CN104638143A - 有机电致发光器件及其制备方法 - Google Patents

有机电致发光器件及其制备方法 Download PDF

Info

Publication number
CN104638143A
CN104638143A CN201310574116.1A CN201310574116A CN104638143A CN 104638143 A CN104638143 A CN 104638143A CN 201310574116 A CN201310574116 A CN 201310574116A CN 104638143 A CN104638143 A CN 104638143A
Authority
CN
China
Prior art keywords
layer
rubidium
thickness
small molecule
compound layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201310574116.1A
Other languages
English (en)
Inventor
周明杰
黄辉
张振华
王平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oceans King Lighting Science and Technology Co Ltd
Shenzhen Oceans King Lighting Engineering Co Ltd
Original Assignee
Oceans King Lighting Science and Technology Co Ltd
Shenzhen Oceans King Lighting Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oceans King Lighting Science and Technology Co Ltd, Shenzhen Oceans King Lighting Engineering Co Ltd filed Critical Oceans King Lighting Science and Technology Co Ltd
Priority to CN201310574116.1A priority Critical patent/CN104638143A/zh
Publication of CN104638143A publication Critical patent/CN104638143A/zh
Pending legal-status Critical Current

Links

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种有机电致发光器件及其制备方法,该有机电致发光器件为依次层叠的阳极导电基板、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层以及阴极层,所述电子注入层包括第一铷化合物层、有机硅小分子掺杂层与第二铷化合物层。本发明有机电致发光器件的电子注入层中,第一铷化合物层的铷化合物由于其熔点较低,容易蒸镀,由于有金属离子的存在,功函数较低,可降低电子传输层与注入层之间的电子注入势垒,有利于电子的注入。

Description

有机电致发光器件及其制备方法
技术领域
本发明涉及光电子器件领域,尤其涉及一种有机电致发光器件。本发明还涉及该有机电致发光器件的制备方法。
背景技术
1987年,美国Eastman Kodak公司的C.W.Tang和VanSlyke报道了有机电致发光研究中的突破性进展。利用超薄薄膜技术制备出了高亮度,高效率的双层有机电致发光器件(OLED),其在10V下亮度达到1000cd/m2,其发光效率为1.51lm/W、寿命大于100小时。
但在现有的有机电致发光器件中,电子注入层是重要的功能层之一,在制造过程中,由于电子注入层所选材料的隔绝水氧能力不强,水汽会经由裂缝渗入而影响薄膜晶体管的电性。同时所选材料也不利于有利于电子的注入,故电子的传输速率较低,比空穴传输速率低两三个数量级,因此,极易造成激子复合几率的低下,并且易使其复合的区域不在发光区域内,从而使发光效率降低。
发明内容
本发明的目的在于解决上述现有技术存在的问题和不足,提供一种有机电致发光器件及其制备方法以提高有机电致发光器件的出光效率。
本发明针对上述技术问题而提出的技术方案为:一种有机电致发光器件,该有机电致发光器件为层状结构,该层状结构为:依次层叠的阳极导电基板、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层以及阴极层,所述电子注入层包括第一铷化合物层、有机硅小分子掺杂层与第二铷化合物层;其中,所述的第一铷化合物层材料为碳酸铷、氯化铷、硝酸铷或硫酸铷;
所述有机硅小分子掺杂层的材质为有机硅小分子与电子传输材料,所述有机硅小分子层的材质为二苯基二(o-甲苯基)硅、p-二(三苯基硅)苯、1,3-双(三苯基硅)苯或p-双(三苯基硅)苯,所述电子传输材料为4,7-二苯基-1,10-菲罗啉、2-(4′-叔丁苯基)-5-(4′-联苯基)-1,3,4-恶二唑、8-羟基喹啉铝或N-芳基苯并咪唑;
所述第二铷化合物层材料为碳酸铷、氯化铷、硝酸铷或硫酸铷。
所述有机硅小分子材料与所述电子传输材料的掺杂质量比为2:1~6:1。
所述第一铷化合物层厚度为10-30nm,所述有机硅小分子掺杂层厚度为30-80nm,所述第一铷化合物层厚度为5-20nm。
所述空穴注入层的材质为三氧化钼、三氧化钨或五氧化二钒;
所述空穴传输层的材质为1,1-二[4-[N,N′-二(p-甲苯基)氨基]苯基]环己烷、4,4′,4″-三(咔唑-9-基)三苯胺或N,N′-(1-萘基)-N,N′-二苯基-4,4′-联苯二胺;
所述发光层的材质为4-(二腈甲基)-2-丁基-6-(1,1,7,7-四甲基久洛呢啶-9-乙烯基)-4H-吡喃、9,10-二-β-亚萘基蒽、4,4′-双(9-乙基-3-咔唑乙烯基)-1,1′-联苯或8-羟基喹啉铝;
所述电子传输层的材质为4,7-二苯基-1,10-菲罗啉、1,2,4-三唑衍生物或N-芳基苯并咪唑;
所述阴极的材质为银、铝、铂或金。
本发明还提出一种有机电致发光器件的制备方法,其包括如下步骤:(a)在清洁后的玻璃上通过磁控溅射设备来制备导电阳极薄膜而得到阳极导电基板,再在所述阳极导电基板上依次蒸镀空穴注入层、空穴传输层、发光层、电子传输层;
(b)使用热阻蒸镀设备在步骤(a)制得的电子传输层上热阻蒸镀制备第一铷化合物层,然后在所述第一铷化合物层上热阻蒸镀制备有机硅小分子掺杂层,再在所述有机硅小分子掺杂层上热阻蒸镀制备第二铷化合物层,从而得到电子注入层;其中,
所述的第一铷化合物层材料为碳酸铷、氯化铷、硝酸铷或硫酸铷;
所述有机硅小分子掺杂层的材质为有机硅小分子与电子传输材料,所述有机硅小分子层的材质为二苯基二(o-甲苯基)硅、p-二(三苯基硅)苯、1,3-双(三苯基硅)苯或p-双(三苯基硅)苯,所述电子传输材料为4,7-二苯基-1,10-菲罗啉、2-(4′-叔丁苯基)-5-(4′-联苯基)-1,3,4-恶二唑、8-羟基喹啉铝或N-芳基苯并咪唑;
所述第二铷化合物层材料为碳酸铷、氯化铷、硝酸铷或硫酸铷。
(c)在步骤(b)制得的电子注入层上蒸镀制备阴极层,从而得到所述的有机电致发光器件。
在所述步骤(a)中,所述磁控溅射设备的加速电压为300~800V,磁场为50~200G,功率密度为1~40W/cm2;所述空穴传输层、发光层以及电子传输层的蒸镀速率为0.1~1nm/s。
在所述步骤(b)中,所述热阻蒸镀设备的蒸镀速率为0.1~1nm/s;所述第一铷化合物层厚度为10-30nm,所述有机硅小分子掺杂层厚度为30-80nm,所述第一铷化合物层厚度为5-20nm。
在所述步骤(c)中,所述阴极层的蒸镀速率为1~10nm/s。
所述电子注入层的各组分的性能如下:
本发明的电子注入层包括第一铷化合物层、有机硅小分子掺杂层与第二铷化合物层。
第一铷化合物层的铷化合物由于其熔点较低,容易蒸镀,由于有金属离子的存在,功函数较低,可降低电子传输层与注入层之间的电子注入势垒,有利于电子的注入,同时第一铷化合物层的厚度为10-30nm nm,该厚度适中,即可避免第一铷化合物层过厚而形成团簇,从而形成电子缺陷而影响电荷的传输,也可避免第一铷化合物层太薄而造成电子失去了传输路径,从而降低传输速率;
而有机硅小分子掺杂层由宽能隙的有机硅小分子材料与电子传输材料组成,有机硅小分子的玻璃化转变温度都很低(50度以下),极易结晶,结晶后的晶体结构对光有散射作用,加强光的散射,提高出光效率。电子传输材料可加强电子的传输速率,从而提高激子的复合几率,同时,有机硅小分子材料与电子传输材料的掺杂质量比为2:1~6:1,在这个范围可保证有机硅小分子材料的性能,也可防止有机硅小分子材料过多使材料失去活性,从而不利于传输载流子,另外有机硅小分子材料的厚度为30~80nm,该厚度适中,即可避免有机硅小分子材料过厚而使有机硅小分子材料形成电子缺陷,也可避免有机硅小分子材料太薄而使有机硅小分子材料被电流击穿,从而使有机电致发光器件烧坏;
第二铷化合物层可降低阴极与掺杂层之间的电子注入势垒,提高注入效率,且金属离子可进一步加强电子的传输速率。同时第二铷化合物层的厚度为5~20nm,该厚度适中,即可避免第二铷化合物层过厚而使第二铷化合物层形成团簇,从而形成电子缺陷而影响电荷的传输,也可避免第二铷化合物层太薄而造成电子失去了传输路径,从而降低传输速率;
总体而言,与现有技术相比,本发明的有机电致发光器件及其制备方法,具有以下的优点:铷化合物层的铷化合物由于其熔点较低,容易蒸镀,由于有金属离子的存在,功函数较低,可降低电子传输层与注入层之间的电子注入势垒,有利于电子的注入,而铷化合物掺杂层有利于电子的注入,加强电子的传输速率,从而提高出光效率。有机硅小分子极易结晶,结晶后的晶体结构对光有散射作用,加强光的散射,提高出光效率。电子传输材料可加强电子的传输速率,从而提高激子的复合几率。
附图说明
图1是本发明实施例1的有机电致发光器件的结构示意图。
图2是实施例1的有机电致发光器件与对比例的电流密度与电流效率的关系图。
具体实施方式
以下结合实施例,对本发明予以进一步地详尽阐述。
本发明的有机电致发光器件为层状结构,每层依次为:阳极导电基板、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层以及阴极层。
对上述有机电致发光器件的制备方法,具体包括以下步骤:
1、将玻璃用蒸馏水、乙醇冲洗干净后,放在异丙醇中浸泡一个晚上。
2、在上述步骤清洁后的玻璃上制备导电阳极薄膜而得到阳极导电基板,接着在阳极导电基板上依次蒸镀制备空穴注入层、空穴传输层、发光层、电子传输层。
3、接着在上述电子传输层上制备电子注入层,电子注入层为第一铷化合物层、有机硅小分子掺杂层与第二铷化合物层组成。采用热阻蒸镀所述第一铷化合物层,其材料为碳酸铷(Rb2CO3)、氯化铷(RbCl)、硝酸铷(RbNO3)硫酸铷(Rb2SO4),厚度为10-30nm。再采用热阻蒸镀所述有机硅小分子掺杂层,其为有机硅小分子与电子传输材料进行掺杂。所述有机硅小分子层为能隙为-3.5~-5.5eV的有机硅小分子材料,具体为二苯基二(o-甲苯基)硅(UGH1)、p-二(三苯基硅)苯(UGH2)、1,3-双(三苯基硅)苯(UGH3)或p-双(三苯基硅)苯(UGH4)。所述电子传输材料为4,7-二苯基-1,10-菲罗啉(Bphen)、2-(4′-叔丁苯基)-5-(4′-联苯基)-1,3,4-恶二唑(PBD)、8-羟基喹啉铝(Alq3)或N-芳基苯并咪唑(TPBi),所述的有机硅小分子材料与电子传输材料的掺杂质量比为2:1~6:1,厚度为30-80nm。最后在有机硅小分子掺杂层上采用热阻蒸镀所述第二铷化合物层,其材料为碳酸铷(Rb2CO3)、氯化铷(RbCl)、硝酸铷(RbNO3)或硫酸铷(Rb2SO4),厚度为5-20nm。
4、最后制备金属阴极。
有机电致发光器件中,其他功能层的材质和厚度如下:
所述玻璃为市售玻璃。
所述阳极导电基板为铟锡氧化物薄膜(ITO)、掺铝的氧化锌薄膜(AZO)或掺铟的氧化锌薄膜(IZO),采用磁控溅射制备,厚度为50-300nm,优选为ITO,厚度为100nm。
阳极导电基板包括导电阳极薄膜和玻璃,其导电阳极薄膜的材质为导电氧化物,包括氧化铟锡(ITO)、掺铝氧化锌(AZO)、掺铟氧化锌(IZO)或掺氟氧化锌(FTO)的任意一种,其基板的材质可为玻璃、塑料或金属,可以自制,也可以市购获得。在实际应用中,可以根据需要选择其他合适的材料作为阳极导电基板。在实际应用中,可以在阳极导电基板上制备所需的有机电致发光器件的阳极图形。阳极导电基板为现有技术,在此不再赘述。
所述空穴注入层材料采用三氧化钼(MoO3),还可采用三氧化钨(WO3)或五氧化二钒(V2O5),厚度为20-80nm,优选为MoO3,厚度为25nm。
所述空穴传输材料采用的是1,1-二[4-[N,N′-二(p-甲苯基)氨基]苯基]环己烷(TAPC)、4,4′,4″-三(咔唑-9-基)三苯胺(TCTA)、N,N’-(1-萘基)-N,N’-二苯基-4,4’-联苯二胺(NPB)。厚度为20-60nm,优选为TCTA,厚度为50nm。
所述发光层为4-(二腈甲基)-2-丁基-6-(1,1,7,7-四甲基久洛呢啶-9-乙烯基)-4H-吡喃(DCJTB)、9,10-二-β-亚萘基蒽(ADN)、4,4′-双(9-乙基-3-咔唑乙烯基)-1,1′-联苯(BCzVBi)、8-羟基喹啉铝(Alq3),厚度为5-40nm,优选为BCzVBi,厚度优选为24nm。
所述电子传输层采用4,7-二苯基-1,10-菲罗啉(Bphen)、1,2,4-三唑衍生物(如TAZ)或N-芳基苯并咪唑(TPBI),厚度为40-250nm,优选为Bphen,厚度为150nm。
所述阴极为银(Ag)、铝(Al)、铂(Pt)或金(Au),厚度为80-250nm,优选为Ag,厚度为150nm。
以下以实施例1~4对本发明的有机电致发光器件及其制备方法作具体说明:
实施例1
如图1所示,本实施例中的有机电致发光器件为层状结构,每层依次为:
玻璃/IZO的阳极导电基板101、MoO3材质的空穴注入层102、TAPC材质的空穴传输层103、ADN材质的发光层104、TPBI材质的电子传输层105、Rb2CO3材质的第一铷化合物层106、UGH2:Alq3材质的有机硅小分子掺杂层107、RbCl材质的第二铷化合物层108以及Ag材质的阴极层109。第一铷化合物层106、有机硅小分子掺杂层107和第二铷化合物层108组成电子注入层。(其中斜杆“/”表示层状结构,冒号“:”表示相互掺杂)
上述有机电致发光器件依次按如下步骤制备:
1、将玻璃用蒸馏水、乙醇冲洗干净后,放在异丙醇中浸泡一个晚上。
2、将上述步骤1清洁后的玻璃置于磁控溅射设备下,将磁控溅射设备的工艺参数设置为700V的加速电压、120G的磁场以及250W/cm2的功率密度,使用磁控溅射设备在玻璃上制备材料为IZO且厚度为50nm的导电阳极薄膜,从而制得阳极导电基板101。
3、接着将步骤2制备得的阳极导电基板101转置于热阻蒸镀制备下,将热阻蒸镀制备的工艺参数设置为0.2nm/s的蒸镀速率和8×10-4Pa的工作压强,使用热阻蒸镀制备在阳极导电基板101依次蒸镀材料为三氧化钨且厚度为25nm的空穴注入层102、材料为1,1-二[4-[N,N′-二(p-甲苯基)氨基]苯基]环己烷且厚度为50nm的空穴传输层103、材料为9,10-二-β-亚萘基蒽且厚度为24nm的发光层104、材料为N-芳基苯并咪唑且厚度为150nm的电子传输层105。
4、然后在上述电子传输层105上依次制备第一铷化合物层106、有机硅小分子掺杂层107和第二铷化合物层108:
首先采用热阻蒸镀制备第一铷化合物层106,材料为Rb2CO3,制得的厚度为13nm;
接着在第一铷化合物层106上采用热阻蒸镀制备UGH2:Alq3材质的有机硅小分子掺杂层107,UGH2与Alq3的掺杂质量比为4:1,制得的厚度为50nm;
然后在铷化合物掺杂层107上采用热阻蒸镀第二铷化合物层108,厚度为10nm,材料为RbCl。
5、最后蒸镀制备金属阴极层109,蒸镀速率为2nm/s,所用材质为银,厚度为80nm,从而得到所需要的电致发光器件。
图2为本实施例1的有机电致发光器件与一般器件的电流密度与电流效率的关系图。
测试与制备设备为高真空镀膜系统(沈阳科学仪器研制中心有限公司),美国海洋光学Ocean Optics的USB4000光纤光谱仪测试电致发光光谱,美国吉时利公司的Keithley2400测试电学性能,日本柯尼卡美能达公司的CS-100A色度计测试亮度和色度。
所述一般器件的结构为普通玻璃/ITO/MoO3/TCTA/BCzVBi/Bphen/Rb2CO3/UGH2:Alq3/RbCl/Ag。图2中,横坐标为电流密度的大小,纵坐标为流明效率的大小,曲线1为实施例1有机电致发光器件的电流密度与流明效率的关系曲线,曲线2为对比例器件的电流密度与流明效率的关系曲线。
从图2可以看到,在不同电流密度下,实施例1的流明效率都比对比例的要大,电流效率效率为8.38cd/A,而对比例的仅为6.57cd/A,而且对比例的流明效率随着电流密度的增大而快速下降,这说明,本发明专利的电子注入层可降低电子传输层与注入层之间的电子注入势垒,有利于电子的注入,加强光的散射,提高激子的复合几率,降低阴极与掺杂层之间的电子注入势垒,提高注入效率,这种方法有利于提高器件的发光效率。
实施例2
以下实施例2-4的有机电致发光器件的层状结构与实施例1的层状结构基本相同,故在此不再加图示说明。
本实施例中的有机电致发光器件为层状结构,每层依次为:
玻璃/IZO的阳极导电基板、MoO3材质的空穴注入层、TAPC材质的空穴传输层、ADN材质的发光层、TPBI材质的电子传输层、RbCl材质的第一铷化合物层、UGH1:TPBi材质的有机硅小分子掺杂层、Rb2SO4材质的第二铷化合物层以及Pt材质的阴极层。第一铷化合物层、有机硅小分子掺杂层和第二铷化合物层组成电子注入层。(其中斜杆“/”表示层状结构,冒号“:”表示相互掺杂)
上述有机电致发光器件依次按如下步骤制备:
1、将玻璃用蒸馏水、乙醇冲洗干净后,放在异丙醇中浸泡一个晚上。
2、将上述步骤1清洁后的玻璃置于磁控溅射设备下,将磁控溅射设备的工艺参数设置为700V的加速电压、120G的磁场以及250W/cm2的功率密度,使用磁控溅射设备在玻璃上制备材料为IZO且厚度为50nm的导电阳极薄膜,从而制得阳极导电基板。
3、接着将步骤2制备得的阳极导电基板101转置于热阻蒸镀制备下,将热阻蒸镀制备的工艺参数设置为0.2nm/s的蒸镀速率和8×10-4Pa的工作压强,使用热阻蒸镀制备在阳极导电基板101依次蒸镀材料为三氧化钨且厚度为25nm的空穴注入层、材料为1,1-二[4-[N,N′-二(p-甲苯基)氨基]苯基]环己烷且厚度为50nm的空穴传输层103、材料为9,10-二-β-亚萘基蒽且厚度为24nm的发光层、材料为N-芳基苯并咪唑且厚度为150nm的电子传输层。
4、然后在上述电子传输层上依次制备第一铷化合物层、有机硅小分子掺杂层和第二铷化合物层:
首先采用热阻蒸镀制备第一铷化合物层,材料为RbCl,制得的厚度为10nm;
接着在第一铷化合物层上采用热阻蒸镀制备UGH1:TPBi材质的有机硅小分子掺杂层,UGH1与TPBi的掺杂质量比为4:1,制得的厚度为80nm;
然后在铷化合物掺杂层上采用热阻蒸镀第二铷化合物层,厚度为20nm,材料为Rb2SO4
5、最后蒸镀制备金属阴极层,蒸镀速率为2nm/s,所用材质为Pt,厚度为80nm,从而得到所需要的电致发光器件。
实施例3
本实施例中的有机电致发光器件为层状结构,每层依次为:
玻璃/ITO的阳极导电基板、WO3材质的空穴注入层、TAPC材质的空穴传输层、ADN材质的发光层、TPBI材质的电子传输层、RbNO3材质的第一铷化合物层、UGH3:Bphen材质的有机硅小分子掺杂层、RbNO3材质的第二铷化合物层以及Pt材质的阴极层。第一铷化合物层、有机硅小分子掺杂层和第二铷化合物层组成电子注入层。(其中斜杆“/”表示层状结构,冒号“:”表示相互掺杂)
上述有机电致发光器件依次按如下步骤制备:
1、将玻璃用蒸馏水、乙醇冲洗干净后,放在异丙醇中浸泡一个晚上。
2、将上述步骤1清洁后的玻璃置于磁控溅射设备下,将磁控溅射设备的工艺参数设置为700V的加速电压、120G的磁场以及250W/cm2的功率密度,使用磁控溅射设备在玻璃上制备材料为IZO且厚度为50nm的导电阳极薄膜,从而制得阳极导电基板。
3、接着将步骤2制备得的阳极导电基板转置于热阻蒸镀制备下,将热阻蒸镀制备的工艺参数设置为0.1nm/s的蒸镀速率和5×10-5Pa的工作压强,使用热阻蒸镀制备在阳极导电基板依次蒸镀材料为WO3,厚度为20nm的空穴注入层、材料为TAPC,厚度为60nm的空穴传输层、材料为ADN,厚度为10nm的发光层、材料为TPBi,厚度为200nm的电子传输层。
4、然后在上述电子传输层上依次制备第一铷化合物层、有机硅小分子掺杂层和第二铷化合物层:
首先采用热阻蒸镀制备第一铷化合物层,材料为RbNO3,制得的厚度为30nm;
接着在第一铷化合物层上采用热阻蒸镀制备UGH3:Bphen材质的有机硅小分子掺杂层,UGH3与Bphen的掺杂质量比为6:1,制得的厚度为30nm;
然后在铷化合物掺杂层上采用热阻蒸镀第二铷化合物层,厚度为5nm,材料为RbNO3
5、最后蒸镀制备金属阴极层,蒸镀速率为2nm/s,所用材质为Pt,厚度为100nm,从而得到所需要的电致发光器件。
实施例4
本实施例中的有机电致发光器件为层状结构,每层依次为:
玻璃/IZO的阳极导电基板、V2O5材质的空穴注入层、TCTA材质的空穴传输层、Alq3材质的发光层、TAZ材质的电子传输层、RbNO3材质的第一铷化合物层、UGH4:PBD材质的有机硅小分子掺杂层、Rb2CO3材质的第二铷化合物层以及Al材质的阴极层。第一铷化合物层、有机硅小分子掺杂层和第二铷化合物层组成电子注入层。(其中斜杆“/”表示层状结构,冒号“:”表示相互掺杂)
上述有机电致发光器件依次按如下步骤制备:
1、将玻璃用蒸馏水、乙醇冲洗干净后,放在异丙醇中浸泡一个晚上。
2、将上述步骤1清洁后的玻璃置于磁控溅射设备下,将磁控溅射设备的工艺参数设置为600V的加速电压、100G的磁场以及30W/cm2的功率密度,使用磁控溅射设备在玻璃上制备材料为IZO且厚度为180nm的导电阳极薄膜,从而制得阳极导电基板。
3、接着将步骤2制备得的阳极导电基板转置于热阻蒸镀制备下,将热阻蒸镀制备的工艺参数设置为0.5nm/s的蒸镀速率和2×10-4Pa的工作压强,使用热阻蒸镀制备在阳极导电基板依次蒸镀材料为V2O5,厚度为80nm的空穴注入层、材料为TCTA,厚度为60nm的空穴传输层、材料为Alq3,厚度为40nm的发光层、材料为TAZ,厚度为35nm的电子传输层。
4、然后在上述电子传输层上依次制备第一铷化合物层、有机硅小分子掺杂层和第二铷化合物层:
首先采用热阻蒸镀制备第一铷化合物层,材料为RbNO3,制得的厚度为25nm;
接着在第一铷化合物层上采用热阻蒸镀制备UGH4:PBD材质的有机硅小分子掺杂层,UGH4与PBD的掺杂质量比为3:1,制得的厚度为35nm;
然后在铷化合物掺杂层上采用热阻蒸镀第二铷化合物层,厚度为18nm,材料为Rb2CO3
5、最后蒸镀制备金属阴极层,蒸镀速率为2nm/s,所用材质为Al,厚度为250nm,从而得到所需要的电致发光器件。
与现有技术相比,本发明的机电致发光器件及其制备方法,存在以下的优点:第一铷化合物层的铷化合物由于其熔点较低,容易蒸镀,由于有金属离子的存在,功函数较低,可降低电子传输层与注入层之间的电子注入势垒,有利于电子的注入,而有机硅小分子掺杂层由宽能隙的有机硅小分子材料与电子传输材料组成,有机硅小分子的玻璃化转变温度都很低(50度以下),极易结晶,结晶后的晶体结构对光有散射作用,加强光的散射,提高出光效率。电子传输材料可加强电子的传输速率,从而提高激子的复合几率,而第二铷化合物层可降低阴极与掺杂层之间的电子注入势垒,提高注入效率,且金属离子可进一步加强电子的传输速率。
上述内容,仅为本发明的较佳实施例,并非用于限制本发明的实施方案,本领域普通技术人员根据本发明的主要构思和精神,可以十分方便地进行相应的变通或修改,故本发明的保护范围应以权利要求书所要求的保护范围为准。

Claims (8)

1.一种有机电致发光器件,该有机电致发光器件为层状结构,其特征在于,该层状结构为:依次层叠的阳极导电基板、空穴注入层、空穴传输层、发光层、电子传输层、电子注入层以及阴极层,所述电子注入层包括第一铷化合物层、有机硅小分子掺杂层与第二铷化合物层;其中,所述的第一铷化合物层材料为碳酸铷、氯化铷、硝酸铷或硫酸铷;
所述有机硅小分子掺杂层的材质为有机硅小分子与电子传输材料,所述有机硅小分子层的材质为二苯基二(o-甲苯基)硅、p-二(三苯基硅)苯、1,3-双(三苯基硅)苯或p-双(三苯基硅)苯,所述电子传输材料为4,7-二苯基-1,10-菲罗啉、2-(4'-叔丁苯基)-5-(4'-联苯基)-1,3,4-恶二唑、 8-羟基喹啉铝或N-芳基苯并咪唑;
所述第二铷化合物层材料为碳酸铷、氯化铷、硝酸铷或硫酸铷。
2.根据权利要求1所述的有机电致发光器件,其特征在于,所述有机硅小分子材料与所述电子传输材料的掺杂质量比为2:1~6:1。
3.根据权利要求1所述的有机电致发光器件,其特征在于,所述第一铷化合物层厚度为10-30nm,所述有机硅小分子掺杂层厚度为30-80nm,所述第一铷化合物层厚度为5-20nm。
4.根据权利要求1所述的有机电致发光器件,其特征在于,
所述空穴注入层的材质为三氧化钼、三氧化钨或五氧化二钒;
所述空穴传输层的材质为1,1-二[4-[N,N′-二(p-甲苯基)氨基]苯基]环己烷、4,4',4''-三(咔唑-9-基)三苯胺或N,N′-(1-萘基)- N,N′-二苯基-4,4′-联苯二胺;
所述发光层的材质为4-(二腈甲基)-2-丁基-6-(1,1,7,7-四甲基久洛呢啶-9-乙烯基)-4H-吡喃、9,10-二-β-亚萘基蒽、4,4'-双(9-乙基-3-咔唑乙烯基)-1,1'-联苯或8-羟基喹啉铝;
所述电子传输层的材质为4,7-二苯基-1,10-菲罗啉、1,2,4-三唑衍生物或N-芳基苯并咪唑;
  所述阴极的材质为银、铝、铂或金。
5.一种有机电致发光器件的制备方法,其特征在于,包括如下步骤:
(a)在清洁后的玻璃上通过磁控溅射设备来制备导电阳极薄膜而得到阳极导电基板,再在所述阳极导电基板上依次蒸镀空穴注入层、空穴传输层、发光层、电子传输层;
(b)使用热阻蒸镀设备在步骤(a)制得的电子传输层上热阻蒸镀制备第一铷化合物层,然后在所述第一铷化合物层上热阻蒸镀制备有机硅小分子掺杂层,再在所述有机硅小分子掺杂层上热阻蒸镀制备第二铷化合物层,从而得到电子注入层;其中,
所述的第一铷化合物层材料为碳酸铷、氯化铷、硝酸铷或硫酸铷;
所述有机硅小分子掺杂层的材质为有机硅小分子与电子传输材料,所述有机硅小分子层的材质为二苯基二(o-甲苯基)硅、p-二(三苯基硅)苯、1,3-双(三苯基硅)苯或p-双(三苯基硅)苯,所述电子传输材料为4,7-二苯基-1,10-菲罗啉、2-(4'-叔丁苯基)-5-(4'-联苯基)-1,3,4-恶二唑、 8-羟基喹啉铝或N-芳基苯并咪唑;
所述第二铷化合物层材料为碳酸铷、氯化铷、硝酸铷或硫酸铷;
(c)在步骤(b)制得的电子注入层上蒸镀制备阴极层,从而得到所述的有机电致发光器件。
6.根据权利要求5所述的制备方法,其特征在于,在所述步骤(a)中,所述磁控溅射设备的加速电压为300~800V,磁场为50~200G,功率密度为1~40 W/cm2;所述空穴传输层、发光层以及电子传输层的蒸镀速率为0.1~1nm/s。
7.根据权利要求5所述的制备方法,其特征在于,在所述步骤(b)中,所述热阻蒸镀设备的蒸镀速率为0.1~1nm/s;所述第一铷化合物层厚度为10-30nm,所述有机硅小分子掺杂层厚度为30-80nm,所述第一铷化合物层厚度为5-20nm。
8.根据权利要求5所述的制备方法,其特征在于,在所述步骤(c)中,所述阴极层的蒸镀速率为1~10nm/s。
CN201310574116.1A 2013-11-14 2013-11-14 有机电致发光器件及其制备方法 Pending CN104638143A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310574116.1A CN104638143A (zh) 2013-11-14 2013-11-14 有机电致发光器件及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310574116.1A CN104638143A (zh) 2013-11-14 2013-11-14 有机电致发光器件及其制备方法

Publications (1)

Publication Number Publication Date
CN104638143A true CN104638143A (zh) 2015-05-20

Family

ID=53216646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310574116.1A Pending CN104638143A (zh) 2013-11-14 2013-11-14 有机电致发光器件及其制备方法

Country Status (1)

Country Link
CN (1) CN104638143A (zh)

Similar Documents

Publication Publication Date Title
CN108886101A (zh) 量子点发光二极管及其制造方法、显示面板和显示装置
CN104638197A (zh) 有机电致发光器件及其制备方法
CN104466012A (zh) 有机电致发光器件及其制备方法
CN104638141A (zh) 有机电致发光器件及其制备方法
CN104638143A (zh) 有机电致发光器件及其制备方法
TWI549332B (zh) 有機發光元件及其製法
CN104103768A (zh) 有机电致发光器件及其制作方法
CN104638142A (zh) 有机电致发光器件及其制备方法
CN104183713A (zh) 顶发射有机电致发光器件及其制备方法
CN104103764A (zh) 有机电致发光器件及其制作方法
CN104183761A (zh) 倒置有机电致发光器件及其制备方法
CN104638145A (zh) 有机电致发光器件及其制备方法
CN104638194A (zh) 有机电致发光器件及其制备方法
CN104638196A (zh) 有机电致发光器件及其制备方法
CN104638144A (zh) 有机电致发光器件及其制备方法
CN104638140A (zh) 有机电致发光器件及其制备方法
CN104466002A (zh) 有机电致发光器件及其制备方法
CN104465999A (zh) 有机电致发光器件及其制备方法
CN104638193A (zh) 有机电致发光器件及其制备方法
CN104518106A (zh) 有机电致发光器件及其制备方法
CN104183719A (zh) 倒置有机电致发光器件及其制备方法
CN104347803A (zh) 有机电致发光器件及其制备方法
CN104659225A (zh) 一种有机电致发光器件及其制备方法
CN104347812A (zh) 有机电致发光器件及其制备方法
CN104103763A (zh) 有机电致发光器件及其制作方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150520