CN104752552A - 泡沫金属负载的铜铟硫半导体光伏材料制备方法 - Google Patents

泡沫金属负载的铜铟硫半导体光伏材料制备方法 Download PDF

Info

Publication number
CN104752552A
CN104752552A CN201310732089.6A CN201310732089A CN104752552A CN 104752552 A CN104752552 A CN 104752552A CN 201310732089 A CN201310732089 A CN 201310732089A CN 104752552 A CN104752552 A CN 104752552A
Authority
CN
China
Prior art keywords
copper
indium
foam metal
alloy film
metal matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310732089.6A
Other languages
English (en)
Inventor
元炯亮
路辉
王培城
李旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN201310732089.6A priority Critical patent/CN104752552A/zh
Publication of CN104752552A publication Critical patent/CN104752552A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种铜铟硫半导体光伏材料制备方法,属于材料领域。其特征在于:采用电化学方法在泡沫金属基体上均匀连续负载3纳米至1微米的铜铟硫半导体层。该材料具有很高的光电转换效率。

Description

泡沫金属负载的铜铟硫半导体光伏材料制备方法
技术领域
本发明涉及一种铜铟硫半导体光伏材料的制备方法,属于材料领域。
背景技术
黄铜矿型I-III-VI2族半导体具有良好的光电转换性能,Cu(In,Ga)Se2薄膜太阳能电池的光电转换效率高达20.3%;但是,由于硒元素有毒,因而限制了其应用。尽管CuInS2薄膜太阳能电池的光电转换效率目前只有13%,但是CuInS2是直接禁带半导体,带隙能约1.5eV,与太阳光谱十分匹配,而且吸收系数高(105cm-1);更重要的是,CuInS2中不使用有毒元素,具有环境友好的特征。因此,CuInS2是最具发展前途的光伏材料之一。
由于高比表面积低维纳米结构可以有效促进光吸收和电荷分离,因而CuInS2半导体纳米晶、纳米线、纳米棒、纳米管等具有较高的光电转换效率。但是,半导体晶粒间界面阻力导致光生电子不能有效传输到外电路,因而限制了CuInS2光电转换效率的进一步提高。
泡沫金属不仅具有高比表面积,而且具有高的导电性。为此,本发明提出在泡沫金属上负载均匀连续的CuInS2半导体光伏材料,形成以三维互通金属线为芯的半导体管状结构,从而提高收集和传输光生电子的能力。
发明内容
本发明提供一种泡沫金属负载的铜铟硫半导体光伏材料制备方法,其特征在于:采用电化学方法在泡沫金属基体上均匀连续负载3nm~1μm的铜铟硫半导体层。
泡沫金属基体包括单一金属和金属合金,例如泡沫铜、泡沫铝、泡沫镍、泡沫铁、泡沫黄铜、泡沫铁镍铬。
在泡沫金属基体上首先通过电化学方法制备铜铟硫半导体层。可以采用一步电沉积法制备铜铟硫半导体层,也可以采用分步法制备铜铟硫半导体层。采用一步法时,可在含有Cu2+、In3+、S2O3 2 的电解液中进行。采用分步法时,可先沉积铜金属层,再沉积铟金属层,然后再硫化;也可以先沉积铜铟合金层,然后再硫化。
在泡沫金属基体上通过恒电位共沉积的方法制备铜铟合金膜时,电解液中铜盐和铟盐的浓度均为2~20mM,铜盐和铟盐的摩尔比为2:1~1:2,铜盐和铟盐可采用氯化物、硫酸盐、硝酸盐、乙酸盐,但不局限于这些种类的盐。电解液中络合剂三乙醇胺的加入量为0~0.5M;也可以采用邻苯二甲酸氢钾做络合剂,加入量为0~0.1M。电解液中柠檬酸钠的加入量为0~0.1M。电解液pH值控制在2.0~5.0,沉积电位为-800~ -1100mV(相对于饱和甘汞电极),沉积时间为10~60min,电解液温度为20~50℃。
铜铟合金膜的硫化退火过程中,以升华硫为硫源,退火温度控制在300-500℃之间;退火时间为15-120min。
该发明提供的泡沫金属负载铜铟硫半导体光伏材料,形成以三维互通金属线为芯的半导体管状结构,而不是半导体量子点。与传统导电基体上制备的半导体光伏材料相比,泡沫金属负载铜铟硫半导体光伏材料的光电转换性能显著提高。
附图说明
图1是在铟锡氧化物(ITO)导电玻璃上沉积的铜铟硫薄膜电极的电流-电位曲线。
图2是泡沫镍负载的铜铟硫半导体电极的电流-电位曲线。
具体实施方式
对比例
在50mL 5mM氯化铜溶液中加入0.2M的三乙醇胺作为络合剂,0.01M柠檬酸钠作为缓冲剂,用浓硫酸将电解液pH值调至5.0左右,然后加入5mM氯化铟,用氢氧化钠溶液将溶液pH值调至4.00。
以1cm×1cm铟锡氧化物(ITO)导电玻璃作为工作电极,铂网为对电极,饱和甘汞电极(SCE)为参比电极,室温下在-1000mV恒电位沉积30min。
待薄膜干燥后对其进行硫化热处理,将薄膜置于管式炉的石英管中,称取2g硫粉放在石英管的进气口方向,以5℃/min的升温速率将温度升至400℃煅烧90min,得到铜铟硫半导体薄膜。
以CuInS2薄膜作为工作电极,碳棒作为辅助电极,SCE作为参比电极,在0.1M Na2SO4水溶液中测量暗态和光照(100mW/cm2)条件下电流-电位曲线。测量结果见图1。
实施例
以0.5mm厚的1cm×1cm泡沫镍作为工作电极,电解液组成、电沉积条件、硫化热处理条件同对比例,得到泡沫镍负载的铜铟硫半导体光伏材料。
以泡沫镍负载的铜铟硫半导体材料作为工作电极,碳棒作为辅助电极,SCE作为参比电极,在0.1M Na2SO4水溶液中测量暗态和光照(100mW/cm2)条件下电流-电位曲线。测量结果见图2。

Claims (10)

1.一种泡沫金属负载的铜铟硫半导体光伏材料制备方法,其特征在于:采用电化学方法在泡沫金属基体上均匀连续负载3nm~1μm的铜铟硫半导体层。
2.根据权利要求1所述的泡沫金属负载的铜铟硫半导体光伏材料制备方法,其特征在于:泡沫金属基体包括泡沫铜、泡沫铝、泡沫镍、泡沫铁、泡沫黄铜、泡沫铁镍铬。
3.根据权利要求1所述的泡沫金属负载的铜铟硫半导体光伏材料制备方法,其特征在于:在泡沫金属基体上首先通过恒电位共沉积制备铜铟合金膜,然后通过硫化退火的方法得到泡沫金属负载的铜铟硫半导体层。
4.根据权利要求3所述的在泡沫金属基体上通过恒电位共沉积制备铜铟合金膜的方法,其特征在于:电解液中铜盐和铟盐的浓度为2~20mM,铜盐和铟盐的摩尔比为2:1~1:2,铜盐和铟盐可采用氯化物、硫酸盐、硝酸盐、乙酸盐。
5.根据权利要求3所述的在泡沫金属基体上通过恒电位共沉积制备铜铟合金膜的方法,其特征在于:电解液中络合剂三乙醇胺的加入量为0~0.5M。
6.根据权利要求3所述的在泡沫金属基体上通过恒电位共沉积制备铜铟合金膜的方法,其特征在于:电解液中柠檬酸钠的加入量为0~0.1M。
7.根据权利要求3所述的在泡沫金属基体上通过恒电位共沉积制备铜铟合金膜的方法,其特征在于:电解液pH值控制在2.0~5.0。
8.根据权利要求3所述的在泡沫金属基体上通过恒电位共沉积制备铜铟合金膜的方法,其特征在于:沉积电位为-800~ -1100mV(相对于饱和甘汞电极),沉积时间10~60min,电解液温度为20~50℃。
9.根据权利要求3所述的通过硫化退火得到泡沫金属负载的铜铟硫半导体层的方法,其特征在于:铜铟合金膜的硫化退火过程中,以升华硫为硫源,退火温度控制在300~500℃之间。
10.根据权利要求3所述的通过硫化退火得到泡沫金属负载的铜铟硫半导体层的方法,其特征在于:铜铟合金膜的硫化退火过程中,退火时间为15~120min。
CN201310732089.6A 2013-12-27 2013-12-27 泡沫金属负载的铜铟硫半导体光伏材料制备方法 Pending CN104752552A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310732089.6A CN104752552A (zh) 2013-12-27 2013-12-27 泡沫金属负载的铜铟硫半导体光伏材料制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310732089.6A CN104752552A (zh) 2013-12-27 2013-12-27 泡沫金属负载的铜铟硫半导体光伏材料制备方法

Publications (1)

Publication Number Publication Date
CN104752552A true CN104752552A (zh) 2015-07-01

Family

ID=53591941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310732089.6A Pending CN104752552A (zh) 2013-12-27 2013-12-27 泡沫金属负载的铜铟硫半导体光伏材料制备方法

Country Status (1)

Country Link
CN (1) CN104752552A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428458A (zh) * 2015-12-17 2016-03-23 山东建筑大学 一种硫酸盐体系两步法制备铜铟硫光电薄膜的方法
CN105428459A (zh) * 2015-12-17 2016-03-23 山东建筑大学 一种醋酸盐体系两步法制备铜铟硫光电薄膜的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900368A (en) * 1984-03-12 1990-02-13 Brotz Gregory R Foamed energy cell
CN101000934A (zh) * 2006-12-21 2007-07-18 华侨大学 一种用于染料敏化太阳能电池的高性能金属/石墨复合对电极及其制备方法
CN101567395A (zh) * 2009-05-26 2009-10-28 中国科学院上海硅酸盐研究所 表面织构化n型ZnO基透明导电薄膜及其制备方法
CN102201459A (zh) * 2011-03-30 2011-09-28 山东大学 一种纳米多孔金属负载半导体的光电极材料及其制备方法
CN102653873A (zh) * 2011-03-03 2012-09-05 北京化工大学 电沉积法制备铜铟硫薄膜材料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900368A (en) * 1984-03-12 1990-02-13 Brotz Gregory R Foamed energy cell
CN101000934A (zh) * 2006-12-21 2007-07-18 华侨大学 一种用于染料敏化太阳能电池的高性能金属/石墨复合对电极及其制备方法
CN101567395A (zh) * 2009-05-26 2009-10-28 中国科学院上海硅酸盐研究所 表面织构化n型ZnO基透明导电薄膜及其制备方法
CN102653873A (zh) * 2011-03-03 2012-09-05 北京化工大学 电沉积法制备铜铟硫薄膜材料
CN102201459A (zh) * 2011-03-30 2011-09-28 山东大学 一种纳米多孔金属负载半导体的光电极材料及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428458A (zh) * 2015-12-17 2016-03-23 山东建筑大学 一种硫酸盐体系两步法制备铜铟硫光电薄膜的方法
CN105428459A (zh) * 2015-12-17 2016-03-23 山东建筑大学 一种醋酸盐体系两步法制备铜铟硫光电薄膜的方法

Similar Documents

Publication Publication Date Title
Luo et al. Solution transformation of Cu2O into CuInS2 for solar water splitting
Badawy A review on solar cells from Si-single crystals to porous materials and quantum dots
Yu et al. ZnS/ZnO heteronanostructure as photoanode to enhance the conversion efficiency of dye-sensitized solar cells
Tian et al. Versatile and low-toxic solution approach to binary, ternary, and quaternary metal sulfide thin films and its application in Cu2ZnSn (S, Se) 4 solar cells
Chan et al. Preparation of Cu2ZnSnS4 films by electrodeposition using ionic liquids
Cho et al. Synthesis of Cu2ZnSnS4 thin films by a precursor solution paste for thin film solar cell applications
Chava et al. Ag2S quantum dot sensitized zinc oxide photoanodes for environment friendly photovoltaic devices
Luo et al. Electrochemically deposited Cu2O on TiO2 nanorod arrays for photovoltaic application
Guan et al. Aging precursor solution in high humidity remarkably promoted grain growth in Cu2ZnSnS4 films
Chen et al. High-performance and low-cost dye-sensitized solar cells based on kesterite Cu2ZnSnS4 nanoplate arrays on a flexible carbon cloth cathode
Peng et al. Efficiency enhancement of TiO2 nanodendrite array electrodes in CuInS2 quantum dot sensitized solar cells
CN104269460B (zh) 一种水浴叠层制备太阳能电池吸收层材料CZTS/CZTSSe的方法
Zhang et al. CuInSe2 nanocrystals/CdS quantum dots/ZnO nanowire arrays heterojunction for photovoltaic applications
CN106384669A (zh) 一种光电响应型碳量子点修饰氧化锌光阳极的制备方法
Eskandari et al. Copper selenide as a new counter electrode for zinc oxide nanorod based quantum dot solar cells
CN102931286B (zh) 一种制备铜锌锡硫薄膜太阳能电池吸收层的方法
Vuong et al. H2-and NH3-treated ZnO nanorods sensitized with CdS for photoanode enhanced in photoelectrochemical performance
JP2017054917A (ja) 光電変換層及び光電変換層の製造方法
Zhang et al. Self-cleaning transparent pn junction in CuAlO2/WO3 via high entropy perovskite oxide La (Cu0. 2Cr0. 2Ni0. 2Fe0. 2Co0. 2) O3 transition layer for enhanced photovoltaic conversion
Lee et al. Porous CdS-sensitized electrochemical solar cells
Chen et al. Rational synthesis of (Cu1− xAgx) 2ZnSnS4 nanocrystals with low defect and tuning band gap
CN103811579B (zh) 一种柔性CdTe薄膜太阳能电池及其制备方法
Li et al. Vertical nanosheet-structured ZnO/TiO2 photoelectrodes for highly efficient CdS quantum dot sensitized solar cells
CN108511198A (zh) 一种Ni掺杂的BiVO4薄膜光电阳极、其制备方法与用途
Han et al. Heterojunction Fe 2 O 3-SnO 2 Nanostructured Photoanode for Efficient Photoelectrochemical Water Splitting

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20150701