且转换成有用推力的能量更多。
图6用曲线图描绘了如何相对于叶片或翼片限定诸如弯度(camber)和交错角(stagger angle)之类的多个参数。翼型件中线被描述成在所有的位置处对分翼型件厚度(或与吸入表面和压力表面等距)的线。该中线在前缘和后缘处贯穿翼型件。翼型件的弯度被定义成在翼型件中线在前缘处的切线与翼型件中线在后缘处的切线之间的角度变化。交错角被定义成翼弦线与中心线轴线形成的角度。基准线44平行于轴线11,并且基准线55正交于基准线44。
除了降低噪音的益处之外,图2中所示的涵道100通过将固定翼片31联接成组件提供了固定翼片31的振动响应和结构完整性的益处,该组件形成了环形环或一个或多个圆周区段,即,形成将诸如形成双联体(doublet)的成对件之类的两个或多个翼片31连结在一起的环形环的多个部分的节段。涵道100可使得翼片的桨距能够按照要求加以改变。
由所公开的风扇原理产生的噪音的相当大的部分、或许甚至是主要部分与由上游叶栅(blade-row)及其加速度和在下游叶栅表面上的碰撞产生的紊流与尾流(wake)之间的相互作用相关联。通过引入在固定翼片上充当护罩的部分涵道,在翼片表面处产生的噪音可被屏蔽掉以便在远场中有效地产生阴影区(shadow zone),从而降低整体干扰度(annoyance)。当在轴向长度方面延长该涵道时,穿过该涵道的声辐射的效率进一步受到声截止的现象的影响,这如针对常规航空器发动机那样可用于将声辐射限制到远场中。此外,护罩的引入考虑到了结合声处理的机会,如当前针对常规航空器发动机所做的那样,以便在它反射或与衬套(liner)以其它方式相互作用时对声音进行衰减。通过在位于固定翼片的上游和下游的护罩的内侧和轮毂表面上引入声学处理表面,可将从固定翼片发出的声波的多次反射基本上衰减掉。
在设计过程之后,将限定叶片几何结构,该叶片几何结构形成如图3中所示的预期矢量图。尽管基本预期特性是扭矩分布,但这将导致被设计成获得预期扭矩分布的叶片几何结构。图7中示出了当与用于不带有去除涡旋翼片的单个旋转推进器的当前最适宜条件相比时,产生预期扭矩特性所需的几何结构的改变的视图。可看到的是,这导致了叶片的内部部分中的叶片弯度的变化,即,从约0%翼展变化至约50%翼展,并且所预期的是,示例性实施例的特性可还由弯度分布进行宽松地限定。下列条件中的至少一个得到满足:30%翼展处的叶片弯度为处于50%与100%翼展之间的最大弯度水平的至少90%;和0%翼展弯度为处于50%与100%翼展之间的最大弯度的至少110%。
图8是示例性的翼型件叶片21的正视图,例如在图1中描绘的用于与如在本说明书中所述的无涵道的推力产生系统一起使用的翼型件叶片,剖面线位置1至11被确定成剖面1是叶片尖端,并且剖面11是叶片根部。叶片翼展在根部与尖端之间测量到。图9至图19相继示出了处于针对示例性翼型件叶片21的剖面线位置1至11处的翼型件叶片剖面和穿过在先参照的常规翼型件叶片的类似剖面。如在这一系列视图中所示,两个翼型件叶片具有从剖面1至剖面11的方向、即,从尖端至根部,在尺寸、形状、和取向上越来越不同的剖面。换句话说,示例性的翼型件叶片与常规翼型件叶片之间具有最大不同的区域位于轮毂的附近,这与载荷分布的最大不同之处是一致的。
可以预期的是,结合在共同转让的待审申请[]和[]中描述的技术来利用本说明书中所述的技术。
除了适合于与旨在用于水平飞行的常规航空器平台一起使用的构造之外,本说明书中所述的技术可还被用于直升机和倾斜转子应用和其它提升装置以及悬停装置。
其它可能的构造包括设计成从空气流中提取能量并产生有用的扭矩的构造,例如将通过从经过它们的位置移动的空气中提取能量所产生的扭矩用于驱动发电机并产生电力的风车。这种构造可包括上游反向涡旋翼片。
本说明书中所述的技术对于以每单位环形面积上的轴功率高于20SHP/ft2(每平方英尺上的轴马力)巡航的航空器是特别有益的,在这种情况下涡旋损失会变得明显的。20SHP/ft2或以上的载荷允许航空器以高于0.6马赫数的马赫数巡航,而无需过大的推进器面积以限制涡旋损失。本发明的主要益处之一是它在没有明显的涡旋损失处罚的情况下即可获得每单位环形面积上的高轴功率的能力,并且这开启了以马赫数为0.8或高于0.8进行巡航的可能性。
示例性的实施例公开了一种用于推进系统的推进器组件。该推进器组件包括多个推进器叶片,这多个推进器叶片中的每一个均具有位于旋转轴线附近的叶片根部、远离轴线的叶片尖端、和在叶片根部与叶片尖端之间测量到的叶片翼展。该推进器组件具有载荷分布,使得在叶片根部与30%翼展之间的任一位置处的ΔRCu的数值均大于或等于峰值ΔRCu的60%,优选地在30%翼展处的ΔRCu的数值大于或等于峰值ΔRCu的70%。
仅出于说明的目的提供了对于本发明的实施例的前述说明,并且该前述说明并非旨在限制如在所附权利要求中限定的本发明的范围。
本申请涉及2013年10月23日提交的代理案卷号为No.264549-2、名为“无涵道的推力产生系统体系结构”的PCT/US13/XXXXX和2013年10月23日提交的代理案卷号为No.265517-2、名为“用于推进系统的翼片组件”的PCT/US13/XXXXX,这两篇文件的全部内容均被以参引的方式结合到本说明书中。

Claims (33)

1.一种无涵道的推力产生系统,所述推力产生系统包括具有旋转轴线的旋转元件和固定元件,所述旋转元件具有多个叶片,所述多个叶片中的每一个都具有位于所述轴线附近的叶片根部、远离所述轴线的叶片尖端、和在所述叶片根部与所述叶片尖端之间测量到的叶片翼展,其中,所述旋转元件具有载荷分布,使得在所述叶片根部与30%翼展之间的任一位置处,空气流中的∆RCu的数值都大于或等于所述空气流中的峰值∆RCu的60%。
2.一种无涵道的推力产生系统,所述推力产生系统包括具有旋转轴线的旋转元件和固定元件,所述旋转元件具有多个叶片,所述多个叶片中的每一个都具有位于所述轴线附近的叶片根部、远离所述轴线的叶片尖端、和在所述叶片根部与所述叶片尖端之间测量到的叶片翼展,其中,所述旋转元件具有载荷分布,使得在所述叶片根部与30%翼展之间的任一位置处,空气流中的∆RCu的数值都大于或等于所述空气流中的峰值∆RCu的70%。
3.一种无涵道的推力产生系统,所述推力产生系统包括具有旋转轴线的旋转元件和固定元件,所述旋转元件具有多个叶片,所述多个叶片中的每一个都具有位于所述轴线附近的叶片根部、远离所述轴线的叶片尖端、和在所述叶片根部与所述叶片尖端之间测量到的叶片翼展,其中,所述旋转元件具有载荷分布,使得在所述叶片根部与30%翼展之间的任一位置处,空气流中的∆RCu的数值都大于或等于所述空气流中的峰值∆RCu的80%。
4.根据权利要求1至3中的任一项所述的推力产生系统,其特征在于,所述无涵道的推力产生系统是推进器系统。
5.根据权利要求1至3中的任一项所述的推力产生系统,其特征在于,所述无涵道的推力产生系统是开式转子系统。
6.根据权利要求1至3中的任一项所述的推力产生系统,其特征在于,所述固定元件具有多个翼片,所述多个翼片中的每一个都具有位于所述轴线附近的翼片根部、远离所述轴线的翼片尖端、和在所述翼片根部与所述翼片尖端之间测量到的翼片翼展,所述翼片构造成使得空气的切向速度发生变化,所述变化与由所述旋转元件造成的空气的切向速度的变化相反。
7.根据权利要求6所述的推力产生系统,其特征在于,所述翼片定位在所述旋转元件的上游。
8.根据权利要求6所述的推力产生系统,其特征在于,所述翼片定位在所述旋转元件的下游。
9.根据权利要求6所述的推力产生系统,其特征在于,所述翼片在桨距方面是可变的。
10.根据权利要求6所述的推力产生系统,其特征在于,所述翼片中的至少一个包括远离所述轴线的护罩。
11.根据权利要求6所述的推力产生系统,其特征在于,在所述翼片的大部分翼展上,位于所述系统的后部的所述空气流中的Cu与所述旋转元件的ΔCu相比是相对低的。
12.根据权利要求6所述的推力产生系统,其特征在于,所述翼片中的至少一个附接于航空器结构。
13.根据权利要求6所述的推力产生系统,其特征在于,所述固定元件包括多于两个翼片。
14.根据权利要求13所述的推力产生系统,其特征在于,所述固定元件包括多于四个翼片。
15.根据权利要求1至3中的任一项所述的推力产生系统,其特征在于,所述无涵道的推力产生系统是倾斜转子系统。
16.根据权利要求1至3中的任一项所述的推力产生系统,其特征在于,所述无涵道的推力产生系统是直升机提升系统。
17.根据权利要求1至3中的任一项所述的推力产生系统,其特征在于,所述旋转元件经由扭矩产生装置驱动。
18.根据权利要求17所述的推力产生系统,其特征在于,所述扭矩产生装置从以下组中选出,所述组包括电动马达、燃气涡轮机、齿轮驱动系统、液压马达、及其组合。
19. 根据权利要求1至3中的任一项所述的推力产生系统,其特征在于,所述旋转元件在巡航运行状况下具有大于20 SHP/ft2的每单位环形面积上的轴功率。
20.根据权利要求1至3中的任一项所述的推力产生系统,其特征在于,所述叶片在桨距方面是可变的。
21.一种无涵道的推力产生系统,所述推力产生系统包括具有旋转轴线的旋转元件和固定元件,所述旋转元件具有多个叶片,所述多个叶片中的每一个都具有位于所述轴线附近的叶片根部、远离所述轴线的叶片尖端、和在所述叶片根部与所述叶片尖端之间测量到的叶片翼展,其中,所述叶片具有从以下组中选择的特性,所述组包括:30%翼展处的叶片弯度为50%翼展与100%翼展之间的最大叶片弯度的至少90%、0%翼展处的所述叶片弯度为50%翼展与100%翼展之间的所述最大叶片弯度的至少110%、及其组合。
22.根据权利要求21所述的推力产生系统,其特征在于,所述固定元件具有多个翼片,所述多个翼片中的每一个都具有位于所述轴线附近的翼片根部、远离所述轴线的翼片尖端、和在所述翼片根部与所述翼片尖端之间测量到的翼片翼展,所述翼片构造成使得空气的切向速度发生变化,所述变化与由所述旋转元件造成的空气的切向速度的变化相反。
23.根据权利要求22所述的推力产生系统,其特征在于,所述翼片定位在所述旋转元件的上游。
24.根据权利要求22所述的推力产生系统,其特征在于,所述翼片定位在所述旋转元件的下游。
25.根据权利要求22所述的推力产生系统,其特征在于,所述翼片中的至少一个包括远离所述轴线的护罩。
26.根据权利要求22所述的推力产生系统,其特征在于,在所述翼片的大部分翼展上,位于所述系统的后部的空气流中的Cu与所述旋转元件的ΔCu相比是相对低的。
27.根据权利要求21所述的推力产生系统,其特征在于,所述无涵道的推力产生系统是推进器系统。
28.根据权利要求21所述的推力产生系统,其特征在于,所述无涵道的推力产生系统是开式转子系统。
29.一种用于从空气流中提取能量的无涵道的扭矩产生系统,所述扭矩产生系统包括具有旋转轴线的旋转元件和固定元件,所述旋转元件具有多个叶片,所述多个叶片中的每一个都具有位于所述轴线附近的叶片根部、远离所述轴线的叶片尖端、和在所述叶片根部与所述叶片尖端之间测量到的叶片翼展,其中,所述旋转元件具有载荷分布,使得在所述叶片根部与30%翼展之间的任一位置处,所述空气流中的∆RCu的数值都大于或等于所述空气流中的峰值∆RCu的60%。
30.根据权利要求29所述的扭矩产生系统,其特征在于,所述扭矩产生系统是风力涡轮机。
31.根据权利要求29所述的扭矩产生系统,其特征在于,所述固定元件具有多个翼片,所述多个翼片中的每一个都具有位于所述轴线附近的翼片根部、远离所述轴线的翼片尖端、和在所述翼片根部与所述翼片尖端之间测量到的翼片翼展,所述翼片构造成使得空气的切向速度发生变化,所述变化与由所述旋转元件造成的空气的切向速度的变化相反。
32.根据权利要求31所述的扭矩产生系统,其特征在于,所述翼片定位在所述旋转元件的上游。
33.根据权利要求31所述的扭矩产生系统,其特征在于,所述翼片定位在所述旋转元件的下游。
CN201380055486.2A 2012-10-23 2013-10-23 无涵道的推力产生系统 Active CN104755703B (zh)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201261717445P 2012-10-23 2012-10-23
US201261717451P 2012-10-23 2012-10-23
US61/717451 2012-10-23
US61/717445 2012-10-23
US201361771314P 2013-03-01 2013-03-01
US61/771314 2013-03-01
PCT/US2013/066383 WO2014066503A1 (en) 2012-10-23 2013-10-23 Unducted thrust producing system

Publications (2)

Publication Number Publication Date
CN104755703A CN104755703A (zh) 2015-07-01
CN104755703B true CN104755703B (zh) 2017-10-27

Family

ID=49517771

Family Applications (3)

Application Number Title Priority Date Filing Date
CN202011292761.0A Pending CN112594087A (zh) 2012-10-23 2013-10-23 无涵道的推力产生系统体系结构
CN201380055486.2A Active CN104755703B (zh) 2012-10-23 2013-10-23 无涵道的推力产生系统
CN201380055512.1A Active CN104968893B (zh) 2012-10-23 2013-10-23 无涵道的推力产生系统体系结构

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN202011292761.0A Pending CN112594087A (zh) 2012-10-23 2013-10-23 无涵道的推力产生系统体系结构

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201380055512.1A Active CN104968893B (zh) 2012-10-23 2013-10-23 无涵道的推力产生系统体系结构

Country Status (7)

Country Link
US (5) US10669881B2 (zh)
EP (5) EP4098843A1 (zh)
JP (2) JP2016501761A (zh)
CN (3) CN112594087A (zh)
BR (2) BR112015009059B1 (zh)
CA (3) CA2902826C (zh)
WO (3) WO2014066515A1 (zh)

Families Citing this family (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015175056A2 (en) 2014-02-19 2015-11-19 United Technologies Corporation Gas turbine engine airfoil
EP3108106B1 (en) 2014-02-19 2022-05-04 Raytheon Technologies Corporation Gas turbine engine airfoil
WO2015126452A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
EP3108117B2 (en) 2014-02-19 2023-10-11 Raytheon Technologies Corporation Gas turbine engine airfoil
EP4279706A3 (en) * 2014-02-19 2024-02-28 RTX Corporation Turbofan engine with geared architecture and lpc blade airfoils
EP3114321B1 (en) 2014-02-19 2019-04-17 United Technologies Corporation Gas turbine engine airfoil
WO2015126715A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
WO2015175044A2 (en) 2014-02-19 2015-11-19 United Technologies Corporation Gas turbine engine airfoil
WO2015178974A2 (en) 2014-02-19 2015-11-26 United Technologies Corporation Gas turbine engine airfoil
US9567858B2 (en) 2014-02-19 2017-02-14 United Technologies Corporation Gas turbine engine airfoil
EP3108109B1 (en) 2014-02-19 2023-09-13 Raytheon Technologies Corporation Gas turbine engine fan blade
EP3108103B1 (en) 2014-02-19 2023-09-27 Raytheon Technologies Corporation Fan blade for a gas turbine engine
WO2015175073A2 (en) 2014-02-19 2015-11-19 United Technologies Corporation Gas turbine engine airfoil
WO2015126453A1 (en) 2014-02-19 2015-08-27 United Technologies Corporation Gas turbine engine airfoil
WO2015175051A2 (en) 2014-02-19 2015-11-19 United Technologies Corporation Gas turbine engine airfoil
EP3108105B1 (en) 2014-02-19 2021-05-12 Raytheon Technologies Corporation Gas turbine engine airfoil
US10495106B2 (en) 2014-02-19 2019-12-03 United Technologies Corporation Gas turbine engine airfoil
EP3108110B1 (en) 2014-02-19 2020-04-22 United Technologies Corporation Gas turbine engine airfoil
US10570915B2 (en) 2014-02-19 2020-02-25 United Technologies Corporation Gas turbine engine airfoil
EP3108120B1 (en) 2014-02-19 2021-03-31 Raytheon Technologies Corporation Gas turbine engine having a geared architecture and a specific fixed airfoil structure
US9347323B2 (en) 2014-02-19 2016-05-24 United Technologies Corporation Gas turbine engine airfoil total chord relative to span
EP3108104B1 (en) 2014-02-19 2019-06-12 United Technologies Corporation Gas turbine engine airfoil
US10221708B2 (en) * 2014-12-03 2019-03-05 United Technologies Corporation Tangential on-board injection vanes
US9745851B2 (en) 2015-01-15 2017-08-29 General Electric Company Metal leading edge on composite blade airfoil and shank
PL412269A1 (pl) * 2015-05-11 2016-11-21 General Electric Company Zanurzony wlot kanału przepływu między łopatką wirnika i łopatką kierowniczą dla turbiny gazowej z otwartym wentylatorem
CN107614379A (zh) 2015-05-25 2018-01-19 多特瑞尔技术有限公司 用于飞行器的护罩
US11391298B2 (en) 2015-10-07 2022-07-19 General Electric Company Engine having variable pitch outlet guide vanes
CN108349594A (zh) * 2015-11-03 2018-07-31 德卡科技有限公司 用于投递无人机的可伸出且可缩回的包裹接收设备
GB2544554B (en) 2015-11-23 2018-07-04 Rolls Royce Plc Gas turbine engine
GB2544735B (en) * 2015-11-23 2018-02-07 Rolls Royce Plc Vanes of a gas turbine engine
US10414486B2 (en) 2015-11-30 2019-09-17 General Electric Company Airfoil for a rotary machine including a propellor assembly
US10208676B2 (en) 2016-03-29 2019-02-19 General Electric Company Gas turbine engine dual sealing cylindrical variable bleed valve
FR3050721B1 (fr) 2016-04-28 2018-04-13 Airbus Operations Ensemble moteur pour aeronef comprenant un bord d'attaque de mat integre a une rangee annulaire d'aubes directrices de sortie non carenees
US10252797B2 (en) * 2016-09-08 2019-04-09 General Electric Company Tiltrotor propulsion system for an aircraft
ES2835263T3 (es) 2016-12-20 2021-06-22 Airbus Operations Sl Sistema de propulsión rotativo de una aeronave
CN110997486A (zh) 2017-07-24 2020-04-10 多特瑞尔技术有限公司 护罩
EP3601038A1 (en) 2017-08-10 2020-02-05 Neiser, Paul Apparatus and method for fluid manipulation
FR3074476B1 (fr) * 2017-12-06 2020-12-25 Safran Aircraft Engines Turbopropulseur d'aeronef comportant une helice non carenee
AU2019271730A1 (en) 2018-05-16 2020-12-24 Dotterel Technologies Limited Systems and methods for audio capture
FR3083207B1 (fr) * 2018-06-28 2020-12-25 Safran Aircraft Engines Ensemble propulsif pour un aeronef comprenant un rotor non carene
US11181120B2 (en) * 2018-11-21 2021-11-23 Honeywell International Inc. Throat distribution for a rotor and rotor blade having camber and location of local maximum thickness distribution
FR3089553B1 (fr) * 2018-12-11 2021-01-22 Safran Aircraft Engines Aube de turbomachine a loi de fleche a forte marge au flottement
US11735988B2 (en) * 2019-01-31 2023-08-22 General Electric Company Dual rotor electric machine
US11401824B2 (en) 2019-10-15 2022-08-02 General Electric Company Gas turbine engine outlet guide vane assembly
US20210339846A1 (en) 2019-10-15 2021-11-04 General Electric Company Removeable fuselage shield for an aircraft
CN112664274A (zh) * 2019-10-15 2021-04-16 通用电气公司 用于单一无涵道转子发动机的前进比
US11506067B2 (en) 2019-10-15 2022-11-22 General Electric Company Gas turbine engine with clutch assembly
US20210108576A1 (en) 2019-10-15 2021-04-15 General Electric Company System and method for control for unducted engine
US20210108569A1 (en) * 2019-10-15 2021-04-15 General Electric Company Gas turbine engine with clutch assembly
US11286795B2 (en) 2019-10-15 2022-03-29 General Electric Company Mount for an airfoil
CN112664275A (zh) * 2019-10-15 2021-04-16 通用电气公司 无涵道单转子发动机
IT202000002272A1 (it) 2020-02-05 2021-08-05 Ge Avio Srl Scatola ingranaggi per un motore
IT202000005146A1 (it) * 2020-03-11 2021-09-11 Ge Avio Srl Motore a turbina con profilo aerodinamico avente alta accelerazione e bassa curva di paletta
FR3109140B1 (fr) * 2020-04-10 2022-04-29 Safran Système de détermination du calage angulaire d’une rangée annulaire d’aubes de stator
CN111706432B (zh) * 2020-05-28 2022-03-25 中国航发湖南动力机械研究所 桨扇发动机及具有其的推进装置
US11371354B2 (en) 2020-06-03 2022-06-28 Honeywell International Inc. Characteristic distribution for rotor blade of booster rotor
US11365688B2 (en) 2020-08-04 2022-06-21 G.E. Avio S.r.l. Gearbox efficiency rating for turbomachine engines
US11473507B2 (en) 2020-08-04 2022-10-18 Ge Avio S.R.L. Gearbox efficiency rating for turbomachine engines
US11486312B2 (en) 2020-08-04 2022-11-01 Ge Avio S.R.L. Gearbox efficiency rating for turbomachine engines
US11401829B2 (en) 2020-08-04 2022-08-02 Ge Avio S.R.L. Gearbox efficiency rating for turbomachine engines
DE102020130038A1 (de) * 2020-11-13 2022-05-19 Rolls-Royce Deutschland Ltd & Co Kg Leitschaufelrad einer Strömungsmaschine
US20220259985A1 (en) * 2021-02-15 2022-08-18 General Electric Company Open rotor turbomachinery engines
US20220333553A1 (en) * 2021-04-14 2022-10-20 General Electric Company Three-stream gas turbine engine with embedded electric machine
US11639671B2 (en) * 2021-07-06 2023-05-02 General Electric Company Unducted fan turbine engine with a cowl door
US11492918B1 (en) * 2021-09-03 2022-11-08 General Electric Company Gas turbine engine with third stream
US11572827B1 (en) 2021-10-15 2023-02-07 General Electric Company Unducted propulsion system
US11753144B2 (en) 2021-10-15 2023-09-12 General Electric Company Unducted propulsion system
US11873767B2 (en) 2021-10-22 2024-01-16 Ge Avio S.R.L. Gearbox configurations for clockwise and counterclockwise propeller rotation
US20230175435A1 (en) 2021-12-03 2023-06-08 General Electric Company Combustor size rating for a gas turbine engine using hydrogen fuel
US11858615B2 (en) * 2022-01-10 2024-01-02 General Electric Company Rotating airfoil assembly with opening formed therein to eject or to draw air
IT202200001613A1 (it) 2022-01-31 2023-07-31 Gen Electric Valutazione di efficienza motoristica complessiva per motori a turbomacchina
US11608743B1 (en) 2022-02-04 2023-03-21 General Electric Company Low-noise blade for an open rotor
US11859515B2 (en) * 2022-03-04 2024-01-02 General Electric Company Gas turbine engines with improved guide vane configurations
US11834995B2 (en) 2022-03-29 2023-12-05 General Electric Company Air-to-air heat exchanger potential in gas turbine engines
US11834954B2 (en) 2022-04-11 2023-12-05 General Electric Company Gas turbine engine with third stream
US11680530B1 (en) 2022-04-27 2023-06-20 General Electric Company Heat exchanger capacity for one or more heat exchangers associated with a power gearbox of a turbofan engine
US11834992B2 (en) 2022-04-27 2023-12-05 General Electric Company Heat exchanger capacity for one or more heat exchangers associated with an accessory gearbox of a turbofan engine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486146A (en) * 1980-08-08 1984-12-04 British Aerospace Public Limited Company Aircraft propulsion means
EP0385913A1 (en) * 1989-02-01 1990-09-05 United Technologies Corporation Airfoiled blade
US5457346A (en) * 1992-02-10 1995-10-10 Blumberg; Stanley Windmill accelerator
WO2005111413A1 (en) * 2004-05-19 2005-11-24 Envision Corportion Wind turbine rotor projection
GB2461811A (en) * 2008-07-15 2010-01-20 Hamilton Sundstrand Corp Variable pitch aft propeller vane system
DE102009038076A1 (de) * 2009-08-19 2011-02-24 Konrad Buckel Rotorelement zur Umströmung durch ein Fluid und Rotor
KR101179277B1 (ko) * 2011-12-23 2012-09-03 한국항공우주연구원 나셀 펜스를 갖는 풍력발전기

Family Cites Families (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2620122A (en) * 1945-10-09 1952-12-02 Herman H Curry Combination propeller and diffuser inlet assembly
US2913055A (en) * 1950-09-01 1959-11-17 Thomas E Quick Propulsion device
US2999630A (en) 1957-08-08 1961-09-12 Gen Electric Compressor
US3972646A (en) * 1974-04-12 1976-08-03 Bolt Beranek And Newman, Inc. Propeller blade structures and methods particularly adapted for marine ducted reversible thrusters and the like for minimizing cavitation and related noise
US4171183A (en) * 1976-09-24 1979-10-16 United Technologies Corporation Multi-bladed, high speed prop-fan
US4370097A (en) * 1979-07-16 1983-01-25 United Technologies Corporation Noise reduction means for prop-fan
US4446696A (en) 1981-06-29 1984-05-08 General Electric Company Compound propulsor
US4569199A (en) 1982-09-29 1986-02-11 The Boeing Company Turboprop engine and method of operating the same
USD286880S (en) * 1984-03-05 1986-11-25 General Electric Company Aircraft engine or similar article
US4607657A (en) * 1985-10-28 1986-08-26 General Electric Company Aircraft engine inlet
GB2196390B (en) 1986-10-16 1991-06-26 Rolls Royce Plc Intake for turbopropeller gas turbine engine.
US4784575A (en) * 1986-11-19 1988-11-15 General Electric Company Counterrotating aircraft propulsor blades
US4864820A (en) * 1987-10-22 1989-09-12 United Technologies Corporation Exhaust nozzle
US4907946A (en) 1988-08-10 1990-03-13 General Electric Company Resiliently mounted outlet guide vane
US5054998A (en) 1988-09-30 1991-10-08 The Boeing Company, Inc. Thrust reversing system for counter rotating propellers
JPH0370698A (ja) * 1989-08-11 1991-03-26 Naomasa Nomura 頭部回転式高性能飛行機
US5190441A (en) 1990-08-13 1993-03-02 General Electric Company Noise reduction in aircraft propellers
US5197855A (en) 1991-07-01 1993-03-30 United Technologies Corporation Engine exhaust/blade interaction noise suppression
US5259187A (en) 1993-02-05 1993-11-09 General Electric Company Method of operating an aircraft bypass turbofan engine having variable fan outlet guide vanes
US5345760A (en) 1993-02-05 1994-09-13 General Electric Company Turboprop booster
US5562404A (en) 1994-12-23 1996-10-08 United Technologies Corporation Vaned passage hub treatment for cantilever stator vanes
CN1204005A (zh) 1997-06-26 1999-01-06 亚瑞亚·勃朗勃威力有限公司 喷气式发动机
US6082670A (en) 1997-06-26 2000-07-04 Electric Boat Corporation Method and arrangement for fluidborne vehicle propulsion and drag reduction
JP4557397B2 (ja) * 2000-09-05 2010-10-06 本田技研工業株式会社 翼形状設計方法および情報媒体
US6547518B1 (en) 2001-04-06 2003-04-15 General Electric Company Low hoop stress turbine frame support
NO20014597L (no) * 2001-09-21 2003-03-24 Hammerfest Stroem As Fremgangsmåte for fremstilling av vingeblad for friströmsturbin
EP1551708B1 (en) * 2002-10-11 2006-04-05 Stefan Unzicker Vertical take-off and landing aircraft
US6792758B2 (en) 2002-11-07 2004-09-21 Siemens Westinghouse Power Corporation Variable exhaust struts shields
US7234914B2 (en) 2002-11-12 2007-06-26 Continum Dynamics, Inc. Apparatus and method for enhancing lift produced by an airfoil
GB2401654B (en) 2003-05-14 2006-04-19 Rolls Royce Plc A stator vane assembly for a turbomachine
US6905303B2 (en) * 2003-06-30 2005-06-14 General Electric Company Methods and apparatus for assembling gas turbine engines
JP2006123880A (ja) * 2004-10-29 2006-05-18 Masahiko Senda ダクテッドファンを推進力に飛行する飛行物体を安定させる構造
US7513102B2 (en) * 2005-06-06 2009-04-07 General Electric Company Integrated counterrotating turbofan
FR2891242B1 (fr) 2005-09-23 2007-10-26 Airbus France Sas Turboreacteur pour aeronef, aeronef muni d'un tel turboreacteur, et procede de montage d'un tel turboreacteur sur un aeronef
US7762766B2 (en) 2006-07-06 2010-07-27 Siemens Energy, Inc. Cantilevered framework support for turbine vane
JP4788966B2 (ja) * 2006-09-27 2011-10-05 独立行政法人 宇宙航空研究開発機構 ターボファンジェットエンジン
US7752834B2 (en) * 2006-10-25 2010-07-13 United Technologies Corporation Aircraft propulsion systems
GB0702608D0 (en) 2007-02-10 2007-03-21 Rolls Royce Plc Aeroengine
US8459035B2 (en) 2007-07-27 2013-06-11 United Technologies Corporation Gas turbine engine with low fan pressure ratio
US8169304B2 (en) 2008-02-22 2012-05-01 Hill-Rom Services, Inc. User station for healthcare communication system
FR2928977B1 (fr) * 2008-03-21 2010-04-09 Snecma Systeme d'helices contrarotatives disposant d'un dispositif de mise en drapeau des pales d'helices
KR101210532B1 (ko) * 2008-07-07 2012-12-27 (주)선택이앤티 삼엽 하방날개형 비행체
US8480372B2 (en) 2008-11-06 2013-07-09 General Electric Company System and method for reducing bucket tip losses
FR2938502B1 (fr) * 2008-11-14 2010-12-10 Snecma Turbomachine comportant une helice non carenee equipee de moyens de guidage d'air
FR2938504B1 (fr) * 2008-11-14 2010-12-10 Snecma Entree d'air d'un moteur d'avion a helices propulsives non carenees
DE102009010524A1 (de) * 2009-02-25 2010-09-02 Rolls-Royce Deutschland Ltd & Co Kg Turbopropantrieb mit Druckpropeller
FR2943313B1 (fr) * 2009-03-23 2011-05-27 Snecma Helice non carenee a pales a calage variable pour une turbomachine
GB0914591D0 (en) * 2009-08-21 2009-09-30 Rolls Royce Plc Fluidfoil tip vortex disruption
FR2950381B1 (fr) 2009-09-18 2011-10-28 Snecma Turbomachine a helices non carenees contrarotatives
US8523531B2 (en) * 2009-12-23 2013-09-03 Alstom Technology Ltd Airfoil for a compressor blade
US8786266B2 (en) * 2010-02-01 2014-07-22 Microchip Technology Incorporated Effective current sensing for high voltage switching regulators
GB201001974D0 (en) 2010-02-08 2010-03-24 Rolls Royce Plc An outlet guide vane structure
GB201003497D0 (en) 2010-03-03 2010-04-14 Rolls Royce Plc Flow mixer
FR2962109B1 (fr) * 2010-07-05 2013-04-12 Snecma Turbomoteur a helices non carenees
FR2974060B1 (fr) * 2011-04-15 2013-11-22 Snecma Dispositif de propulsion a helices contrarotatives et coaxiales non-carenees
GB201114380D0 (en) * 2011-08-22 2011-10-05 Rolls Royce Plc An aircraft propulsion system and a method of controlling the same
US20130104522A1 (en) 2011-11-01 2013-05-02 Daniel B. Kupratis Gas turbine engine with variable pitch first stage fan section
US9546559B2 (en) 2013-10-08 2017-01-17 General Electric Company Lock link mechanism for turbine vanes
US20160333729A1 (en) 2015-05-11 2016-11-17 General Electric Company Turbine engine having variable pitch outlet guide vanes

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486146A (en) * 1980-08-08 1984-12-04 British Aerospace Public Limited Company Aircraft propulsion means
EP0385913A1 (en) * 1989-02-01 1990-09-05 United Technologies Corporation Airfoiled blade
US5457346A (en) * 1992-02-10 1995-10-10 Blumberg; Stanley Windmill accelerator
WO2005111413A1 (en) * 2004-05-19 2005-11-24 Envision Corportion Wind turbine rotor projection
GB2461811A (en) * 2008-07-15 2010-01-20 Hamilton Sundstrand Corp Variable pitch aft propeller vane system
DE102009038076A1 (de) * 2009-08-19 2011-02-24 Konrad Buckel Rotorelement zur Umströmung durch ein Fluid und Rotor
KR101179277B1 (ko) * 2011-12-23 2012-09-03 한국항공우주연구원 나셀 펜스를 갖는 풍력발전기

Also Published As

Publication number Publication date
BR112015007799A2 (pt) 2018-04-24
EP2912271B1 (en) 2022-09-07
CA2887260C (en) 2021-03-16
CN104968893B (zh) 2020-12-04
EP4098843A1 (en) 2022-12-07
EP2912270B1 (en) 2023-04-26
BR112015007799B1 (pt) 2022-01-04
US10907495B2 (en) 2021-02-02
EP2948633A1 (en) 2015-12-02
US20150284070A1 (en) 2015-10-08
US10202865B2 (en) 2019-02-12
US20160010487A1 (en) 2016-01-14
US10669881B2 (en) 2020-06-02
WO2014066508A3 (en) 2014-07-17
EP4212701A1 (en) 2023-07-19
CA2887262A1 (en) 2014-05-01
EP2912270A1 (en) 2015-09-02
BR112015009059A2 (pt) 2017-07-04
WO2014066515A1 (en) 2014-05-01
CA2902826A1 (en) 2014-05-01
CA2887260A1 (en) 2014-05-01
CN104968893A (zh) 2015-10-07
JP2016501761A (ja) 2016-01-21
WO2014066503A1 (en) 2014-05-01
US10704410B2 (en) 2020-07-07
US20200308979A1 (en) 2020-10-01
WO2014066508A2 (en) 2014-05-01
CN112594087A (zh) 2021-04-02
EP2912271A2 (en) 2015-09-02
US20200271010A1 (en) 2020-08-27
BR112015009059B1 (pt) 2021-02-09
JP6360063B2 (ja) 2018-07-18
JP2015533354A (ja) 2015-11-24
CA2902826C (en) 2021-05-18
CN104755703A (zh) 2015-07-01
US20150291276A1 (en) 2015-10-15

Similar Documents

Publication Publication Date Title
CN104755703B (zh) 无涵道的推力产生系统
US11300003B2 (en) Unducted thrust producing system
JP5489727B2 (ja) 航空エンジン
US4917332A (en) Wingtip vortex turbine
CN109386500B (zh) 用于开式转子的低噪音翼型
CA2798211A1 (en) Airfoils including tip profile for noise reduction and method for fabricating same
US10501177B2 (en) Convertible propeller
EP3504119B1 (en) Aircraft having an aft engine
CN107725215A (zh) 用于减小飞行器后风扇的空气流旋流畸变的入口导叶组件
US11608743B1 (en) Low-noise blade for an open rotor
US20230249810A1 (en) Low-noise blade for an open rotor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant