CN106215196B - 碳/磷酸钙/四氧化三铁复合结构纳米粒子的制备方法 - Google Patents

碳/磷酸钙/四氧化三铁复合结构纳米粒子的制备方法 Download PDF

Info

Publication number
CN106215196B
CN106215196B CN201610632268.6A CN201610632268A CN106215196B CN 106215196 B CN106215196 B CN 106215196B CN 201610632268 A CN201610632268 A CN 201610632268A CN 106215196 B CN106215196 B CN 106215196B
Authority
CN
China
Prior art keywords
calcium phosphate
ferroso
carbon
ferric oxide
composite construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610632268.6A
Other languages
English (en)
Other versions
CN106215196A (zh
Inventor
王春刚
李鹿
苏忠民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Normal University
Original Assignee
Northeast Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Normal University filed Critical Northeast Normal University
Priority to CN201610632268.6A priority Critical patent/CN106215196B/zh
Publication of CN106215196A publication Critical patent/CN106215196A/zh
Application granted granted Critical
Publication of CN106215196B publication Critical patent/CN106215196B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/08Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by the carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/06Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations
    • A61K49/18Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes
    • A61K49/1818Nuclear magnetic resonance [NMR] contrast preparations; Magnetic resonance imaging [MRI] contrast preparations characterised by a special physical form, e.g. emulsions, microcapsules, liposomes particles, e.g. uncoated or non-functionalised microparticles or nanoparticles

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明提供一种碳/磷酸钙/四氧化三铁复合结构纳米粒子的制备方法及其应用。本发明以氢氧化钙、聚丙烯酸、异丙醇、氯化亚铁、磷酸氢二氨为原料,经过煅烧混合烘干等开发一种简单的方法制备碳/磷酸钙/四氧化三铁复合结构纳米粒子,所得产品粒径均匀,光热转换效率高、生物相容性好,在光热治疗、药物输送和生物成像等领域具有非常广阔的应用前景。

Description

碳/磷酸钙/四氧化三铁复合结构纳米粒子的制备方法
技术领域
本发明属于纳米复合材料技术领域,具体涉及一种碳/磷酸钙/四氧化三铁复合结构纳米粒子的制备方法。
背景技术
癌症是危害人类健康的重大疾病。不论性别、年龄、社会地位,癌症都直接或间接的影响着人们的生活。自上世纪70年代以来,我国癌症死亡率一直呈持续增长趋势,据统计,我国2011年新发恶性肿瘤337万例,死亡高达211万例,随着癌症在全球的危害不断加重,它已不单是个人的健康问题,还对家庭、社会造成巨大的负担。因而,采用新技术提高现有癌症预警与早期诊断、转移监测、疗效预测及有效治疗的临床方法是目前我国公共卫生领域亟待解决的重大问题。目前,临床中主要使用的治疗手段是手术、化学疗法和放射疗法。其中,化疗和放疗作为非手术治疗手段,分别在化疗药物作用机制、药代动力学、新药开发以及放疗的机制、设备和疗效方面都已取得明显的进展,起到了延长患者预期寿命、缓解症状的作用。然而,由于常用的传统药物分子和治疗手段常常“敌我不分”,不能有效区分肿瘤细胞和正常细胞,因此在杀伤肿瘤细胞的同时也杀伤了人体正常细胞,毒副作用较大,对正常机体造成很大损伤。
面对着对疾病预防、诊断和治疗的实际需求及由于传统药物非特异性的分布对人体正常组织和器官造成损伤这一亟待解决的难题, 多功能纳米材料为肿瘤的精确定位和早期诊断、靶向和联合治疗提供了重要的研究平台。随着纳米技术及纳米材料的不断发展和完善,纳米粒子因其独特的结构和理化性质使其在癌症的治疗上取得了明显进展。近年来,碳光热材料因其近红外区强的光吸收和优异光热转化能力已成为在肿瘤诊疗中的应用的研究热点[参考文献:Li, W. P., Liao, P. Y., Su, C. H., Yeh, C. S., Formationof Oligonucleotide-Gated Silica Shell-Coated Fe3O4-AuCore–ShellNanotrisoctahedra for Magnetically Targeted and Near-Infrared Light-Responsive Theranostic Platform, J. Am. Chem. Soc., 2014, 136, 10062;Huang,P., Rong, P., Lin, J., Li, W., Yan, X., Zhang, M. G., Nie, L., Niu, G., Lu,J., Wang, W., Chen, X., Triphase Interface Synthesis of Plasmonic GoldBellflowers as Near-Infrared Light Mediated Acoustic and ThermalTheranostics, J. Am. Chem. Soc., 2014, 136, 8307.]。另外,具有光、磁、pH刺激响应型的无机介孔纳米粒子因在药物缓释、光学、核磁共振(MR)成像、磁靶向等方面的优异性能也备受关注。但纳米粒子作为异物进入机体,会引起一系列机体反应,影响固有免疫细胞的活性,促进免疫分子的分泌,此外,纳米粒子可增强体液免疫应答,并导致严重的炎症反应。而选用高生物相容性纳米粒子为药物载体则会在最大程度上避免这些问题的产生。磷酸钙具有高生物相容性、良好的生物活性、细胞黏附性、可控的生物降解速率以及优异的传导性能,在生理环境下易被降解吸收,是天然的钙磷储存器,相比其它无机材料优势明显,使其在纳米医药领域表现出很高的应用价值。近年来,有关磷酸钙纳米粒子合成的报道很多,如球形[参考文献:Chen, F., Huang, P., Qi, C., Lu, B. Q., Zhao, X. Y., Li, C.,Wu, J., Cui, D. X., Zhu, Y. J., Multifunctional biodegradable mesoporousmicrospheres of Eu3+-doped amorphous calcium phosphate: microwave-assistedpreparation, pH-sensitive drug release, and bioimaging application, J. Phys.Chem. B, 2014, 2, 7132;Yang, Y., Wang, G., Zhu, G., Xu, X., Pan, H., Tang,R., The effect of amorphous calcium phosphate on protein protection againstthermal denaturation, Chem. Commun., 2015, 51, 8705.]、空心[参考文献:Ding, G.J., Zhu, Y. J., Qi, C., Lu, B. Q., Chen, F., Wu, J., Porous hollowmicrospheres of amorphous calcium phosphate: soybean lecithin templatedmicrowave-assisted hydrothermal synthesis and application in drug delivery,J. Phys. Chem. B, 2015, 3, 1823.]、棒状等简单结构纳米粒子。同时,也有部分对基于磷酸钙的多功能复杂纳米结构构筑的研究[参考文献:Xu, C., Zheng, Y., Gao, W., Xu,J., Zuo, G., Chen, Y., Zhao, M., Li, J., Song, J., Zhang, N., Wang, Z., Zhao,H., Mei, Z., Magnetic Hyperthermia Ablation of Tumors Using Injectable Fe3O4/Calcium Phosphate Cement, ACS Appl. Mat. Interfaces, 2015, 7, 13866;Mi, P.,Dewi, N., Yanagie, H., Kokuryo, D., Suzuki, M., Sakurai, Y., Li, Y., Aoki,I., Ono, K., Takahashi, H., Cabral, H., Nishiyama, N., Kataoka, K., HybridCalcium Phosphate-Polymeric Micelles Incorporating Gadolinium Chelates forImaging-Guided Gadolinium Neutron Capture Tumor Therapy, ACS Nano, 2015, 9,5913;Bastakoti, B. P., Wu, K. C. W., Inoue, M., Yusa, S. I., Nakashima, K.,Yamauchi, Y., Multifunctional Core-Shell-Corona-Type Polymeric Micelles forAnticancer Drug-Delivery and Imaging, Chem. Eur. J., 2013, 19, 4812;Cha, E.J., Sun, I. C., Lee, S. C., Kim, K., Kwon, I. C., Ahn, C. H., Development ofa pH sensitive nanocarrier using calcium phosphate coated gold nanoparticlesas a platform for a potential theranostic material, Macromol. Res., 2012, 20,319.],但暂时局限于简单的包覆及混合,无法根据需要定向可控合成复杂结构纳米材料,此外,现有合成方法所制备的多功能磷酸钙纳米粒子普遍存在分散性差、粒径不均一、尺寸难调控、整体形貌较差等缺陷,严重制约磷酸钙纳米粒子在生物医学领域的应用。因此,选择功能性结构与磷酸钙相结合,制备分散性好、粒径均一的基于磷酸钙的多功能复合结构纳米粒子是一个具有挑战性的课题。到目前为止,还没有文献和专利报道采用本文方法合成高分散的碳/磷酸钙/四氧化三铁复合结构纳米粒子。
发明内容
本发明提供一种碳/磷酸钙/四氧化三铁复合结构纳米粒子的制备方法。使用该方法制备的碳/磷酸钙/四氧化三铁复合结构纳米粒子具有分散性好、光热效率高、粒径均匀、生物相容性好等特点,可用于药物输送及生物成像等领域。
本发明碳/磷酸钙/四氧化三铁复合结构纳米粒子的制备方法包括如下步骤:
(1)在100 mL圆底烧瓶中依次加入5 ~ 10 mg氢氧化钙,30 ~ 50 mg聚丙烯酸(Mw= 1800),和15 ~ 30 mL去离子水,磁力搅拌5 ~ 10 min至溶液澄清透明为止。
(2)在磁力搅拌下将30 ~ 60 mL异丙醇缓慢滴加入步骤(1)得到的溶液中,滴加完毕后再向溶液中加入5 ~ 10 mg氯化亚铁,室温搅拌1 ~ 2 h。
(3)在磁力搅拌下将6 ~ 12 mg磷酸氢二氨加入步骤(2)得到的溶液中,在25 ~ 30oC条件下搅拌反应8 ~ 10 h。
(4)将步骤(3)得到的混合溶液进行离心分离(7000 ~ 9000 rpm,5 ~ 10 min),所得沉淀在80 ~ 100 oC烘箱中烘干10 ~ 15 h。
(5)将步骤(4)得到的固体置于管式炉中,在500 ~ 700 oC氩气保护下煅烧5 ~ 10h,得到碳/磷酸钙/四氧化三铁复合结构纳米粒子。
本发明具有如下优点:
1.本发明合成方法简单,采用一步法合成高分散、粒径均一的碳/磷酸钙/四氧化三铁复合结构纳米粒子,既缩短了反应步骤又保证了粒子的高分散性。
2.本发明得到的碳/磷酸钙/四氧化三铁复合结构纳米粒子粒径均匀、分散性好,具有良好的光热转换能力、磁靶向性能及生物相容性,可用于药物输送和生物成像。
附图说明
图1、碳/磷酸钙/四氧化三铁复合结构纳米粒子的透射电镜图片。插图为碳/磷酸钙/四氧化三铁复合结构纳米粒子扫描电镜图片;
图2、碳/磷酸钙/四氧化三铁复合结构纳米粒子面扫描图片;
图3、不同浓度碳/磷酸钙/四氧化三铁复合结构纳米粒子水溶液光热效果曲线;
图4、碳/磷酸钙/四氧化三铁复合结构纳米粒子在300 K条件下测试的磁滞曲线。插图是碳/磷酸钙/四氧化三铁复合结构纳米粒子分散在水溶液中和在外加磁场作用后的照片;
图5、碳/磷酸钙/四氧化三铁复合结构纳米粒子在溶液和细胞中的核磁成像图片;
图6、不同浓度空白碳/磷酸钙/四氧化三铁复合结构纳米粒子、装载阿霉素的碳/磷酸钙/四氧化三铁复合结构纳米粒子、激光照射下装载阿霉素的碳/磷酸钙/四氧化三铁复合结构纳米粒子及游离阿霉素溶液对Hep-A-22 细胞的体外细胞毒性。
具体实施方式
下面结合具体实施例进一步阐述本发明,实施例仅用于说明本发明而不用于限制本发明的保护范围。
具体实施例
实施例1:
在100 mL圆底烧瓶中依次加入5 mg氢氧化钙、30 mg聚丙烯酸和15 mL去离子水,在25 oC条件下磁力搅拌6 min至溶液澄清透明为止。随后在磁力搅拌下将30 mL异丙醇缓慢滴加入反应液,滴加完毕后再向溶液中加入5 mg氯化亚铁,室温搅拌1 h后,再将6 mg磷酸氢二氨加入溶液中,室温搅拌反应8 h。然后将反应液离心分离(7000 rpm,10 min),所得沉淀在100 oC烘箱中烘干10 h后,再在氩气保护下500 °C煅烧10 h,得到碳/磷酸钙/四氧化三铁复合结构纳米粒子。
实施例2:
在100 mL圆底烧瓶中依次加入10 mg氢氧化钙、50 mg聚丙烯酸和30 mL去离子水,在25 oC条件下磁力搅拌10 min至溶液澄清透明为止。随后在磁力搅拌下将60 mL异丙醇缓慢滴加入反应液,滴加完毕后再向溶液中加入10 mg氯化亚铁,室温搅拌1 h后,再将12 mg磷酸氢二氨加入溶液中,室温搅拌反应10 h。然后将反应液离心分离(8000 rpm,10 min),所得沉淀在80 oC烘箱中烘干15 h后,再在氩气保护下700 °C煅烧8 h,得到碳/磷酸钙/四氧化三铁复合结构纳米粒子。
实施例3:
在100 mL圆底烧瓶中依次加入8 mg氢氧化钙、40 mg聚丙烯酸和20 mL去离子水,在25 oC条件下磁力搅拌10 min至溶液澄清透明为止。随后在磁力搅拌下将50 mL异丙醇缓慢滴加入反应液,滴加完毕后再向溶液中加入8 mg氯化亚铁,室温搅拌1 h后,再将10 mg磷酸氢二氨加入溶液中,室温搅拌反应12 h。然后将反应液离心分离(9000 rpm,5 min),所得沉淀在90 oC烘箱中烘干12 h后,再在氩气保护下600 °C煅烧6 h,得到碳/磷酸钙/四氧化三铁复合结构纳米粒子。

Claims (1)

1.碳/磷酸钙/四氧化三铁复合结构纳米粒子的制备方法,其特征是具体步骤如下:
(1)在100 mL圆底烧瓶中依次加入5 ~ 10 mg氢氧化钙,30 ~ 50 mg聚丙烯酸Mw =1800,和15 ~ 30 mL去离子水,磁力搅拌5 ~ 10 min至溶液澄清透明为止;
(2)在磁力搅拌下将30 ~ 60 mL异丙醇缓慢滴加入步骤(1)得到的溶液中,滴加完毕后再向溶液中加入5 ~ 10 mg氯化亚铁,室温搅拌1 ~ 2 h;
(3)在磁力搅拌下将6 ~ 12 mg磷酸氢二铵 加入步骤(2)得到的溶液中,在25 ~ 30 oC条件下搅拌反应8 ~ 10 h;
(4)将步骤(3)得到的混合溶液进行离心分离7000 ~ 9000 rpm,5 ~ 10 min,所得沉淀在80 ~ 100 oC烘箱中烘干10 ~ 15 h;
(5)将步骤(4)得到的固体置于管式炉中,在500 ~ 700 oC氩气保护下煅烧5 ~ 10 h,得到碳/磷酸钙/四氧化三铁复合结构纳米粒子。
CN201610632268.6A 2016-08-05 2016-08-05 碳/磷酸钙/四氧化三铁复合结构纳米粒子的制备方法 Expired - Fee Related CN106215196B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610632268.6A CN106215196B (zh) 2016-08-05 2016-08-05 碳/磷酸钙/四氧化三铁复合结构纳米粒子的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610632268.6A CN106215196B (zh) 2016-08-05 2016-08-05 碳/磷酸钙/四氧化三铁复合结构纳米粒子的制备方法

Publications (2)

Publication Number Publication Date
CN106215196A CN106215196A (zh) 2016-12-14
CN106215196B true CN106215196B (zh) 2019-05-14

Family

ID=57547630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610632268.6A Expired - Fee Related CN106215196B (zh) 2016-08-05 2016-08-05 碳/磷酸钙/四氧化三铁复合结构纳米粒子的制备方法

Country Status (1)

Country Link
CN (1) CN106215196B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107309437B (zh) * 2017-07-07 2019-10-22 东北师范大学 一种金纳米星/磷酸钙纳米粒子及其制备方法
CN109620955B (zh) * 2018-10-31 2021-08-20 东莞理工学院 一种生物可降解介孔纳米磁性材料及其制备方法
CN109616270A (zh) * 2018-10-31 2019-04-12 东莞理工学院 一种磷钙相载CuO纳米超顺磁材料及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101721749A (zh) * 2009-12-04 2010-06-09 北京化工大学 四氧化三铁/磷酸钙核壳结构纳米粒子及其制备方法
CN102614549A (zh) * 2012-03-07 2012-08-01 北京化工大学 一种四氧化三铁磷酸钙核壳纳米磁性粒子及生物矿化法的制备方法
CN104667301A (zh) * 2015-02-12 2015-06-03 东北师范大学 一种单分散核壳结构AuNCs-A@CaP纳米粒子的制备方法及其应用
CN104984354A (zh) * 2015-06-15 2015-10-21 武汉理工大学 聚丙烯酸-磷酸钙复合纳米药物载体及其制备方法和应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101721749A (zh) * 2009-12-04 2010-06-09 北京化工大学 四氧化三铁/磷酸钙核壳结构纳米粒子及其制备方法
CN102614549A (zh) * 2012-03-07 2012-08-01 北京化工大学 一种四氧化三铁磷酸钙核壳纳米磁性粒子及生物矿化法的制备方法
CN104667301A (zh) * 2015-02-12 2015-06-03 东北师范大学 一种单分散核壳结构AuNCs-A@CaP纳米粒子的制备方法及其应用
CN104984354A (zh) * 2015-06-15 2015-10-21 武汉理工大学 聚丙烯酸-磷酸钙复合纳米药物载体及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Facile and Scalable Synthesis of Novel Spherical Au Nanocluster Assemblies@Polyacrylic Acid/Calcium Phosphate Nanoparticles for Dual-Modal Imaging-Guided Cancer Chemotherapy;Lu Li et al;《small》;20150305;第11卷(第26期);第3162-3173页
Facile one-pot synthesis of carbon/calcium phosphate/Fe3O4 composite nanoparticles for simultaneous imaging and pH/NIR-responsive drug delivery;Mingyu Gou et al;《Chem. Commun.》;20160818;第52卷;第11068-11071页
Magnetic Hyperthermia Ablation of Tumors Using Injectable Fe3O4/Calcium Phosphate Cement;Chunyan Xu et al;《ACS Appl. Mater. Interfaces》;20150612;第7卷;第13866-13875页

Also Published As

Publication number Publication date
CN106215196A (zh) 2016-12-14

Similar Documents

Publication Publication Date Title
Wang et al. Near-infrared inorganic nanomaterial-based nanosystems for photothermal therapy
Ni et al. Oxygen vacancy enables markedly enhanced magnetic resonance imaging-guided photothermal therapy of a Gd3+-doped contrast agent
CN105997944B (zh) 一种具有磁热、光热效应的纳米药物载体及其制备方法
Shen et al. Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation
CN108434462B (zh) 一种介孔聚多巴胺负载羰基锰的多功能纳米诊疗剂及其制备方法与应用
CN106215196B (zh) 碳/磷酸钙/四氧化三铁复合结构纳米粒子的制备方法
Guo et al. Emerging biocompatible nanoplatforms for the potential application in diagnosis and therapy of deep tumors
KR102175449B1 (ko) 산화철/중원자-할로겐 화합물의 코어/쉘 구조 자성 나노입자
CN105031671A (zh) 基于普鲁士蓝的智能pH触发MRI监测药物释放的协同纳米诊疗剂及其制备方法
Fu et al. MoS 2 nanosheets encapsulated in sodium alginate microcapsules as microwave embolization agents for large orthotopic transplantation tumor therapy
CN110819339B (zh) Cu-氨基酸复合上转换纳米材料及其制备方法
Li et al. Cobalt phosphide nanoparticles applied as a theranostic agent for multimodal imaging and anticancer photothermal therapy
Chen et al. Multifunctional PVP-Ba2GdF7: Yb3+, Ho3+ coated on Ag nanospheres for bioimaging and tumor photothermal therapy
Long et al. Highly stable microwave susceptible agents via encapsulation of Ti-mineral superfine powders in urea-formaldehyde resin microcapsules for tumor hyperthermia therapy
CN108671230A (zh) 一种金纳米壳磁性plga微胶囊及其制备方法
Lu et al. Multifunctional Cu1. 94S-Bi2S3@ polymer nanocomposites for computed tomography imaging guided photothermal ablation
Nahar et al. Surface-modified CoFe2O4 nanoparticles using Folate-Chitosan for cytotoxicity Studies, hyperthermia applications and Positive/Negative contrast of MRI
An et al. Manganese-functionalized MXene theranostic nanoplatform for MRI-guided synergetic photothermal/chemodynamic therapy of cancer
Zhao et al. Acidity-responsive nanocages as robust reactive oxygen species generators with butterfly effects for maximizing oxidative damage and enhancing cancer therapy
Pan et al. Facile preparation of hyaluronic acid and transferrin co-modified Fe 3 O 4 nanoparticles with inherent biocompatibility for dual-targeting magnetic resonance imaging of tumors in vivo
Yao et al. An intelligent tumor microenvironment responsive nanotheranostic agent for T 1/T 2 dual-modal magnetic resonance imaging-guided and self-augmented photothermal therapy
Zhou et al. A multifunctional nanoplatform based on Fe3O4@ Au NCs with magnetic targeting ability for single NIR light-triggered PTT/PDT synergistic therapy of cancer
Yang et al. Hybrid FeWO4-Hyaluronic Acid Nanoparticles as a Targeted Nanotheranostic Agent for Multimodal Imaging-Guided Tumor Photothermal Therapy
Yuan et al. Magnetic two-dimensional nanocomposites for multimodal antitumor therapy: a recent review
CN106963951B (zh) 氧化石墨烯/钨酸锰/聚乙二醇纳米杂化材料及其制备

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information

Inventor after: Wang Chungang

Inventor after: Li Lu

Inventor after: Su Zhongmin

Inventor before: Li Lu

Inventor before: Wang Chungang

Inventor before: Su Zhongmin

CB03 Change of inventor or designer information
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190514

Termination date: 20190805

CF01 Termination of patent right due to non-payment of annual fee