CN104733132A - 一种获得SiC@SiO2 同轴纳米电缆超疏水表面的改性方法 - Google Patents

一种获得SiC@SiO2 同轴纳米电缆超疏水表面的改性方法 Download PDF

Info

Publication number
CN104733132A
CN104733132A CN201410419279.7A CN201410419279A CN104733132A CN 104733132 A CN104733132 A CN 104733132A CN 201410419279 A CN201410419279 A CN 201410419279A CN 104733132 A CN104733132 A CN 104733132A
Authority
CN
China
Prior art keywords
sic
fas
sio
super
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201410419279.7A
Other languages
English (en)
Inventor
李镇江
赵健
孟阿兰
张猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN201410419279.7A priority Critical patent/CN104733132A/zh
Publication of CN104733132A publication Critical patent/CN104733132A/zh
Pending legal-status Critical Current

Links

Abstract

本发明涉及一种获得SiC@SiO2同轴纳米电缆超疏水表面的改性方法。以FAS为改性剂,采用一种简单、温和、绿色环保的化学包覆法对SiC@SiO2同轴纳米电缆进行疏水改性,将SiC@SiO2同轴纳米电缆在25℃下浸泡于FAS混合溶液中,静置24h,使FAS分子键合在SiC@SiO2同轴纳米电缆表面,从而获得了水静止接触角为153°的SiC@SiO2同轴纳米电缆超疏水表面,经过超疏水处理后未改变其形貌、微观结构及晶态;这将为其他包覆SiO2壳的纳米电缆的超疏水改性处理提供了一种可行性的线索。

Description

一种获得SiC@SiO2 同轴纳米电缆超疏水表面的改性方法
技术领域
本发明涉及一种纳米材料超疏水表面的改性方法,具体为采用化学包覆法对SiC@SiO2同轴纳米电缆进行表面疏水改性处理,获得了表面具有超疏水性的SiC@SiO2同轴纳米电缆。
技术背景
在自然界中,荷叶、水稻叶及水黾腿都具有超疏水性能和自清洁性能,当水滴滴在他们的表面时,可以自由滚动,从而使灰尘颗粒和污染物脱离其表面,这种现象吸引了研究人员对超疏水行为的广泛关注。超疏水表面一般指材料表面与水的静止接触角大于150°,具有自清洁及防腐蚀等特性,使其在工农业生产中具有较大的应用潜力。同时,在日常生活中,具有超疏水性能的表面可以用作抗霜表面、流体减阻和液滴操控等。
基于Wenzel和Cassie模型,超疏水表面是通过降低表面能和构造表面粗糙结构的共同作用而获得,国内外已对制备材料超疏水表面进行了大量的研究,到目前为止,有很多关于超疏水表面的制备方法的报道,例如刘燕等采用化学刻蚀法,首先在铝合金表面进行激光加工,得到了无数微尺度弹坑状结构表面,再将试样浸入化学刻蚀溶液中,最后将化学刻蚀后的铝合金放入含有DTS甲苯溶液中进行修饰,得到了具有微纳米双层分级结构的铝合金超疏水表面(中国发明专利,申请号201310079939.7)。唐叶红等采用等离子体加工法对聚丙烯膜进行处理,然后把其放入不饱和双键氟脂和含长烷基链的丙烯酸酯丙酮混合溶液中浸泡,得到了持久超疏水聚丙烯中空纤维膜(中国发明专利,申请号201210181571.0)。丁桂甫等采用表面微加工技术在飞机蒙皮基底上制得了疏水微结构,在此结构的表面上涂覆了氟油纳米修饰膜,将制备好的疏水微结构和涂覆了纳米修饰膜的基底进行烘烤处理后,得到了用于飞机防冰除冰的纳米超疏水表面(中国发明专利,申请号200910310788.5)。
超疏水表面技术应用于纳米材料,不仅可以起到自清洁和抑制表面腐蚀,还可以降低摩察系数及增强抗霜冻效果。此外,对ZnO@SiO2纳米线(棒)列进行疏水处理后,可以呈现出良好的抗紫外和超疏水性能。(Wang L L,Zhang X T,Fu Y,Li B,Liu Y C.Bioinspiredpreparation of ultrathin SiO2 shell on ZnO nanowire array for ultraviolet-durablesuperhydrophobicity.Langmuir 2009,25(23),13619-13624.Gao Y Q,GereigeI,Labban A E,et al.Highly transparent and UV-resistant superhydrophobic SiO2-coated ZnO nanorod arrays.)众所周知,SiC@SiO2同轴纳米电缆具有良好的机械性能,可以作为高分子聚合物(例如,橡胶密封圈)的增强体,然而,SiC@SiO2同轴纳米电缆本身具有超亲水性能,这将导致其与高分子聚合物相容差、分散不均一,因此,对SiC@SiO2同轴纳米电缆进行超疏水处理具有十分重要的意义。在最近的报道中,Kwak等人采用了一种简单的化学包覆法,以OTS为改性剂对SiC@SiO2同轴纳米电缆进行了疏水改性处理,得到了具有超疏水性的SiC@SiO2同轴纳米电缆表面(Kwak G,Lee M,SenthilK,Yong K.Wettability control and water droplet dynamics on SiC-SiO2core-shell nanowires.Langmuir 2010,26(14),12273-12277);然而,改性剂OTS有巨毒,不可避免地对生态环境造成严重污染,同时,改性温度较低(4℃),不适合规模化处理。
综上所述,开发一种简单、温和、绿色环保的超疏水SiC@SiO2同轴纳米电缆表面的改性方法具有重要的理论意义和广阔的实际应用前景。
发明内容
本发明提出了一种操作简单,条件温和,绿色环保的化学包覆法,以FAS为改性剂对SiC@SiO2同轴纳米电缆进行疏水改性处理,获得了具有超疏水性的SiC@SiO2同轴纳米电缆表面。
本发明的技术方案是:以FAS为改性剂,乙醇和蒸馏水为溶剂,使用冰醋酸调节制得的FAS乙醇蒸馏水混合溶液的PH=4,改性温度为25℃,改性时间为24h,采用化学包覆法使FAS分子键合在SiC@SiO2同轴纳米电缆的表面,得到了具有超疏水表面的SiC@SiO2同轴纳米电缆。其步骤如下:
步骤1:分别量取30μlFAS、3ml乙醇及30μl蒸馏水置于洁净干燥的塑料管中,用玻璃棒搅拌,使FAS迅速溶解,然后往上述盛有FAS乙醇混合溶液的塑料管中滴加冰醋酸,调节FAS乙醇混合溶液的PH=4。
步骤2:取生长在石墨基片上的SiC@SiO2同轴纳米电缆放入上述装有FAS乙醇蒸馏水混合溶液的塑料管中,密封管口,然后将塑料管置于恒温水浴中;
步骤3:调节改性温度为25℃,在此温度下静置24h;
步骤4:用乙醇清洗改性后试样3次,再把其放入鼓风干燥箱中,80℃下干燥12h,得到改性后样品;并对此样品进行水静止接触角测试。
本发明采用化学包覆法,以FAS为改性剂对SiC@SiO2同轴纳米电缆进行疏水改性处理,获得了具有超疏水表面的SiC@SiO2同轴纳米电缆,克服了工艺操作复杂、实验条件苛刻及所用改性剂毒性较大等缺点,该方法具有简单、温和、绿色环保的特点,具有广阔的工业化前景。
附图说明
下面结合附图及实施例对本发明作进一步说明。
图1为未处理的SiC@SiO2同轴纳米电缆SEM照片、TEM照片及水静止接触角照片。
图2为未处理的SiC@SiO2同轴纳米电缆的XRD图谱。
图3为具有超疏水表面的SiC@SiO2同轴纳米电缆的SEM照片及水静止接触角照片。
图4为具有超疏水表面的SiC@SiO2同轴纳米电缆的XRD图谱。
具体实施方式
实施例1.首先,量取30μlFAS、3ml乙醇及30μl蒸馏水置于洁净干燥的塑料管中,用玻璃棒搅拌,使FAS迅速溶解,然后向上述FAS乙醇蒸馏水的混合溶液中滴加冰醋酸,调节混合溶液的PH=4;其次,取生长在石墨基片上的SiC@SiO2同轴纳米电缆浸入上述装有FAS乙醇溶液的塑料管中,密封管口,将塑料管置于恒温水浴中;然后,调节改性温度为25℃,在此温度下静置24h;最后,用乙醇清洗改性后试样3次,再把其放入鼓风干燥箱中,80℃下干燥12h,得到改性后样品;并对此样品进行静止水接触角测试。未处理的SiC@SiO2同轴纳米电缆的SEM、TEM、水静止接触角及XRD表征结果分别见图1及图2;经过表面超疏水处理后的SiC@SiO2同轴纳米电缆的SEM、水静止接触角及XRD表征结果分别见图3及图4。结果表明,超疏水处理后SiC@SiO2同轴纳米电缆表面的水静止接触角为153°,此外,经过超疏水处理后未改变其形貌、微观结构及晶态。

Claims (2)

1.一种获得SiC@SiO2同轴纳米电缆超疏水表面的改性方法,其特征在于:以十七氟奎基三乙氧基硅烷(其缩写为FAS)为改性剂、乙醇和蒸馏水为溶剂,配制FAS乙醇蒸馏水混合溶液,使用冰醋酸调节FAS乙醇蒸馏水混合溶液的PH值,将SiC@SiO2同轴纳米电缆在改性温度为25℃下,浸泡于上述混合溶液中,静置24h,使FAS分子键合在SiC@SiO2同轴纳米电缆的表面,从而获得了水静止接触角为153°的SiC@SiO2同轴纳米电缆超疏水表面。
2.根据权利要求1所述的SiC@SiO2同轴纳米电缆超疏水表面的改性方法,其特征在于:FAS、乙醇及蒸馏水的体积分别为30μl、3ml及30μl,使用冰醋酸调节FAS乙醇蒸馏水混合溶液的PH值为4。
CN201410419279.7A 2014-08-23 2014-08-23 一种获得SiC@SiO2 同轴纳米电缆超疏水表面的改性方法 Pending CN104733132A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410419279.7A CN104733132A (zh) 2014-08-23 2014-08-23 一种获得SiC@SiO2 同轴纳米电缆超疏水表面的改性方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410419279.7A CN104733132A (zh) 2014-08-23 2014-08-23 一种获得SiC@SiO2 同轴纳米电缆超疏水表面的改性方法

Publications (1)

Publication Number Publication Date
CN104733132A true CN104733132A (zh) 2015-06-24

Family

ID=53456953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410419279.7A Pending CN104733132A (zh) 2014-08-23 2014-08-23 一种获得SiC@SiO2 同轴纳米电缆超疏水表面的改性方法

Country Status (1)

Country Link
CN (1) CN104733132A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106495167A (zh) * 2016-10-26 2017-03-15 陕西科技大学 一种SiC/SiO2纳米串珠的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1660704B1 (en) * 2003-09-02 2009-07-15 Sabanci Universitesi Process for preparing superhydrophobic surface compositions, surfaces obtained by said process and use of them
US20090227164A1 (en) * 2005-10-27 2009-09-10 Thomas Broch-Nielsen Superhydrophobic Coating of a Polymer Non-Woven, Especially a Polypropylene Nonwoven
CN101544476A (zh) * 2008-03-28 2009-09-30 皮尔金顿集团有限公司 超疏水性透明涂层及其制备方法
KR20110085591A (ko) * 2010-01-21 2011-07-27 포항공과대학교 산학협력단 가역적 변환이 가능한 초소수성 표면의 형성 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1660704B1 (en) * 2003-09-02 2009-07-15 Sabanci Universitesi Process for preparing superhydrophobic surface compositions, surfaces obtained by said process and use of them
US20090227164A1 (en) * 2005-10-27 2009-09-10 Thomas Broch-Nielsen Superhydrophobic Coating of a Polymer Non-Woven, Especially a Polypropylene Nonwoven
CN101544476A (zh) * 2008-03-28 2009-09-30 皮尔金顿集团有限公司 超疏水性透明涂层及其制备方法
KR20110085591A (ko) * 2010-01-21 2011-07-27 포항공과대학교 산학협력단 가역적 변환이 가능한 초소수성 표면의 형성 방법

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
郭孟: "柔韧超疏水耐高温无机纳米纤维薄膜", 《中国优秀硕士学位论文全文数据库工程科技Ⅰ辑》 *
陈志: "高性能微/纳米结构不粘薄膜的研究", 《材料导报》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106495167A (zh) * 2016-10-26 2017-03-15 陕西科技大学 一种SiC/SiO2纳米串珠的制备方法
CN106495167B (zh) * 2016-10-26 2018-06-19 陕西科技大学 一种SiC/SiO2纳米串珠的制备方法

Similar Documents

Publication Publication Date Title
Cao et al. Preparation of superhydrophobic/oleophilic copper mesh for oil-water separation
Zhou et al. Fabrication of ZnO/epoxy resin superhydrophobic coating on AZ31 magnesium alloy
Kang et al. Durable superhydrophobic glass wool@ polydopamine@ PDMS for highly efficient oil/water separation
Tuo et al. Drag reduction of anisotropic superhydrophobic surfaces prepared by laser etching
Wu et al. Fabrication of ZIF-8@ SiO2 micro/nano hierarchical superhydrophobic surface on AZ31 magnesium alloy with impressive corrosion resistance and abrasion resistance
Gao et al. Biomimetic superhydrophobic surfaces with transition metals and their oxides: A review
CN104789124B (zh) 一种制备稳定超双疏表面的方法
Song et al. Fabrication of super slippery sheet-layered and porous anodic aluminium oxide surfaces and its anticorrosion property
Zhang et al. Underwater drag-reducing effect of superhydrophobic submarine model
Li et al. Facile spray-coating process for the fabrication of tunable adhesive superhydrophobic surfaces with heterogeneous chemical compositions used for selective transportation of microdroplets with different volumes
Jin et al. A durable, superhydrophobic, superoleophobic and corrosion-resistant coating with rose-like ZnO nanoflowers on a bamboo surface
Park et al. Transparent and superhydrophobic films prepared with polydimethylsiloxane-coated silica nanoparticles
Wang et al. Icephobicity of penguins spheniscus humboldti and an artificial replica of penguin feather with air-infused hierarchical rough structures
CN105440747B (zh) 一种超疏水纳米涂料、制作方法及超疏水纳米涂料涂布
CN107080975A (zh) 具有超亲水超疏油性质的油水分离网膜的制备方法
Fu et al. Dynamic study of liquid drop impact on supercooled cerium dioxide: anti-icing behavior
CN102002319B (zh) 一种耐高温的超疏水表面及其制备方法
Kim et al. Engineering lotus leaf-inspired micro-and nanostructures for the manipulation of functional engineering platforms
Rangel et al. Superomniphobic and easily repairable coatings on copper substrates based on simple immersion or spray processes
Momen et al. A ZnO-based nanocomposite coating with ultra water repellent properties
CN105694715A (zh) 一种SiO2/PDMS复合透明超疏水涂层的制备方法
Wang et al. A robust transparent and anti-fingerprint superhydrophobic film
Zhao et al. Study on the hydrophobic property of shark-skin-inspired micro-riblets
CN109251345A (zh) 一种耐久性的超亲水或超疏水塑料表面及其制备方法
Wu et al. A one-step method to fabricate lotus leaves-like ZnO film

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150624

WD01 Invention patent application deemed withdrawn after publication