CN104638046A - Ge衬底异质结热光伏电池 - Google Patents

Ge衬底异质结热光伏电池 Download PDF

Info

Publication number
CN104638046A
CN104638046A CN201310571637.1A CN201310571637A CN104638046A CN 104638046 A CN104638046 A CN 104638046A CN 201310571637 A CN201310571637 A CN 201310571637A CN 104638046 A CN104638046 A CN 104638046A
Authority
CN
China
Prior art keywords
layer
substrate
thermophotovoltaic
heterojunction
emitter region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310571637.1A
Other languages
English (en)
Other versions
CN104638046B (zh
Inventor
潘振
赵彦民
方亮
纪伟伟
赖运子
乔在祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 18 Research Institute
Original Assignee
CETC 18 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 18 Research Institute filed Critical CETC 18 Research Institute
Priority to CN201310571637.1A priority Critical patent/CN104638046B/zh
Publication of CN104638046A publication Critical patent/CN104638046A/zh
Application granted granted Critical
Publication of CN104638046B publication Critical patent/CN104638046B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种Ge衬底异质结热光伏电池,包括作为基区的Ge衬底,Ge衬底上面自下至上依次生长有发射区、上电极接触层和上电极,Ge衬底下面制有下电极,Ge衬底为较窄禁带宽度p-Ge层;发射区为较宽禁带宽度n-GaxInyP层。本发明由于采用具有较宽禁带宽度的Ga和In比例能够精确调节的n-GaxInyP层作为发射区,采用较窄禁带宽度的p-Ge衬底作为基区,形成了发射区与基区晶格精确匹配的异质结结构,降低了GaxInyP/Ge界面复合,宽带隙发射区减少了发射区对光的吸收而增加了基区对光的吸收,从而减小了光生载流子在n型发射区及其表面处复合,提高了光生载流子收集效率,有效提高了电池的光电转换效率。

Description

Ge衬底异质结热光伏电池
技术领域
本发明属于热光伏电池技术领域,特别是涉及一种Ge衬底异质结热光伏电池。
背景技术
热光伏技术是将受热高温热辐射体发射的光子能量通过半导体p-n结电池直接转换成电能的技术。完整的热光伏系统的原理和概念自上世纪60年代被提出,受当时科技水平所限,一直处于理论研究阶段。上世纪90年代初低禁带的锑化镓(GaSb)电池成功制备,随后一系列热光伏电池相继研制成功,其高效率、高稳定性、高重量比功率、可与燃烧系统及同位素辐射系统结合利用等优点逐步得到验证。热光伏电池及系统日益受到各国研究机构的重视,具有良好的发展前景。
目前公知的热光伏电池领域研究较多的是Si、GaSb、InGaAs等电池,其结构均为n-p同质结。这类结构的电池其发射区与基区(吸收层)具有几乎相同的禁带宽度,对光有同样的吸收能力,因此处在上层的发射区会吸收较多短波光子。由于发射区为重掺杂,光生载流子在该处俄歇复合较为严重,另外发射区表面处也存在一定程度的表面复合,因此这部分光生载流子很少能对电池的光生电流做出贡献,从而限制了热光伏电池效率的进一步提升。
经检索发现专利号为200910066784.7,公开号为CN101521238,专利名称为“一种基于GaxIn1-xAs1-ySby四元半导体的Ge衬底异质结热光伏电池”的发明专利,其说明书中公开了其电池结构。由下至上依次包括下电极、N型衬底、N型宽禁带Gax1In1-x1As1-y1Sby1有源层、轻掺杂的P-型窄禁带Gax2In1-x2As1-y2Sby2有源层、重掺杂的P+型宽禁带Gax3In1-x3As1-y3Sby3限制层和栅条形上电极,在P+型宽禁带限制层和栅条形上电极间增加P型GaSb窗口钝化层,在N型衬底和N型宽禁带有源层间增加N型GaSb背面限制层。该电池由于入射光一侧发射区的禁带宽度小于基区的禁带宽度,降低了光生载流子的收集效率,影响了电池转换效率的提高,并且半导体功能层的层数多,各层元素组成复杂,制作的难度大,加之采用了价格昂贵的GaSb、GaInAsSb材料,电池成本很高。
发明内容
本发明为解决公知技术中存在的同质结结构热光伏电池效率难以进一步提升等技术问题而提供一种光生载流子收集效率高、光电转换效率高、结构简单、成本低的Ge衬底异质结热光伏电池。
本发明包括如下技术方案:
Ge衬底异质结热光伏电池,包括作为基区的Ge衬底,Ge衬底上面自下至上依次生长有发射区、上电极接触层和上电极,Ge衬底下面制有下电极,其特点是:所述Ge衬底禁带宽度约为0.66eV、厚度为50~500μm的p-Ge层;所述发射区为厚度小于500nm的n-GaxInyP层,n-GaxInyP层的禁带宽度约为1.9eV,其中,x=0.4~0.8,y=1-x;电极接触层与上电极的形状、线宽相同,其顶部被上电极所覆盖;发射区未被栅线和电极接触层覆盖的上表面制有光学减反射层。
本发明还可以采用如下技术措施:
所述p-Ge层中掺杂有Be、Mg、B或Zn,掺杂的浓度为1015~1017cm-3
所述n-GaxInyP层中掺杂有Si、Se、Sn或Te,掺杂的浓度为1017~1018cm-3
所述减反射层为10nm~1000nm厚的硫化锌、氟化镁、氧化铝、氧化钛或氧化硅之一种或复数种材料组合成的薄膜。
所述上电极接触层为30nm~1000nm厚的重掺杂n-GaAs层或重掺杂n-GaInP层,所述重掺杂n-GaAs层或重掺杂n-GaInP层中掺杂有Si、Se、Sn或Te,掺杂的浓度为1018~1020cm-3
所述上电极为0.1μm~30μm厚的Ag、Au、Cu、Ti、Pd、Ni或Al金属栅线。
所述下电极为0.1μm~10μm厚的Ag、Au、Cu、Ti、Pd、Ni或Al金属膜层。
所述上电极和电极接触层覆盖在发射区上表面,占据其1%~10%的面积。
本发明具有的优点和积极效果:
1、本发明由于采用了具有较宽禁带宽度(~1.9eV)的n-GaxInyP层作为发射区,采用较窄禁带宽度(~0.66eV)、厚度远大于发射区的p-Ge衬底作为基区,形成n-p异质结结构,使得可利用的光子主要在p型基区被吸收而产生光生载流子,很大程度上避免了光生载流子在n型发射区的俄歇复合以及在发射区表面处的复合,提高了光生载流子的收集效率,有效提高了电池的光电转换效率。测试结果表明本发明中Ge衬底异质结热光伏电池在300nm~1800nm波长光谱范围内的量子效率明显高于目前公知的同质结Ge电池的量子效率,实现了电池性能的优化,电池光电转换效率高。
2、本发明通过控制组分,实现了材料层间精确的晶格匹配;GaxInyP层生长制备过程中,可通过调节x和y的比例(x=0.4~0.8,y=1-x),制备出与Ge衬底材料晶格精确匹配的GaxInyP材料层,减少n-GaxInyP/p-Ge界面处的悬挂键,从而减少光生载流子复合中心,利于电池效率的提高。
3、本发明在电池结构的光学设计中,充分考虑到减小电池表面对特定黑体辐射入射光的反射,针对特定的黑体辐射光谱结合各层材料的光学特性设计位于电池上表面的光学减反射膜,将光反射造成的电池效率损失降低;有效防止电池在黑体辐射光谱环境中光反射造成电池效率损失。
4、本发明采用了最简单的发射区/基区光伏电池结构,为实现上电极与电池良好的欧姆接触,在n型发射区之上制备了与上电极栅线形状相同的n型重掺杂电极接触层(Cap层)。整体上电池层数少、电池结构简单,降低了电池的制作成本。
附图说明
图1是本发明Ge衬底异质结热光伏电池侧面结构示意图;
图中,1-基区,2-发射区,3-电极接触层,4-上电极,5-下电极,6-光学减反射层。
图2是图1中电池n+-GaAs/n-GaInP2/Ge断面扫描电子显微镜(SEM)图像。
具体实施方式
为能进一步公开本发明的发明内容、特点及功效,特例举以下实例并结合附图1-2进行详细说明如下:
Ge衬底异质结热光伏电池,包括作为基区的Ge衬底,Ge衬底上面自下至上依次生长有发射区、上电极接触层和上电极,Ge衬底下面制有下电极,其特点是:所述Ge衬底禁带宽度为(~0.66eV)、厚度为50~500μm的p-Ge层;所述发射区衬底禁带宽度为(~1.9eV)、厚度为小于500nm的n-GaxInyP层,其中,x=0.4~0.8,y=1-x;电极接触层与上电极的形状、线宽相同,其顶部被上电极所覆盖;发射区未被栅线和电极接触层覆盖的上表面制有光学减反射层。
所述p-Ge层中掺杂有Be、Mg、B或Zn,掺杂的浓度为1015~1017cm-3
所述n-GaxInyP层中掺杂有Si、Se、Sn或Te,掺杂的浓度为1017~1018cm-3
所述减反射层为10nm~1000nm厚的硫化锌、氟化镁、氧化铝、氧化钛或氧化硅之一种或复数种材料组合成的薄膜。
所述上电极接触层为30nm~1000nm厚的重掺杂n-GaAs层或重掺杂n-GaInP层,所述重掺杂n-GaAs层或重掺杂n-GaInP层中掺杂有Si、Se、Sn或Te,掺杂的浓度为1018~1020cm-3
所述上电极为0.1μm~30μm厚的Ag、Au、Cu、Ti、Pd、Ni或Al金属栅线。
所述下电极为0.1μm~10μm厚的Ag、Au、Cu、Ti、Pd、Ni或Al金属膜层。
所述上电极和电极接触层覆盖在发射区上表面,占据其1%~10%的面积。
Ge基异质结结构热光伏电池的制作过程:
步骤1选取作为基区的p型Ge衬底
采用Be、Mg、B或Zn掺杂,掺杂浓度为1015~1017cm-3的较窄禁带宽度(约为0.66eV)的p型Ge单晶,沿Ge(001)晶面向[111]方向倾斜6°切割成50~500μm厚的晶圆衬底作为基区1;
步骤2在基区上面依次生长较宽禁带的发射区及电极接触层
将p型Ge衬底置于MOCVD设备中,在GaInP2开始生长前,p-Ge衬底在H2的气氛下加热到600~800℃,保持该温度并通入磷烷(PH3)50~500秒,然后再通过载气(H2)运载金属有机源的饱和蒸汽进入反应室,金属有机源包括前驱物三甲基镓(TMGa)、三甲基铟(TMIn),通入掺杂气体硅烷(SiH4),生长过程中反应室压强维持在10~100mbar;通过控制前驱物TMGa和TMIn的气流量调节In/(Ga+In)的比值在0.4~0.8之间,与p型Ge衬底形成良好的晶格匹配;通过调节气流量,控制P/(Ga+In)的摩尔比值为40~200之间,保证磷烷PH3源气过量;通过调节掺杂气体的气流量,使掺杂浓度控制在1017~1018cm-3;在p型Ge衬底上生长出厚度小于500nm的高质量(即与Ge衬底晶格匹配良好,低界面缺陷、无反向筹出现)的n-GaxInyP(x=0.4~0.8,y=1-x)作为发射区2;
n-GaxInyP发射区生长完毕后,加热衬底至400~900℃,继续向MOCVD设备反应室中通入载气(H2)携带三甲基镓(TMGa)饱和蒸汽,通入As的氢化物砷烷(AsH3),并掺杂Si、Se、Sn或Te元素(掺杂剂为元素的氢化物气体),生长过程中反应室压强维持在10~100mbar;控制TMGa和AsH3气流量使As/Ga摩尔比值为40~300,保证砷烷AsH3源气过量;调节掺杂气体流量,使掺杂浓度控制在1018~1020cm-3;在n-GaxInyP发射区之上外延生长30nm~1000nm厚的n+-GaAs,即n型重掺杂GaAs层,作为电极接触层;
步骤3在电极接触层之上制备上电极金属膜层
采用电子束蒸发法在电极接触层之上蒸镀一层0.1μm~30μm厚的Ag、Au、Cu、Ti、Pd、Ni或Al膜;按照上电极的上表面面积占热光伏电池上表面面积1%~10%的比例,用光刻机在上电极的上表面光刻出栅线图案,准备下一步对栅线图案部分以外的金属膜及其下面的电极接触层进行腐蚀,以形成电极接触层3和上电极4;
步骤4腐蚀上电极和电极接触层
采用NH4OH:H2O2:H3PO4:H2O混合物的腐蚀液,在20~50℃条件下,以60~120nm/min的腐蚀速率,将上电极和电极接触层腐蚀出步骤3光刻出的栅线图形,被腐蚀部分直至完全露出发射区GaxInyP材料的表面,完成腐蚀,用去离子水冲洗并用氮气吹干后立即内装入真空热蒸发系统中的样品台上;
步骤5制作光学减反射层
在真空热蒸发系统中分别放入装有MgF2和ZnS的石墨舟,对热蒸发系统抽真空至2×10-3Pa,通过控制加热电流改变石墨舟的温度,从而控制蒸发速率,在步骤4腐蚀后露出的发射区裸露面上依次蒸镀ZnS和MgF2,用膜厚监控仪监控厚度,形成厚度为10nm-1000nm的光学减反射层6;蒸镀光学减反射层的材料还可以选用氧化铝、氧化钛或氧化硅之一种或复数种材料组合成的薄膜;
步骤6在较窄禁带的p型Ge衬底下面蒸镀下电极
采用电子束蒸发法,在p型Ge衬底下面蒸镀一层厚度为0.1μm~10μm的Ag膜层,作为下电极5,下电极的蒸镀材料还可以采用Au、Cu、Ti、Pd、Ni或Al;完成如图1所示Ge衬底异质结热光伏电池的制作过程。
对本发明制作的Ge衬底异质结热光伏电池进行如图2所示n+-GaAs/n-GaInP2/Ge的断面电子显微镜扫描,从图2可以看出,本发明制备的Ge衬底异质结热光伏电池具有清晰的异质结界面。经测试,本发明中的Ge衬底异质结热光伏电池在300nm~1800nm波长光谱范围内的量子效率高于目前公知同质结Ge电池量子效率10%~15%。
尽管上面结合附图对本发明的优选实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,并不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可以作出很多形式。这些均属于本发明的保护范围之内。

Claims (8)

1.Ge衬底异质结热光伏电池,包括作为基区的Ge衬底,Ge衬底上面自下至上依次为发射区、电极接触层和上电极,Ge衬底下面制有下电极,其特征在于:所述Ge衬底为厚度50~500μm的较窄禁带宽度p-Ge层;所述发射区为厚度小于500nm的较宽禁带宽度n-GaxInyP层,其中,x=0.4~0.8,y=1-x;电极接触层与上电极的形状、线宽相同,其顶部被上电极所覆盖;发射区未被栅线和电极接触层覆盖的上表面制有光学减反射层。
2.根据权利要求1所述的Ge衬底异质结热光伏电池,其特征在于:所述p-Ge层的禁带宽度为0.66eV,p-Ge层中掺杂有Be、Mg、B或Zn,掺杂的浓度为1015~1017cm-3
3.根据权利要求1所述的Ge衬底异质结热光伏电池,其特征在于:所述n-GaxInyP层的禁带宽度为1.9eV,n-GaxInyP层中掺杂有Si、Se、Sn或Te,掺杂的浓度为1017~1018cm-3
4.根据权利要求1所述的Ge衬底异质结热光伏电池,其特征在于:所述减反射层为10nm~1000nm厚的硫化锌、氟化镁、氧化铝、氧化钛或氧化硅之一种或复数种材料组合成的薄膜。
5.根据权利要求1所述的Ge衬底异质结热光伏电池,其特征在于:所述上电极接触层为30nm~1000nm厚的重掺杂n-GaAs层或重掺杂n-GaInP层,所述重掺杂n-GaAs层或重掺杂n-GaInP层中掺杂有Si、Se、Sn或Te,掺杂的浓度为1018~1020cm-3
6.根据权利要求1所述的Ge衬底异质结热光伏电池,其特征在于:所述上电极为0.1μm~30μm厚的Ag、Au、Cu、Ti、Pd、Ni或Al金属栅线。
7.根据权利要求1所述的Ge衬底异质结热光伏电池,其特征在于:所述下电极为0.1μm~10μm厚的Ag、Au、Cu、Ti、Pd、Ni或Al金属膜层。
8.根据权利要求1所述的Ge衬底异质结热光伏电池,其特征在于:上电极和电极接触层覆盖在发射区上表面,占据其1%~10%的面积。
CN201310571637.1A 2013-11-13 2013-11-13 Ge衬底异质结热光伏电池 Active CN104638046B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310571637.1A CN104638046B (zh) 2013-11-13 2013-11-13 Ge衬底异质结热光伏电池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310571637.1A CN104638046B (zh) 2013-11-13 2013-11-13 Ge衬底异质结热光伏电池

Publications (2)

Publication Number Publication Date
CN104638046A true CN104638046A (zh) 2015-05-20
CN104638046B CN104638046B (zh) 2017-05-03

Family

ID=53216557

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310571637.1A Active CN104638046B (zh) 2013-11-13 2013-11-13 Ge衬底异质结热光伏电池

Country Status (1)

Country Link
CN (1) CN104638046B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566560A (zh) * 2020-11-27 2022-05-31 江苏宜兴德融科技有限公司 一种砷化镓激光光伏电池及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521238A (zh) * 2009-04-09 2009-09-02 吉林大学 一种基于GaxIn1-xAs1-ySby四元半导体的异质结热光伏电池
CN102244151A (zh) * 2011-08-05 2011-11-16 厦门市三安光电科技有限公司 一种太阳能电池的制作方法
US20120125418A1 (en) * 2006-08-11 2012-05-24 Cyrium Technologies Incorporated Method of fabricating semiconductor devices on a group iv substrate with controlled interface properties and diffusion tails
WO2013030531A1 (en) * 2011-08-29 2013-03-07 Iqe Plc. Photovoltaic device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120125418A1 (en) * 2006-08-11 2012-05-24 Cyrium Technologies Incorporated Method of fabricating semiconductor devices on a group iv substrate with controlled interface properties and diffusion tails
CN101521238A (zh) * 2009-04-09 2009-09-02 吉林大学 一种基于GaxIn1-xAs1-ySby四元半导体的异质结热光伏电池
CN102244151A (zh) * 2011-08-05 2011-11-16 厦门市三安光电科技有限公司 一种太阳能电池的制作方法
WO2013030531A1 (en) * 2011-08-29 2013-03-07 Iqe Plc. Photovoltaic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114566560A (zh) * 2020-11-27 2022-05-31 江苏宜兴德融科技有限公司 一种砷化镓激光光伏电池及其制备方法
CN114566560B (zh) * 2020-11-27 2023-09-12 江苏宜兴德融科技有限公司 一种砷化镓激光光伏电池及其制备方法

Also Published As

Publication number Publication date
CN104638046B (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
US10050166B2 (en) Silicon heterojunction photovoltaic device with wide band gap emitter
Bett et al. III-V compounds for solar cell applications
JP3657143B2 (ja) 太陽電池及びその製造方法
US7812249B2 (en) Multijunction photovoltaic cell grown on high-miscut-angle substrate
TWI441343B (zh) 反向變質多接面太陽能電池中異質接面子電池
JP2004296658A (ja) 多接合太陽電池およびその電流整合方法
US20120305059A1 (en) Photon recycling in an optoelectronic device
Chiu et al. 42.3% efficient InGaP/GaAs/InGaAs concentrators using bifacial epigrowth
JP2003218374A (ja) Iii−v族太陽電池
CN101521238A (zh) 一种基于GaxIn1-xAs1-ySby四元半导体的异质结热光伏电池
KR20210021250A (ko) 단일 격자 - 정합 희석 질화물 접합을 포함하는 가요성 박막 광전자 장치 및 그 제조 방법
Perl et al. Development of a 2.0 eV AlGaInP solar cell grown by OMVPE
JP2014220351A (ja) 多接合太陽電池
CN203760498U (zh) 一种Ge衬底异质结热光伏电池
CN104638060B (zh) 异质结热光伏电池的制备方法
US10026856B2 (en) Systems and methods for advanced ultra-high-performance InP solar cells
CN104638046B (zh) Ge衬底异质结热光伏电池
Ekins‐Daukes III‐V solar cells
Fan et al. Epitaxial GaAsP/Si tandem solar cells with integrated light trapping
JPH0955522A (ja) トンネルダイオード
CN212257428U (zh) 一种异质pn结空间电池外延片
CN205944106U (zh) 一种具有背场层的锗基热光伏电池
Kurita et al. High-efficiency monolithic InGaP/GaAs tandem solar cells with improved top-cell back-surface-field layers
JP2005347402A (ja) 裏面反射型化合物半導体太陽電池およびその製造方法
JP2005136333A (ja) 集光型太陽電池およびこれを含む化合物半導体太陽電池の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant