CN104667301A - 一种单分散核壳结构AuNCs-A@CaP纳米粒子的制备方法及其应用 - Google Patents

一种单分散核壳结构AuNCs-A@CaP纳米粒子的制备方法及其应用 Download PDF

Info

Publication number
CN104667301A
CN104667301A CN201510074268.4A CN201510074268A CN104667301A CN 104667301 A CN104667301 A CN 104667301A CN 201510074268 A CN201510074268 A CN 201510074268A CN 104667301 A CN104667301 A CN 104667301A
Authority
CN
China
Prior art keywords
auncs
solution
obtains
cap
nano particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201510074268.4A
Other languages
English (en)
Other versions
CN104667301B (zh
Inventor
李鹿
王春刚
苏忠民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Normal University
Original Assignee
Northeast Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Normal University filed Critical Northeast Normal University
Priority to CN201510074268.4A priority Critical patent/CN104667301B/zh
Publication of CN104667301A publication Critical patent/CN104667301A/zh
Application granted granted Critical
Publication of CN104667301B publication Critical patent/CN104667301B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Medicinal Preparation (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明属于纳米复合材料及其应用技术领域,具体涉及一种单分散核壳结构AuNCs-ACaP纳米粒子的制备方法及其应用。本发明借助聚丙烯酸的导向与稳定作用,开发一种简单的方法制备单分散核壳结构AuNCs-ACaP纳米粒子,所得产品分散性好,粒径均匀,生物相容性好,且具有孔道结构,在药物输送和生物成像等领域具有非常广阔的应用前景。

Description

一种单分散核壳结构AuNCs-ACaP纳米粒子的制备方法及其应用
技术领域
本发明属于纳米复合材料及其应用技术领域,具体涉及一种单分散核壳结构AuNCs-ACaP纳米粒子的制备方法及其应用。
背景技术
随着纳米科学与纳米技术的发展,在二十一世纪的今天,“纳米医学”已经不是一个新名词。纳米科学技术与生物学、医学在生物传感、医学示踪、疾病的早期诊断、癌症的治疗等多个应用领域的结合,使“纳米医学”逐渐发展成为一个多学科交叉的新的研究方向,开创了医学工程的新纪元。面对着对疾病预防、诊断和治疗的实际需求及由于传统药物非特异性的分布对人体正常组织和器官造成损伤这一亟待解决的难题,纳米技术的发展为获得更加先进的药物输送系统和实现早期检测与诊断带来了新的希望,开辟了新的途径。由于纳米控释系统特有的性质,使其在药物输送方面具有许多优越性;可缓释药物,从而延长药物的作用时间;可达到靶向输送的目的:可在保证药物作用的前提下,减少给药剂量,从而减轻或避免毒副反应;可提高药物的稳定性,有利于储存;也可能建立一些新的给药途径,包括体内局部给药、粘膜吸收给药,多肽类药物的口服给药等等。所以,纳米缓释系统是一种非常有前途的药物新剂型,对其研究也越来越广泛。
随着纳米技术及纳米材料的不断发展和完善,纳米粒子因其独特的结构和理化性质使其在癌症的治疗上取得了明显进展。但纳米粒子作为异物进入机体,会引起一系列机体反应,影响固有免疫细胞的活性,促进免疫分子的分泌,而且纳米粒子对抗原递呈细胞具有活化作用,可促进其对抗原的递呈,还可诱导激活抗原特异性CD8+T细胞免疫应答,从而介导抗原特异性细胞毒效应。此外,纳米粒子可增强体液免疫应答,并导致严重的炎症反应。而选用高生物相容性(Biocampatibility,BC)纳米粒子为药物载体则会在最大程度上避免这些问题的产生。其中金纳米簇(AuNCs)具有良好的生物相容性,稳定的化学和光学性质,因此近些年被作为很有潜力的生物探针。与此同时,磷酸钙壳作为载体材料更是近年来的研究热点。磷酸钙是人体中骨骼与牙齿等的主要成份,并且在血液中存在一定量的钙离子与磷酸根离子,因此磷酸钙纳米粒子具体极好的生物相容性,可作为药物等的理想载体材料。磷酸钙纳米粒子是一种pH 敏感性纳米粒子,在体内血液循环环境中(pH 为7.4),磷酸钙能保持很好的稳定性,保护药物不释放出来。而在细胞的内吞溶酶体的后期,pH 降到4-5,在这一酸性环境中,磷酸钙溶解,从而释放出抗癌药物。
近些年, 磷酸钙纳米材料的合成及其在生物医学中的应用已经成为国内外研究的热点和前沿方向[参考文献:X. Li, X. P. Wang, Y. Sogo, T. Ohno, K. Onuma, A. Ito, Adv. Healthcare Mater. 2013, 2, 863; H. J. Lee, S. E. Kim, K. Kwon, C. Park, C. Kim, J. Yang, S. C. Lee, Chem. Commun. 2010, 46, 377; M. Kester, Y. Heakal, T. Fox, A. Sharma, G. P. Robertson, T. T. Morgan,  E. I. Altinoglu,  A. Tabakovic,  M. R. Parette, S. M. Rouse, V. R. Velasco, J. H. Adair, NANO LETTERS 2008, 8, 4116.]。日本国家材料科学研究所(NIMS)Yusuke Yamauchi课题组以PS-PAA-PEG为模板,合成了空心结构磷酸钙(CaP)纳米球,并详细考察了空心CaP纳米球的细胞毒性,结果表明所制备的CaP纳米材料具有良的生物相容性,为其在生物医学领域的应用研究提供了重要的生物安全性参考资料[参考文献:B. P. Bastakoti, M. Inuoe, S. Yusa, S. H. Liao, K. Wu, K. Nakashima, Y. Yamauchi, Chem. Commun. 2012, 48, 6532.]。在此基础上,该研究组又开发了新型CaP-PS-PAA-PEG复合材料,作为药物传递载体在治疗肝癌上表现出一定的优越性,降低了系统毒性,且具有pH值可控药物释放性能[参考文献:B. P. Bastakoti, K. Wu, M. Inoue, S. Yusa, K. Nakashima, Y. Yamauchi, Chem. Eur. J. 2013, 19, 4812.]。从以上叙述中可以看出,由于磷酸钙纳米材料的特殊性能,使其在纳米医药领域表现出很高的应用价值,目前有关磷酸钙纳米粒子合成的报道也很多,如空心[参考文献:D. Hagmeyer, K. Ganesan, J. Ruesing, D. Schunk, C. Mayer, A. Dey, N. Sommerdijk, M. Epple, J. Mater. Chem. 2011, 21, 9219.]、棒状[J. Klesing, S. Chernousova, M. Epple, J. Mater. Chem. 2012, 22, 199.]等简单结构纳米粒子,对基于磷酸钙的多功能复杂纳米结构构筑的研究较少,特别是对于以磷酸钙为主体材料的单分散核壳结构AuNCs-ACaP纳米粒子的构筑还未有报道。现有合成方法所制备的磷酸钙纳米粒子普遍存在分散性差、粒径不均一、尺寸难调控、合成方法复杂、整体形貌较差等缺陷。因此,开发具一种简单易行,制备单分散、粒径可控的多功能核壳结构AuNCs-ACaP纳米粒子是一个具有挑战性的新课题。
发明内容
本发明提供一种单分散核壳结构AuNCs-ACaP纳米粒子的制备方法及其应用。使用该方法制备的核壳结构AuNCs-ACaP纳米粒子具有分散性好、粒径均匀、生物相容性好等特点,可用于药物输送及多模式生物成像等领域。
本发明单分散核壳结构AuNCs-ACaP纳米粒子的制备方法包括如下步骤:
(1)     取4 ~ 6 mL HAuCl4 (20 mM) 溶液加入到30 ~ 50 mL去离子水中,随后再向其中加入50 ~ 60 mg GSH(谷胱甘肽),在25 ~ 30 oC条件下搅拌5 ~ 10 min使其混合均匀。
(2)     将步骤(1)得到的溶液置于70 ~ 75 oC油浴中避光反应20 ~ 24 h,反应完成后将加热设备关掉,到溶液冷却至室温,待用。
(3)     在100 mL圆底烧瓶中依次加入10 ~ 15 mg氢氧化钙,40 ~ 50 mg聚丙烯酸(Mw = 1800),和20 ~ 25 mL去离子水,磁力搅拌10 ~ 20 min至溶液澄清透明为止。
(4)     将步骤(2)得到的溶液4 ~ 6 mL加入步骤(3)得到的溶液中,磁力搅拌5 ~ 10 min使其混合均匀。
(5)     在磁力搅拌下将40 ~ 60 mL异丙醇缓慢滴加入步骤(4)得到的溶液中,滴加完毕后再向溶液中加入12 ~ 18 mg磷酸氢二氨,在25 ~ 30 oC条件下搅拌反应4 ~ 5 h。
(6)     将步骤(5)得到的混合溶液进行离心分离(8000 ~ 9000 rpm,5 ~ 8 min),所得固体再用去离子水洗涤数次,即得AuNCs-ACaP纳米粒子。
本发明具有如下优点:
1.        本发明合成方法简单,采用一步法合成高分散、粒径均一的核壳结构AuNCs-ACaP纳米粒子。在此反应过程中,借助聚丙烯酸的导向与稳定作用,使得金簇的聚集与磷酸钙壳的生长同步进行,既缩短了反应步骤又保证了粒子的高分散性。
2.        本发明得到的单分散核壳结构AuNCs-ACaP纳米粒子粒径均匀、分散性好,具有良好的生物相容性,可用于药物输送及多模式生物成像。
3.        由于磷酸钙壳的包覆,相比于单独AuNCs,单分散核壳结构AuNCs-ACaP纳米粒子荧光强度大大增加,同时可以很容易的进行离心分离和洗涤。
附图说明
图1、为本发明制备得到的单分散核壳结构AuNCs-ACaP纳米粒子透射电镜图片,插图为单个核壳结构AuNCs-ACaP纳米粒子透射电镜图片;
图2、为本发明制备得到的单分散核壳结构AuNCs-ACaP纳米粒子的扫描电镜图片;
图3 单分散核壳结构AuNCs-ACaP纳米粒子氮气吸附-脱附等温曲线,插图为该纳米粒子孔径分布曲线。
图4、单分散核壳结构AuNCs-ACaP纳米粒子对H-22细胞的荧光成像图片;
图5、单分散核壳结构AuNCs-ACaP纳米粒子对Balb/c鼠的体内荧光成像图片;
图6、单分散核壳结构AuNCs-ACaP纳米粒子在溶液中CT成像图片;
图7、单分散核壳结构AuNCs-ACaP纳米粒子对Balb/c鼠的体内CT成像图片;
具体实施方式
下面结合具体实施例进一步阐述本发明,实施例仅用于说明本发明而不用于限制本发明的保护范围。
具体实施例
实施例1:
取4 mL HAuCl4 (20 mM) 溶液加入到30 mL去离子水中,随后再向其中加入50 mg GSH,在25 oC条件下搅拌5 min使其混合均匀。将溶液置于70 oC油浴中避光反应24 h,反应完成后将加热设备关掉,到溶液冷却至室温,待用。随后,在100 mL圆底烧瓶中依次加入10 mg氢氧化钙、40 mg聚丙烯酸和20 mL去离子水,磁力搅拌5 min,再向溶液中加入4 mL上述待用溶液,继续搅拌5 min,使其混合均匀。随后在磁力搅拌下将20 mL异丙醇缓慢滴加入上述反应液中,滴加完毕后,再向溶液中加入12 mg磷酸氢二氨,在25 oC条件下搅拌反应4 h。最后,将得到的混合溶液进行离心分离(9000 rpm,8 min),所得固体再用去离子水洗涤数次,即得AuNCs-ACaP纳米粒子。
实施例2:
取6 mL HAuCl4 (20 mM) 溶液加入到50 mL去离子水中,随后再向其中加入60 mg GSH在30 oC条件下搅拌10 min使其混合均匀。将步骤(1)得到的溶液置于75 oC油浴中避光反应20 h,反应完成后将加热设备关掉,到溶液冷却至室温,待用。在100 mL圆底烧瓶中依次加入15 mg氢氧化钙、50 mg聚丙烯酸、25 mL去离子水,磁力搅拌10 min,再向溶液中加入6 mL上述待用溶液,继续搅拌10 min,使其混合均匀。随后在磁力搅拌下将25 mL异丙醇缓慢滴加入反应液中,滴加完毕后,再向溶液中加入18 mg磷酸氢二氨,在30 oC条件下搅拌反应5 h。最后,将得到的混合溶液进行离心分离(8000 rpm,5 min),所得固体再用去离子水洗涤数次,即得AuNCs-ACaP纳米粒子。
实施例3:
取5 mL HAuCl4 (20 mM) 溶液加入到45 mL去离子水中,随后再向其中加入55 mg GSH在28 oC条件下搅拌8 min使其混合均匀。将步骤(1)得到的溶液置于73 oC油浴中避光反应22 h,反应完成后将加热设备关掉,到溶液冷却至室温,待用。在100 mL圆底烧瓶中依次加入12 mg氢氧化钙、45 mg聚丙烯酸、23 mL去离子水,磁力搅拌8 min,再向溶液中加入5 mL 上述待用溶液,继续搅拌13 min,使其混合均匀。随后在磁力搅拌下将23 mL异丙醇缓慢滴加入反应液中,滴加完毕后,再向溶液中加入16 mg磷酸氢二氨,在28 oC条件下搅拌反应4.5 h。最后,将得到的混合溶液进行离心分离(8000 rpm,8 min),所得固体再用去离子水洗涤数次,即得AuNCs-ACaP纳米粒子。
上述制备出的单分散核壳结构AuNCs-ACaP纳米复合材料可用于载药及多模式生物成像(光成像和CT成像)。
实施例4:
AuNCs-ACaP纳米粒子细胞荧光成像的步骤为:将400 μL AuNCs-ACaP纳米粒子(25 μg mL-1)与H-22细胞共同培养24小时,然后在共聚焦显微镜下获得H-22细胞荧光成像图片。实施例5:
体内荧光成像步骤为:按照每千克给麻药10 mL(戊巴比妥钠0.7%)的量麻醉小鼠。然后,将用PBS配制的AuNCs-ACaP纳米粒子溶液通过尾静脉注射入小鼠体内。最后,进行荧光成像。
实施例6:
体外CT成像步骤为:用PBS配制不同浓度AuNCs-ACaP纳米粒子溶液,然后用西门子六十四排容积CT机获得CT图像。(参数如下:电压120 kV, 电流280 mA, 狭层厚度1.0 mm)
实施例7:
体内CT成像步骤为:首先,按照每千克给麻药10 mL(戊巴比妥钠0.7%)的量麻醉小鼠。然后,将用PBS配制的AuNCs-ACaP纳米粒子溶液通过尾静脉注射入小鼠体内。最后,进行CT成像。

Claims (2)

1.一种单分散核壳结构AuNCs-ACaP纳米粒子的制备方法,其特征的hi包括如下步骤:
(1)取4 ~ 6 mL 20 mM HAuCl4溶液加入到30 ~ 50 mL去离子水中,再向其中加入50 ~ 60 mg谷胱甘肽GSH,在25 ~ 30 oC条件下搅拌5 ~ 10 min使其混合均匀;
(2)将步骤(1)得到的溶液置于70 ~ 75 oC油浴中避光反应20 ~ 24 h,反应完成后将加热设备关掉,到溶液冷却至室温,待用;
(3)在烧瓶中依次加入10 ~ 15 mg氢氧化钙,40 ~ 50 mg聚丙烯酸Mw = 1800,和20 ~ 25 mL去离子水,磁力搅拌10 ~ 20 min至溶液澄清透明;
(4)将步骤(2)得到的溶液4 ~ 6 mL加入步骤(3)得到的溶液中,磁力搅拌5 ~ 10 min混合均匀;
(5)在磁力搅拌下将40 ~ 60 mL异丙醇缓慢滴加入步骤(4)得到的溶液中,滴加完毕后再向溶液中加入12 ~ 18 mg磷酸氢二氨,在25 ~ 30 oC条件下搅拌反应4 ~ 5 h;
(6)将步骤(5)得到的混合溶液进行离心分离8000 ~ 9000 rpm,5 ~ 8 min,所得固体再用去离子水洗涤数次,即得AuNCs-ACaP纳米粒子。
2.按照权利要求1所述的方法制备的单分散核壳结构AuNCs-ACaP纳米粒子在药物输送及多模式生物成像领域中的应用。
CN201510074268.4A 2015-02-12 2015-02-12 一种单分散核壳结构AuNCs‑A@CaP纳米粒子的制备方法及其应用 Expired - Fee Related CN104667301B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510074268.4A CN104667301B (zh) 2015-02-12 2015-02-12 一种单分散核壳结构AuNCs‑A@CaP纳米粒子的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510074268.4A CN104667301B (zh) 2015-02-12 2015-02-12 一种单分散核壳结构AuNCs‑A@CaP纳米粒子的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN104667301A true CN104667301A (zh) 2015-06-03
CN104667301B CN104667301B (zh) 2017-08-22

Family

ID=53303232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510074268.4A Expired - Fee Related CN104667301B (zh) 2015-02-12 2015-02-12 一种单分散核壳结构AuNCs‑A@CaP纳米粒子的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN104667301B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106215196A (zh) * 2016-08-05 2016-12-14 东北师范大学 碳/磷酸钙/四氧化三铁复合结构纳米粒子的制备方法
CN107309437A (zh) * 2017-07-07 2017-11-03 东北师范大学 一种金纳米星/磷酸钙纳米粒子及其制备方法
CN107638572A (zh) * 2017-08-16 2018-01-30 西安电子科技大学 一种pH响应型超灵敏纳米荧光探针及制备方法
CN111592879A (zh) * 2020-05-29 2020-08-28 重庆大学 稳定型荧光颗粒及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090298115A1 (en) * 2008-05-29 2009-12-03 Chung Yuan Christian University Fluorescent Gold Nanocluster and Method for Forming the Same
CN102083741A (zh) * 2008-07-03 2011-06-01 浦项工科大学校产学协力团 pH敏感性金属纳米粒子及其制造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090298115A1 (en) * 2008-05-29 2009-12-03 Chung Yuan Christian University Fluorescent Gold Nanocluster and Method for Forming the Same
CN102083741A (zh) * 2008-07-03 2011-06-01 浦项工科大学校产学协力团 pH敏感性金属纳米粒子及其制造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BISHNU PRASAD BASTAKOTI AT AL: ""Multifunctional Core-Shell-Corona-Type Polymeric Micelles for Anticancer Drug-Delivery and Imaging"", 《CHEM. EUR. J》 *
宋莎莎等: ""超小金纳米团簇作为CT对比剂的研究"", 《辐射研究与辐射工艺学报》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106215196A (zh) * 2016-08-05 2016-12-14 东北师范大学 碳/磷酸钙/四氧化三铁复合结构纳米粒子的制备方法
CN106215196B (zh) * 2016-08-05 2019-05-14 东北师范大学 碳/磷酸钙/四氧化三铁复合结构纳米粒子的制备方法
CN107309437A (zh) * 2017-07-07 2017-11-03 东北师范大学 一种金纳米星/磷酸钙纳米粒子及其制备方法
CN107638572A (zh) * 2017-08-16 2018-01-30 西安电子科技大学 一种pH响应型超灵敏纳米荧光探针及制备方法
CN111592879A (zh) * 2020-05-29 2020-08-28 重庆大学 稳定型荧光颗粒及其制备方法

Also Published As

Publication number Publication date
CN104667301B (zh) 2017-08-22

Similar Documents

Publication Publication Date Title
Xia et al. Multifunctional and flexible ZrO 2-coated EGaIn nanoparticles for photothermal therapy
Lei et al. Yb3+/Er3+-codoped Bi2O3 nanospheres: probe for upconversion luminescence imaging and binary contrast agent for computed tomography imaging
Fu et al. Mesoporous platinum nanoparticle-based nanoplatforms for combined chemo-photothermal breast cancer therapy
Chen et al. Intrinsic radiolabeling of Titanium-45 using mesoporous silica nanoparticles
Liu et al. Anti‐Biofouling Polymer‐Decorated Lutetium‐Based Nanoparticulate Contrast Agents for In Vivo High‐Resolution Trimodal Imaging
Hirsjärvi et al. Effect of particle size on the biodistribution of lipid nanocapsules: comparison between nuclear and fluorescence imaging and counting
Wang et al. Red-blood-cell-membrane-enveloped magnetic nanoclusters as a biomimetic theranostic nanoplatform for bimodal imaging-guided cancer photothermal therapy
CN104667301B (zh) 一种单分散核壳结构AuNCs‑A@CaP纳米粒子的制备方法及其应用
An et al. Progress in the therapeutic applications of polymer-decorated black phosphorus and black phosphorus analog nanomaterials in biomedicine
Cheng et al. Facile preparation of multifunctional WS2/WOx nanodots for chelator‐free 89Zr‐labeling and in vivo PET imaging
CN105251420A (zh) 一种多功能复合微球的制备方法
US11364312B2 (en) Platinum sulfide protein nanoparticle having near-infrared photothermal effect and multimodal imaging function, preparation method therefor and application thereof
Sun et al. A combined electrohydrodynamic atomization method for preparing nanofiber/microparticle hybrid medicines
CN113694083B (zh) 一种氧化铋/氧化锰复合纳米球及其制备方法和在银屑病治疗中的应用
Sun et al. AgBiS 2-TPP nanocomposite for mitochondrial targeting photodynamic therapy, photothermal therapy and bio-imaging under 808 nm NIR laser irradiation
CN105214090A (zh) 一种Fe3O4@ZnO核壳纳米球的合成方法
Gerken et al. Scalable synthesis of ultrasmall metal oxide radio-enhancers outperforming gold
CN108159437A (zh) 一种多功能普鲁士蓝纳米立方体的室温水相合成方法
CN104815340A (zh) 磁共振成像导向的靶向金属有机骨架药物载体的制备方法
CN105396135B (zh) 靶向性多肽修饰的铁蛋白纳米颗粒装载卟啉二聚体盐复合物及其用途和制备方法
CN108815135B (zh) 两亲双面神结构纳米粒子的制备方法及其应用
CN103211762A (zh) 诊疗一体化新型杂化胶束及其制备方法
CN110559204B (zh) 一种5-氨基酮戊酸水凝胶组合物及其制备方法及应用
CN113908272A (zh) 一种5-ala纳米包覆物及制备方法、用途
He et al. One-pot synthesis of storage-stable, tumor-specific cascade DNA nanobioreactors for ultrasound-promoted synergistic therapy

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170822

Termination date: 20180212