CN104630709A - 一种利用磁控共溅射法制备铌硅薄膜的方法 - Google Patents

一种利用磁控共溅射法制备铌硅薄膜的方法 Download PDF

Info

Publication number
CN104630709A
CN104630709A CN201510115066.XA CN201510115066A CN104630709A CN 104630709 A CN104630709 A CN 104630709A CN 201510115066 A CN201510115066 A CN 201510115066A CN 104630709 A CN104630709 A CN 104630709A
Authority
CN
China
Prior art keywords
sputtering
substrate
silicon film
target
magnetron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510115066.XA
Other languages
English (en)
Inventor
贾小氢
杨小忠
王翔
康琳
吴培亨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201510115066.XA priority Critical patent/CN104630709A/zh
Publication of CN104630709A publication Critical patent/CN104630709A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0682Silicides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种利用磁控共溅射法制备铌硅薄膜的方法,包括以下步骤:(1)靶材选取,选取纯度均为99.999%均匀掺杂的块状Nb和Si作为磁控共溅射的靶材,将靶材放入磁控共溅射室;(2)衬底处理,对衬底依次用超声波、丙酮、酒精和氩离子清洗,放入磁控共溅射室;(3)制备铌硅薄膜,磁控共溅射室的真空度小于等于2×10-5 Pa,工作气体是氩气,调节溅射气压、溅射功率、沉积速率和靶材到衬底的距离,经过一定时间溅射制备薄膜。本发明制备出了符合预期,较为稳定的NbSi超导薄膜,并优化获得了最佳制备条件,为制备高灵敏的超导单光子探测器(SNSPD)奠定了基础。

Description

一种利用磁控共溅射法制备铌硅薄膜的方法
技术领域
本发明涉及一种制备铌硅(NbSi)薄膜的方法,具体涉及一种利用磁控共溅射法制备铌硅薄膜的方法。
背景技术
单光子探测技术既具有重要的科学意义也有广泛的应用领域,包括量子秘钥分发、量子计算、荧光探测、微弱光成像等。超导单光子探测器(SNSPD)利用了超导薄膜中的非平衡态的热电子效应,具有速度快,探测范围宽,暗记数低的特点,通过光学谐振腔或光学波导结构,探测效率也可达到80%以上,是目前综合性能最佳的单光子探测器,因此受到了广泛关注。在制作超导单光子探测器的过程中,高质量的超导薄膜十分关键。
不同成分和不同结构的NbSi薄膜具有不同的超导性能。除了在一些特定条件下拥有较高的超导转变温度,NbSi薄膜的超导转变温度都较低,但利用低能隙的NbSi薄膜对光子的高灵敏性和其对光的高吸收特性,可用于制备灵敏性更高的SNSPD器件和目前亟待研究的应用在2μm以上长波长的SNSPD器件。
目前制备NbSi化合物薄膜的方法有:原子层沉积法,电子束蒸发法,溅射法,离子注入法和冲击合成法等,这些方法都存在膜厚难控制、成分厚度分布不均匀、薄膜成分不易控制等缺点。
发明内容
发明目的:针对上述现有技术存在的问题和不足,本发明的目的是提供一种利用磁控共溅射技术制备低能隙超导NbSi薄膜。利用Nb靶和Si靶的双靶共溅射,通过调节两个靶材的溅射功率可以灵活的调整薄膜的组份,从而操控制备薄膜的超导性能。
技术方案:为实现上述发明目的,本发明采用的技术方案为一种利用磁控共溅射技术制备铌硅薄膜的方法,包括以下步骤:
(1)靶材选取
选取纯度均为99.999%均匀掺杂的块状Nb和Si作为磁控共溅射的靶材,将靶材放入磁控共溅射室;
(2)衬底处理
对衬底依次用超声波、丙酮、酒精和氩离子清洗,将处理后的衬底放入磁控共溅射室;
(3)制备NbSi薄膜
磁控共溅射室的真空度小于等于2×10-5 Pa,工作气体是氩气,调节溅射气压、溅射功率、沉积速率和靶材到衬底的距离,经过一定时间溅射制备薄膜。
所述的步骤(3)中,溅射气压是0.8Pa,溅射溅射功率是Nb靶直流55W,Si靶交流120W,沉积速率是40nm/min,对衬底进行循环水冷处理,靶材到衬底的距离是40 mm。
进一步地,所述衬底为高阻硅衬底或氧化镁衬底。
有益效果:本发明可以灵活的调整NbSi薄膜中Nb、Si的组份,从而操控制备薄膜的超导性能。制备的NbSi薄膜具有良好的超导特性和较好的表面平整度,为制备高灵敏的SNSPD器件奠定了基础,还可以被应用于制备超导边缘转变结(TES)探测器,超导微波动态电感探测器(MKID)等多种高灵敏探测器。
附图说明
图1是本发明中不同溅射气压下Nb:Si组分比随功率比的变化曲线图;
图2是0.8Pa溅射气压MgO衬底上150nm厚NbSi薄膜的R-T变化曲线图;
图3是NbSi薄膜的方阻与厚度的关系曲线图;
图4是Si衬底上150nm厚NbSi薄膜的AFM图。
具体实施方式
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围,在阅读了本发明之后,本领域技术人员对本发明的各种等价形式的修改均落于本申请所附权利要求所限定的范围。
实施例1
本实施例包括以下步骤:
(1)靶材选取
选取纯度均为99.999%均匀掺杂的块状Nb和Si作为磁控共溅射的靶材,将靶材放入磁控共溅射室;
(2)衬底处理
选取MgO作为衬底,对衬底依次用超声波、丙酮、酒精和氩离子清洗:衬底依次泡入丙酮和酒精中使用功率100W超声清洗10分钟,放入磁控共溅射清洗室,使用离子源加速电压500V,离子束流20mA,清洗时间2分钟,然后将处理后的衬底放入磁控共溅射室;
(3)制备NbSi薄膜
共溅射制备NbSi薄膜,采用如表1所示的条件,溅射时间是10min,制得NbSi薄膜厚度是150nm。
实施例2
本实施例中步骤(3)溅射时间为40s、1min20s、2min、3min20s、10min,其他实施条件和实施例1相同,相应制得的NbSi薄膜厚度分别是10nm、20nm、30nm、50nm、150nm。        
实施例3
本实施例中步骤(2)的衬底选用Si,其他实施条件和实施例1相同
实施例4
本实施例中的溅射气压和溅射功率不同,具体如表2所示,其他实施条件和实施例1相同
如图1所示,通过对实施例4制备的样品使用能量色散X射线光谱(EDX)分析后发现,在不同工作气压下Nb在NbSi薄膜中所占的比重都随着Nb靶和Si靶上所加功率比的增大而提高。
如图2所示,利用PPMS(综合物性测量系统),我们测量了实施例1制备的NbSi薄膜的电阻-温度曲线。从图中可以看出,上述条件下制备的NbSi薄膜,其超导转变温度和转变宽度分别为3.1 K和0.1 K, 符合我们的预期,另外薄膜具有较好的化学稳定性,在干燥箱中放置一段时间后,仍保持原有的超导性能,这保证了后继制备器件的稳定性。
另外利用实施例2制备的不同厚度的NbSi薄膜,测量其方阻,如图3所示,从图3中可以看到,随着薄膜厚度的增加,薄膜的方阻也随之减小,后期可以利用方阻来确定制备薄膜的厚度,为制备器件带来了方便。
如图4所示,我们还利用AFM(Atomic Force Microscope,原子力显微镜)测量了实施例3制备的样品,生长在Si衬底上150 nm厚度的NbSi薄膜。可以看出在2μm*2μm范围内,薄膜表面平整度均方根(RMS)为0.285nm,这表明我们在Si衬底上制备的NbSi薄膜平整度较好,完全满足制备器件的要求。
我们成功使用磁控共溅射技术制备出了符合预期,较为稳定的NbSi超导薄膜,并优化获得了最佳制备条件,为制备高灵敏的SNSPD器件奠定了基础,另外这种NbSi薄膜还可以被应用于制备超导边缘转变结(TES)探测器,超导微波动态电感探测器(MKID)等多种高灵敏探测器。

Claims (7)

1.一种利用磁控共溅射法制备铌硅薄膜的方法,其特征在于,包括以下步骤:
(1)靶材选取
选取纯度均为99.999%均匀掺杂的块状Nb和Si作为磁控共溅射的靶材,将靶材放入磁控共溅射室;
(2)衬底处理
对衬底依次用超声波、丙酮、酒精和氩离子清洗,将处理后的衬底放入磁控共溅射室;
(3)制备铌硅薄膜
磁控共溅射室的真空度小于等于2×10-5 Pa,工作气体是氩气,调节溅射气压、溅射功率、沉积速率和靶材到衬底的距离,经过一定时间溅射制备铌硅薄膜。
2.根据权利要求1所述的一种利用磁控共溅射法制备铌硅薄膜的方法,其特征在于:所述的步骤(2)中,超声波功率为100W,清洗时间10min,丙酮和酒精的清洗时间均为10min。
3.根据权利要求1所述的一种利用磁控共溅射法制备铌硅薄膜的方法,其特征在于:所述的步骤(2)中,离子源加速电压是500V,离子束流是20mA,清洗时间是2min。
4.根据权利要求1所述的一种利用磁控共溅射法制备铌硅薄膜的方法,其特征在于:所述的步骤(3)中,溅射功率是Nb靶直流55W,Si靶交流120W。
5.根据权利要求1所述的一种利用磁控共溅射法制备铌硅薄膜的方法,其特征在于:所述的步骤(3)中,溅射气压是0.8Pa,沉积速率是15nm/min,对衬底进行循环水冷处理,靶材到衬底的距离是40 mm。
6.根据权利要求1所述的一种利用磁控共溅射法制备铌硅薄膜的方法,其特征在于:所述的步骤(3)中,溅射时间为10min,铌硅薄膜的厚度为150nm。
7.根据权利要求1所述的一种利用磁控共溅射法制备铌硅薄膜的方法,其特征在于:所述衬底为高阻硅衬底或氧化镁衬底。
CN201510115066.XA 2015-03-17 2015-03-17 一种利用磁控共溅射法制备铌硅薄膜的方法 Pending CN104630709A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510115066.XA CN104630709A (zh) 2015-03-17 2015-03-17 一种利用磁控共溅射法制备铌硅薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510115066.XA CN104630709A (zh) 2015-03-17 2015-03-17 一种利用磁控共溅射法制备铌硅薄膜的方法

Publications (1)

Publication Number Publication Date
CN104630709A true CN104630709A (zh) 2015-05-20

Family

ID=53209947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510115066.XA Pending CN104630709A (zh) 2015-03-17 2015-03-17 一种利用磁控共溅射法制备铌硅薄膜的方法

Country Status (1)

Country Link
CN (1) CN104630709A (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105154840A (zh) * 2015-09-28 2015-12-16 南京大学 一种利用磁控共溅射法制备超薄钨硅薄膜的方法
CN105355774A (zh) * 2015-11-26 2016-02-24 南京大学 高偏振消光比且高效率的超导纳米线单光子探测器
CN105990512A (zh) * 2016-06-24 2016-10-05 李志刚 聚苯乙烯胶体球与铌膜复合异质结构超导材料及制备方法
CN107740058A (zh) * 2017-10-13 2018-02-27 西安交通大学 具有垂直阵列结构的金属/非金属复合薄膜的制备方法
CN109207952A (zh) * 2018-10-25 2019-01-15 北京航空航天大学 采用高通量技术制备梯度Nb-Si基合金薄膜的方法
CN109285941A (zh) * 2017-07-21 2019-01-29 中国计量科学研究院 感应式超导边缘探测器及其制备方法
CN109285942A (zh) * 2017-07-21 2019-01-29 中国计量科学研究院 超导薄膜及其制备方法、超导量子干涉器件和感应式超导边缘探测器

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105154840A (zh) * 2015-09-28 2015-12-16 南京大学 一种利用磁控共溅射法制备超薄钨硅薄膜的方法
CN105355774A (zh) * 2015-11-26 2016-02-24 南京大学 高偏振消光比且高效率的超导纳米线单光子探测器
CN105990512A (zh) * 2016-06-24 2016-10-05 李志刚 聚苯乙烯胶体球与铌膜复合异质结构超导材料及制备方法
CN105990512B (zh) * 2016-06-24 2018-07-03 李志刚 聚苯乙烯胶体球与铌膜复合异质结构超导材料及制备方法
CN109285941A (zh) * 2017-07-21 2019-01-29 中国计量科学研究院 感应式超导边缘探测器及其制备方法
CN109285942A (zh) * 2017-07-21 2019-01-29 中国计量科学研究院 超导薄膜及其制备方法、超导量子干涉器件和感应式超导边缘探测器
CN109285941B (zh) * 2017-07-21 2022-04-19 中国计量科学研究院 感应式超导边缘探测器及其制备方法
CN109285942B (zh) * 2017-07-21 2022-07-08 中国计量科学研究院 超导薄膜及其制备方法、超导量子干涉器件和感应式超导边缘探测器
CN107740058A (zh) * 2017-10-13 2018-02-27 西安交通大学 具有垂直阵列结构的金属/非金属复合薄膜的制备方法
CN109207952A (zh) * 2018-10-25 2019-01-15 北京航空航天大学 采用高通量技术制备梯度Nb-Si基合金薄膜的方法
CN109207952B (zh) * 2018-10-25 2020-01-10 北京航空航天大学 采用高通量技术制备梯度Nb-Si基合金薄膜的方法

Similar Documents

Publication Publication Date Title
CN104630709A (zh) 一种利用磁控共溅射法制备铌硅薄膜的方法
Amor et al. Characterization of zirconia films deposited by rf magnetron sputtering
Mohanty et al. Stress-induced anomalous shift of optical band gap in ZnO: Al thin films
Yu et al. Influence of sputtering power on composition, structure and electrical properties of RF sputtered CuIn1− xGaxSe2 thin films
Yeom et al. A study of the effect of process oxygen on stress evolution in dc magnetron-deposited tin-doped indium oxide
Case Influence of ion beam parameters on the electrical and optical properties of ion‐assisted reactively evaporated vanadium dioxide thin films
Yaglioglu et al. Crystallization of amorphous In2O3–10 wt% ZnO thin films annealed in air
Pan et al. Influence of sputtering parameter on the optical and electrical properties of zinc-doped indium oxide thin films
CN102747325B (zh) 一种适于激光防护的二氧化钒薄膜的制备方法
Kobyakov et al. Deposition and characterization of Cd1− xMgxTe thin films grown by a novel cosublimation method
Yu et al. Effect of annealing temperature on properties of RF sputtered Cu (In, Ga) Se2 thin films
CN105112868A (zh) 一种拓扑绝缘体/铁磁体异质结构薄膜的制备方法
Hallett et al. Superconducting MoN thin films prepared by DC reactive magnetron sputtering for nanowire single-photon detectors
Mousavi et al. Characterization of superconducting Fe y (Se 1− x Te x) thin films deposited on MgO substrates by sputtering
CN109285942B (zh) 超导薄膜及其制备方法、超导量子干涉器件和感应式超导边缘探测器
Rogozin et al. Real-time evolution of the indium tin oxide film properties and structure during annealing in vacuum
Xiao et al. Annealing study on the properties of Cu-based Nb3Sn films under argon pressures for SRF applications
Imada et al. Atomistic structures of nano-engineered SiC and radiation-induced amorphization resistance
Lin et al. Band alignment at the In 2 S 3/Cu 2 ZnSnS 4 heterojunction interface investigated by X-ray photoemission spectroscopy
Yan et al. Multi-scale order in amorphous transparent oxide thin films
Lan et al. Microstructural characterization of high-quality indium tin oxide films deposited by thermionically enhanced magnetron sputtering at low temperature
Sivakumar et al. Deposition of aluminum-doped zinc oxide thin films for optical applications using rf and dc magnetron sputter deposition
CN105154840A (zh) 一种利用磁控共溅射法制备超薄钨硅薄膜的方法
Shan et al. Electronic and crystalline structures of zero band-gap LuPdBi thin films grown epitaxially on MgO (100)
Datta et al. Hydrogen negative ion formation on a graphite HOPG surface

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150520