CN104603853A - 用于处理分布式输入-分布式输出无线系统中的多普勒效应的系统和方法 - Google Patents

用于处理分布式输入-分布式输出无线系统中的多普勒效应的系统和方法 Download PDF

Info

Publication number
CN104603853A
CN104603853A CN201380035543.0A CN201380035543A CN104603853A CN 104603853 A CN104603853 A CN 104603853A CN 201380035543 A CN201380035543 A CN 201380035543A CN 104603853 A CN104603853 A CN 104603853A
Authority
CN
China
Prior art keywords
bts
antenna
dido
client
user
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380035543.0A
Other languages
English (en)
Other versions
CN104603853B (zh
Inventor
安东尼奥·福伦扎
斯蒂芬·G·珀尔曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rearden LLC
Original Assignee
Rearden LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/464,648 external-priority patent/US9312929B2/en
Application filed by Rearden LLC filed Critical Rearden LLC
Priority to CN202010055466.7A priority Critical patent/CN111262613A/zh
Publication of CN104603853A publication Critical patent/CN104603853A/zh
Application granted granted Critical
Publication of CN104603853B publication Critical patent/CN104603853B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B13/00Burglar, theft or intruder alarms
    • G08B13/18Actuation by interference with heat, light, or radiation of shorter wavelength; Actuation by intruding sources of heat, light, or radiation of shorter wavelength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/01Reducing phase shift
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/69Spread spectrum techniques
    • H04B1/707Spread spectrum techniques using direct sequence modulation
    • H04B1/7097Interference-related aspects
    • H04B1/711Interference-related aspects the interference being multi-path interference
    • H04B1/7115Constructive combining of multi-path signals, i.e. RAKE receivers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S367/00Communications, electrical: acoustic wave systems and devices
    • Y10S367/904Doppler compensation systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明公开了补偿多普勒效应对DIDO系统性能的不利影响的系统和方法。这种系统的一个实施例采用不同的选择算法,基于通过跟踪所述变化的信道条件,来自适应地调整对于不同UE的活动BTS。另一个实施例利用信道预测来估计未来的CSI或DIDO预编码权重,从而消除归因于过时的CSI的错误。

Description

用于处理分布式输入-分布式输出无线系统中的多普勒效应的系统和方法
相关专利申请
本专利申请是以下共同待审的美国专利申请的部分继续申请:
2010年11月1日提交的名称为“Systems And Methods To CoordinateTransmissions In Distributed Wireless Systems Via User Clustering”(经由用户群集化协调分布式无线系统中的传输的系统和方法)的美国专利申请序列号12/917,257;2010年6月16日提交的名称为“Interference Management,Handoff,Power Control And Link Adaptation In Distributed-Input Distributed-Output(DIDO)Communication Systems”(分布式输入分布式输出(DIDO)通信系统中的干扰管理、越区切换、功率控制及链路自适应)的美国专利申请序列号12/802,988;2010年6月16日提交的名称为“System And MethodFor Adjusting DIDO Interference Cancellation Based On Signal StrengthMeasurements”(基于信号强度测量调整DIDO干扰消除的系统和方法)的美国专利申请序列号12/802,976,现为2012年5月1日公布的美国授权专利8,170,081;2010年6月16日提交的名称为“System And Method ForManaging Inter-Cluster Handoff Of Clients Which Traverse Multiple DIDOClusters”(用于管理越过多个DIDO群集的客户端的群集间越区切换的系统和方法)的美国专利申请序列号12/802,974;2010年6月16日提交的名称为“System And Method For Managing Handoff Of A Client BetweenDifferent Distributed-Input-Distributed-Output(DIDO)Networks Based OnDetected Velocity Of The Client”(基于检测到的客户端速度管理不同的分布式输入分布式输出(DIDO)网络之间的客户端的越区切换的系统和方法)的美国专利申请序列号12/802,989;2010年6月16日提交的名称为“System And Method For Power Control And Antenna Grouping In ADistributed-Input-Distributed-Output(DIDO)Network”(用于分布式输入分布式输出(DIDO)网络中的功率控制和天线分组的系统和方法)的美国专利申请序列号12/802,958;2010年6月16日提交的名称为“System AndMethod For Link adaptation In DIDO Multicarrier Systems”(用于DIDO多载波系统中的链路自适应的系统和方法)的美国专利申请序列号12/802,975;2010年6月16日提交的名称为“System And Method For DIDO PrecodingInterpolation In Multicarrier Systems”(用于多载波系统中的DIDO预编码内插的系统和方法)的美国专利申请序列号12/802,938;2009年12月3日提交的名称为“System and Method For Distributed Antenna WirelessCommunications”(用于分布式天线无线通信的系统和方法)的美国专利申请序列号12/630,627;2008年6月20日提交的名称为“System andMethod For Distributed Input-Distributed Output Wireless Communications”(用于分布式输入-分布式输出无线通信的系统和方法)的美国专利申请序列号12/143,503,现为2009年4月17日公布的美国授权专利8,160,121;2007年8月20日提交的名称为“System and Method for Distributed InputDistributed Output Wireless Communications”(用于分布式输入分布式输出无线通信的系统和方法)的美国专利申请序列号11/894,394,现为2009年10月6日公布的美国授权专利7,599,420;2007年8月20日提交的名称为“System and method for Distributed Input-Distributed WirelessCommunications”(用于分布式输入-分布式无线通信的系统和方法)的美国专利申请序列号11/894,362,现为2009年12月15日公布的美国授权专利7,633,994;2007年8月20日提交的名称为“System and Method ForDistributed Input-Distributed Output Wireless Communications”(用于分布式输入-分布式输出无线通信的系统和方法)的美国专利申请序列号11/894,540,现为2009年12月22日公布的美国授权专利No.7,636,381;2005年10月21日提交的名称为“System and Method For Spatial-Multiplexed Tropospheric Scatter Communications”(用于空间多路复用的对流层散射通信的系统和方法)的美国专利申请序列号11/256,478,现为2010年5月4日公布的美国授权专利7,711,030;2004年4月2日提交的名称为“System and Method For Enhancing Near Vertical Incidence Skywave(“NVIS”)Communication Using Space-Time Coding”(使用空时编码增强近垂直入射天波(“NVIS”)通信的系统和方法)的美国专利申请序列号10/817,731,现为2011年2月28日公布的美国授权专利No.7,885,354。
背景技术
现有技术的多用户无线系统可包括仅单个基站或若干个基站。
在不存在其他WiFi接入点(例如,连接到农村用户家中的DSL的WiFi接入点)的区域内连接到宽带有线互联网连接的单个WiFi基站(例如,利用2.4GHz 802.11b、g或n协议)是由在其发射范围内的一个或多个用户共享的单个基站的相对简单的多用户无线系统的示例。如果用户与无线接入点处于同一个房间中,则该用户通常将体验到几乎没有传输中断的高速链路(例如,可能由于2.4GHz干扰器(如,微波炉)而存在数据包丢失,但不会由于与其他WiFi装置的频谱共享而存在数据包丢失),如果用户为中等距离远或在用户与WiFi接入点之间的路径中有几处障碍,则用户将可能体验到中速链路。如果用户正在接近WiFi接入点的范围的边缘,则该用户将可能体验到低速链路,并且如果信道的变化导致信号SNR降到低于可用的水平,则用户可能经受周期性中断。并且最终,如果用户在WiFi基站的范围之外,则用户将完全没有链路。
当多个用户同时接入WiFi基站时,则在其间共享可用数据吞吐量。不同用户通常将在给定时间对WiFi基站提出不同吞吐量需求,但有时当聚集吞吐量需求超过从WiFi基站到用户的可用吞吐量时,则一些或所有用户将接收比其正寻求的数据吞吐量少的数据吞吐量。在WiFi接入点在非常大量的用户之间共享的极端情形中,到每一用户的吞吐量可减慢到蠕动速度,且更糟的是,到每一用户的数据吞吐量可按由完全没有数据吞吐量的长周期分开的短脉冲到达,在所述长周期时间期间为其他用户服务。该“断断续续的”数据传送可能损害类似媒体流的某些应用。
在具有大量用户的情形中添加额外的WiFi基站将仅在一定程度上有帮助。在美国的2.4GHz ISM频带内,存在可用于WiFi的3个非干扰信道,且如果在相同覆盖区域中的3个WiFi基站被配置为各自使用不同的非干扰信道,则在多个用户之间的覆盖区域的聚集吞吐量将增加最多至3倍。但除此之外,在相同覆盖区域中添加更多WiFi基站将不增加聚集吞吐量,因为它们将开始在其间共享相同的可用频谱,从而通过“轮流”使用该频谱而有效地利用时分多路复用接入(TDMA)。此情形常见于具有高人口密度的覆盖区域中(诸如,多住宅单元中)。例如,在具有WiFi适配器的大公寓建筑物中的用户可能归因于服务于同一覆盖区域中的其他用户的许多其他干扰WiFi网络(例如,在其他公寓中)而显著地经历非常差的吞吐量,即便用户的接入点在与接入基站的客户端设备相同的房间中也是如此。虽然链路质量可能在所述情形中是良好的,但用户将会接收来自在同一频带中工作的相邻WiFi适配器的干扰,从而减少到用户的有效吞吐量。
当前的多用户无线系统(包括未授权频谱(诸如WiFi)和授权频谱两者)遭受若干限制。这些限制包括覆盖区域、下行链路(DL)数据速率以及上行链路(UL)数据速率。下一代无线系统(诸如WiMAX和LTE)的关键目标是经由多输入多输出(MIMO)技术改善覆盖区域以及DL和UL数据速率。MIMO在无线链路的发射和接收侧使用多个天线以提升链路质量(产生较宽覆盖)或数据速率(通过创建到每一用户的多个非干扰空间信道)。然而,如果足够的数据速率可用于每一用户(注意,在本文中术语“用户”和“客户端”可互换地使用),则可需要根据多用户MIMO(MU-MIMO)技术利用信道空间分集来创建到多个用户(而非单个用户)的非干扰信道。参见,例如,以下参考文献:
G.Caire and S.Shamai,“On the achievable throughput of a multiantennaGaussian broadcast channel,”IEEE Trans.Info.Th.,vol.49,pp.1691-1706,July 2003(G.Caire和S.Shanai,“关于多天线高斯广播信道的可实现吞吐量”,《IEEE信息理论学报》,第49卷,第1691-1706页,2003年7月)。
P.Viswanath and D.Tse,“Sum capacity of the vector Gaussian broadcastchannel and uplink-downlink duality,”IEEE Trans.Info.Th.,vol.49,pp.1912-1921,Aug.2003(P.Viswanath和D.Tse,“向量高斯广播信道的总容量和上下行链路的对偶性”,《IEEE信息理论学报》,第49卷,第1912-1921页,2003年8月)。
S.Vishwanath,N.Jindal,and A.Goldsmith,“Duality,achievable rates,and sum-rate capacity of Gaussian MIMO broadcast channels,”IEEE Trans.Info.Th.,vol.49,pp.2658-2668,Oct.2003(S.Vishwanath、N.Jindal和A.Goldsmith,“高斯MIMO广播信道的对偶性、可实现速率和总速率容量”,《IEEE信息理论学报》,第49卷,第2658-2668页,2003年10月)。
W.Yu and J.Cioffi,“Sum capacity of Gaussian vector broadcastchannels,”IEEE Trans.Info.Th.,vol.50,pp.1875-1892,Sep.2004(W.Yu和J.Cioffi,“高斯向量广播信道的总容量”,《IEEE信息理论学报》,第50卷,第1875-1892页,2004年9月)。
M.Costa,“Writing on dirty paper,”IEEE Transactions on InformationTheory,vol.29,pp.439-441,May 1983(M.Costa,“在脏纸上书写”,《IEEE信息理论学报》,第29卷,第439-441页,1983年5月)。
M.Bengtsson,“A pragmatic approach to multi-user spatialmultiplexing,”Proc.of Sensor Array and Multichannel Sign.Proc.Workshop,pp.130-134,Aug.2002(M.Bengtsson,“多用户空间多路复用的务实方法”,传感器阵列和多信道信号处理研讨会论文集,第130-134页,2002年8月)。
K.-K.Wong,R.D.Murch,and K.B.Letaief,“Performance enhancementof multiuser MIMO wireless communication systems,”IEEE Trans.Comm.,vol.50,pp.1960-1970,Dec.2002(K.-K.Wong、R.D.Murch和K.B.Letaief,“多用户MIMO无线通信系统的性能增强”,《IEEE通信学报》,第50卷,第1960-1970页,2002年12月)。
M.Sharif and B.Hassibi,“On the capacity of MIMO broadcast channelwith partial side information,”IEEE Trans.Info.Th.,vol.51,pp.506-522,Feb.2005(M.Sharif和B.Hassibi,“关于具有部分边信息的MIMO广播信道的容量”,《IEEE信息理论学报》,第51卷,第506-522页,2005年2月)。
例如,在10MHz带宽、16-QAM调制且具有3/4速率的前向纠错(FEC)编码(产生3bps/Hz的频谱效率)的MIMO 4×4系统(即,四个发射天线和四个接收天线)中,对于每一用户在物理层处可实现的理想峰值数据速率为4×30Mbps=120Mbps,其比传送高清晰度视频内容(其可能仅需要约10Mbps)所需的速率高得多。在具有四个发射天线、四个用户以及每一用户单个天线的MU-MIMO系统中,在理想情形(即,独立且恒等分布(i.i.d.)信道)中,下行链路数据速率可在四个用户中共享且可利用信道空间分集以创建到用户的四个平行30Mbps数据链路。
已提议不同MU-MIMO方案作为LTE标准的一部分,如在例如以下文献中所述:3GPP,“Multiple Input Multiple Output in UTRA”,3GPP TR25.876V7.0.0,Mar.2007(3GPP,“UTRA中的多输入多输出”,3GPP TR25.876V7.0.0,2007年3月);3GPP,“Base Physical channels andmodulation”,TS 36.211,V8.7.0,May 2009(3GPP,“基础物理信道和调制”,TS 36.211,V8.7.0,2009年5月);和3GPP,“Multiplexing andchannel coding”,TS 36.212,V8.7.0,May 2009(3GPP,“多路复用和信道编码”,TS 36.212,V8.7.0,2009年5月。然而,这些方案仅可通过四个发射天线提供DL数据速率方面的最多至2倍的改进。由类似爱瑞通信(ArrayComm)的公司在标准及专属蜂窝式系统中对MU-MIMO技术的实际实施(参见,例如,爱瑞通信(ArrayComm),“Field-proven results”(现场验证结果),http://www.arraycomm.com/serve.php?page=proo)已经由空分多址(SDMA)产生DL数据速率方面的最多至约3倍的增加(通过四个发射天线)。蜂窝式网络中的MU-MIMO方案的关键限制是在发射侧处缺乏空间分集。空间分集随无线链路中的天线间距和多路径角展度而变。在使用MU-MIMO技术的蜂窝式系统中,基站处的发射天线通常归因于天线支撑结构(本文中称为“塔”,不论物理上是高还是不高)上的有限占地面积并归因于塔可位于何处的限制而群集在一起并仅相隔一个或两个波长而放置。此外,因为小区塔通常放置在障碍物之上很高处(10米或更多)以产生较宽覆盖,所以多路径角展度较低。
蜂窝式系统部署的其他实际问题包括蜂窝式天线位置的过多成本及位置的有限可用性(例如,归因于对天线放置的市政限制、不动产的成本、物理障碍物等)以及到发射器的网络连接(本文中称为“回程”)的成本和/或可用性。此外,蜂窝式系统通常归因于由于墙壁、天花板、地板、家具和其他阻碍的损耗而难以到达位于建筑物深处的客户端。
的确,广域无线网络的蜂窝式结构的整个概念预先假定了蜂窝式塔的相当固定的放置、相邻小区之间的频率的交替,以及频繁地扇区化,以便避免使用同一频率的发射器(基站或用户)之间的干扰。因此,给定小区的给定扇区最终成为所述小区扇区中的所有用户之间的DL和UL频谱的共享块,接着主要仅在时域中在这些用户之间共享所述DL和UL频谱。例如,基于时分多址(TDMA)和码分多址(CDMA)的蜂窝式系统两者均在时域中在用户之间共享频谱。通过用扇区化覆盖此类蜂窝式系统,也许能够实现2-3倍的空间域益处。并且,接着通过用MU-MIMO系统(诸如先前描述的那些)覆盖此类蜂窝式系统,也许能够实现另外的2-3倍空间-时间域益处。但是,考虑到蜂窝式系统的小区和扇区通常在固定位置(常由可放置塔的位置指定)中,如果在给定时间用户密度(或数据速率需求)不与塔/扇区放置很好地匹配,则甚至这些有限益处也难以利用。蜂窝式智能电话用户通常经历下述结果:今天用户可能完全无任何问题地在电话中交谈或下载网页,且接着在行驶(或甚至步行)到一个新位置之后将突然发现语音质量降低或网页减缓到蠕动速度,或甚至完全丢失连接。但是,在不同日子,用户可在每一位置中遭遇完全相反的情况。假定环境条件相同,用户可能正在经历的情况是用户密度(或数据速率需求)为高度变化的,但待在给定位置处在用户之间共享的可用总频谱(且因此总数据速率,使用现有技术的技术)很大程度上固定的事实。
此外,现有技术蜂窝式系统依赖在不同的相邻小区中使用不同频率,通常3个不同频率。对于给定频谱量,此将可用数据速率减少到三分之一。
所以,总而言之,现有技术的蜂窝式系统可归因于蜂窝化而丢失也许3倍的频谱利用,并且可通过扇区化提升频谱利用也许3倍并经由MU-MIMO技术再提升也许3倍,从而产生净3*3/3=3倍的可能频谱利用。接着,所述带宽通常基于用户在给定时间属于何小区的何扇区而在时域中在用户之间分割。甚至进一步存在归因于给定用户的数据速率需求通常无关于用户的位置但可用数据速率视用户与基站之间的链路质量而变化的事实而导致的低效率。例如,距蜂窝式基站更远的用户通常将具有比更接近基站的用户小的可用数据速率。因为数据速率通常在给定蜂窝式扇区中的所有用户之间共享,所以此情况的结果是所有用户均受来自具有差链路质量的远方用户(例如,在小区的边缘)的高数据速率需求影响,因为这些用户仍将需求相同量的数据速率,然而他们将消耗更多的共享频谱才能得到所述数据速率。
其他提议的频谱共享系统(诸如由WiFi使用的频谱共享系统(例如802.11b、g和n)和由白空间联盟(White Spaces Coalition)提议的那些系统)非常低效地共享频谱,因为由在用户的范围内的基站进行的同时发射导致干扰,且因而系统利用冲突避免和共享协议。这些频谱共享协议在时域内,且因此当存在大量的干扰基站和用户时,不论每个基站自身在频谱利用方面效率如何,基站集体地受限于彼此之间的频谱的时域共享。其他现有技术频谱共享系统类似地依赖类似方法以减轻基站(无论是具有在塔上的天线的蜂窝式基站还是小规模基站,诸如WiFi接入点(AP))之间的干扰。这些方法包括:限制来自基站的发射功率以便限制干扰的范围;波束成形(经由合成或物理方式)以使干扰的区域变窄;频谱的时域多路复用;以及/或者在用户设备、基站或两者上具有多个群集天线的MU-MIMO技术。并且,就现今已安排好或在规划中的高级蜂窝式网络而言,经常同时使用这些技术中的许多技术。
但是,通过与单个用户利用频谱相比甚至高级蜂窝式系统也仅可实现频谱利用的约3倍增加的事实显而易见的是,所有这些技术对增大给定覆盖区域中的共享用户之间的聚集数据速率成效不彰。具体而言,当给定覆盖区域在用户方面缩放时,变得越来越难以在给定频谱量内缩放可用数据速率以跟上用户的增长。例如,在使用蜂窝式系统的情况下,为了增大给定区域内的聚集数据速率,小区通常被细分成较小小区(通常称为微型小区(nano-cell)或超微型小区(femto-cell))。考虑到对塔可放置于何处的限制,以及对塔必须以适当结构化样式放置以便提供具有最小“死区”的覆盖,然而避免使用同一频率的邻近小区之间的干扰的要求,这些小的小区可能变得极端昂贵。实质上,覆盖区域必须被绘出,用于放置塔或基站的可用位置必须经识别,且接着考虑到这些约束条件,蜂窝式系统的设计者必须尽其最大努力设法完成。并且,当然,如果用户数据速率需求随时间而增长,则蜂窝式系统的设计者必须再一次重新绘制覆盖区域,设法找到塔或基站的位置,并再次在环境的约束条件内工作。并且,常常根本没有好的解决方案,从而导致覆盖区域中的死区或不充足的聚集数据速率容量。换言之,为了避免利用同一频率的塔或基站之间的干扰的对蜂窝式系统的严格物理放置要求导致蜂窝式系统设计中的显著困难和约束条件,且常常不能满足用户数据速率和覆盖要求。
所谓的现有技术“协作式”和“认知式”无线电系统设法通过在无线电内使用智能算法以使得无线电能够最小化彼此之间的干扰并且/或者使得无线电能够潜在地“收听”其他频谱使用以便等到信道无干扰为止来增加给定区域中的频谱利用。此类系统被提议以尤其用于未授权频谱中以便增加对此频谱的频谱利用。
移动自组网络(MANET)(参见http://en.wikipedia.org/wiki/Mobile_ad_hoc_network)为旨在用于提供对等通信的协作式自配置网络的示例,且可用于在没有蜂窝式基础结构的情况下在无线电之间创建通信,且在具有充分低功率通信的情况下可潜在地减轻在彼此范围之外的同时发射之间的干扰。针对MANET系统已提议并实施了大量路由协议(对于各种类别的许多路由协议的列表,参见http://en.wikipedia.org/wiki/List_of_ad-hoc_routing_protocols),但它们之间的共同主题是它们都是为了达到特定效率或可靠性典范的目标的用于路由(例如,重复)发射以使得最小化在可用频谱内的发射器干扰的技术。
所有现有技术的多用户无线系统均设法通过利用允许在基站与多个用户之间的同时频谱利用的技术而提升给定覆盖区域内的频谱利用。注意,在所有这些状况下,用于在基站与多个用户之间的同时频谱利用的技术通过减轻到多个用户的波形之间的干扰而实现多个用户的同时频谱使用。例如,在3个基站各自使用不同的频率来发射到3个用户中的一者的情况下,因为3个发射是在3个不同的频率下,所以其中干扰被减轻。在从基站到3个不同用户的扇区化(相对于基站,每一者相隔180度)的情况下,因为波束成形防止3个发射在任一用户处重叠,所以干扰被减轻。
当此类技术通过MU-MIMO强化,并且(例如)每个基站具有4个天线时,则此通过创建到给定覆盖区域中的用户的四个非干扰空间信道而具有将下行链路吞吐量增加4倍的潜力。但情况仍是必须利用一些技术以减轻到不同覆盖区域中的多个用户的多个同时发射之间的干扰。
并且,如先前所述,这些现有技术的技术(例如,蜂窝化、扇区化)不仅通常因增加多用户无线系统的成本和/或部署的灵活性而受损,而且其通常会遇上对给定覆盖区域中的聚集吞吐量的物理或实际限制。例如,在蜂窝式系统中,可能没有足够的可用位置来安装更多基站以创建更小的小区。并且,在MU-MIMO系统中,考虑到在每个基站位置处的群集天线间距,随着更多天线被添加到基站,有限的空间分集导致吞吐量的渐近收益递减。
并且此外,在用户位置和密度不可预测的多用户无线系统的情况下,其导致不可预测的吞吐量(具有频繁急剧变化),这对于用户是不方便的且致使一些应用(例如,要求可预测吞吐量的服务的传送)不实际或低质量。因此,现有技术的多用户无线系统在其为用户提供可预测和/或高质量服务的能力方面仍有许多待改进之处。
尽管随时间推移现有技术的多用户无线系统已变得非常精密和复杂,但存在共同的主题:将发射分布于不同基站(或自组收发器)之间并且结构化和/或控制发射,以便避免来自不同基站和/或不同自组收发器的RF波形发射在给定用户的接收器处彼此干扰。
或者,换言之,被认为是已知的事实是如果用户碰巧同时接收到来自一个以上基站或自组收发器的发射,则来自多个同时发射的干扰将导致到用户的信号的SNR和/或带宽的减小,其(如果足够严重)将导致原本会由用户接收到的潜在数据(或模拟信息)中的全部或一些丢失。
因此,在多用户无线系统中,必须利用一个或多个频谱共享方法或另一方法来避免或减轻来自同时以同一频率发射的多个基站或自组收发器的对用户的这种干扰。存在避免这种干扰的大量现有技术方法,包括控制基站的物理位置(例如,蜂窝化),限制基站和/或自组收发器的功率输出(例如,限制发射范围),波束成形/扇区化,以及时域多路复用。简言之,所有这些频谱共享系统均设法解决多用户无线系统的限制,即:在同时以同一频率发射的多个基站和/或自组收发器由同一用户接收时,所得干扰减少或破坏到受影响用户的数据吞吐量。如果多用户无线系统中的用户中的大部分或全部经受来自多个基站和/或自组收发器的干扰(例如,在多用户无线系统的组件发生故障的情况下),则其可能导致多用户无线系统的聚集吞吐量急剧减少或甚至丧失功能的情形。
现有技术的多用户无线系统增加复杂度并对无线网络引入限制,且频繁地导致给定用户的体验(例如,可用带宽、延迟、可预测性、可靠性)受区域中的其他用户对频谱的利用影响的情形。考虑到对于由多个用户共享的无线频谱内的聚集带宽的渐增的需求,以及可依赖用于给定用户的多用户无线网络的可靠性、可预测性和低延迟的应用的不断增长,显然现有技术的多用户无线技术遭受许多限制。实际上,由于适用于特定类型的无线通信(例如,在可有效穿透建筑物墙壁的波长下)的频谱的有限可用性,可能的情况是现有技术的无线技术将不足以满足对于可靠、可预测和低延迟的带宽的渐增的需求。
与本发明相关的现有技术描述了用于在多用户情形中零控的波束成形系统和方法。最初构想波束成形以通过动态地调整馈送至阵列的天线的信号的相位和/或振幅(即,波束成形权重)来最大化所接收的信噪比(SNR),从而朝用户的方向集中能量。在多用户情形中,波束成形可用于抑制干扰源并最大化信号对干扰加噪声比(SINR)。例如,当在无线链路的接收器处使用波束成形时,计算权重以在干扰源方向上创建零点(null)。当在多用户下行链路情形中在发射器处使用波束成形时,计算权重以预先消除用户间干扰并最大化到每一用户的SINR。用于多用户系统的替代技术(诸如BD预编码)计算预编码权重,以最大化下行链路广播信道中的吞吐量。以引用方式并入本文的共同待审的专利申请描述了上述技术(参见共同待审的专利申请以获得特定引用内容)。
附图说明
通过结合附图的以下详细描述可以获得对本发明的更好理解,其中:
图1示出了本发明的一个实施例中由相邻DIDO群集环绕的主DIDO群集。
图2示出了用于本发明的一个实施例中的频分多址(FDMA)技术。
图3示出了用于本发明的一个实施例中的时分多址(TDMA)技术。
图4示出了本发明的一个实施例中解决的不同类型的干扰区。
图5示出了用于本发明的一个实施例中的框架。
图6示出了一个曲线图,其显示了SER随SNR的变化关系,对于干扰区中的目标客户端假定SIR=10dB。
图7示出了一个曲线图,其显示了通过两种IDCI-预编码技术得出的SER。
图8示出了目标客户端从主DIDO群集向干扰群集移动的示例性情形。
图9示出了信号对干扰加噪声比(SINR)随距离(D)的变化关系。
图10示出了在平坦衰落窄带信道中对于4-QAM调制的三种情形的符号错误率(SER)性能。
图11示出了根据本发明的一个实施例的用于IDCI预编码的方法。
图12示出了一个实施例中SINR变化随客户端距主DIDO群集中心的距离的变化关系。
图13示出了一个实施例,其中针对4-QAM调制得出SER。
图14示出了本发明的一个实施例,其中有限状态机实施越区切换算法。
图15示出了在存在遮蔽的情况下越区切换策略的一个实施例。
图16示出了当在图93的任何两种状态之间切换时的滞后回路机制。
图17示出了具有功率控制的DIDO系统的一个实施例。
图18示出了在不同情形中假定四个DIDO发射天线及四个客户端的情况下的SER与SNR的关系。
图19示出了根据本发明的一个实施例针对不同发射功率值,MPE功率密度随距RF辐射源的距离的变化关系。
图20a-图20b示出了低功率和高功率DIDO分布式天线的不同分布。
图21a-图21b分别示出了对应于图20a和图20b中的配置的两种功率分布。
图22a-图22b分别示出了图99a和99b中所示的两种情形的速率分布。
图23示出了具有功率控制的DIDO系统的一个实施例。
图24示出了根据用于传输数据的循环调度策略在所有天线组上重复的方法的一个实施例。
图25示出了具有天线分组的功率控制的未编码SER性能与美国专利No.7,636,381中的常规本征模式选择的比较。
图26a-图26c示出了其中BD预编码动态地调整预编码权重,以考虑在DIDO天线与客户端之间的无线链路上的不同功率电平的三种情形。
图27示出了DIDO 2×2系统的在延迟域或瞬时PDP(上部曲线)和频域(下部曲线)上的低频率选择性信道(假定β=1)的振幅。
图28示出了针对DIDO 2×2的信道矩阵频率响应的一个实施例,其中每一客户端单个天线。
图29示出了针对DIDO 2×2的信道矩阵频率响应的一个实施例,其中对于通过高频率选择性(例如,其中β=1)特征化的信道,每一客户端单个天线。
图30示出了不同的QAM方案(即4-QAM、16-QAM、64-QAM)的示例性SER。
图31示出了用于实施链路自适应(LA)技术的方法的一个实施例。
图32示出了链路自适应(LA)技术的一个实施例的SER性能。
图33示出了对于其中NFFT=64及L0=8的DIDO 2×2系统,等式(28)中矩阵的项随OFDM音调索引的变化关系。
图34示出了对于L0=8、M=Nt=2个发射天线以及可变数量的P的SER与SNR的关系。
图35示出了针对不同DIDO阶数及L0=16的内插方法的一个实施例的SER性能。
图36示出了使用超级群集、DIDO-群集和用户群集的系统的一个实施例。
图37示出了根据本发明的一个实施例的具有用户群集的系统。
图38a-图38b示出了用于本发明的一个实施例中的链路质量量度阈值。
图39-图41示出了用于创建用户群集的链路质量矩阵的例子。
图42示出了客户端跨越不同的DIDO群集移动的实施例。
图43-图46示出了本发明的一个实施例中球形阵列的分辨率与其面积A之间的关系。
图47示出了在实际的室内和室外传播情形中MIMO系统的自由度。
图48示出了DIDO系统中的自由度随阵列直径的变化关系。
图49示出了一个实施例,其包括通过有线或无线连接通信的多个集中式处理器(CP)和分布式节点(DN)。
图50示出了一个实施例,其中CP与未授权DN交换控制信息并重新配置它们以关闭用于授权使用的频带。
图51示出了一个实施例,其中整个频谱被分配给新的服务,并且CP使用控制信息关闭所有未授权的DN,以避免干扰授权的DN。
图52示出了云无线系统的一个实施例,该云无线系统包括多个CP、分布式节点和将CP与DN互连的网络。
图53-图59示出了多用户(MU)多天线系统(MAS)的实施例,其自适应地重新配置参数,以补偿由于用户移动性或传播环境的改变而造成的多普勒效应。
图60示出了多个BTS,其中一些具有良好的SNR,并且其中一些相对于UE具有低多普勒。
图61示出了矩阵的一个实施例,其包含由CP记录的多个BTS-UE链路的SNR和多普勒的值。
图62示出了根据本发明的一个实施例的在不同时间的信道增益(或CSI)。
具体实施方式
克服上述现有技术限制中的许多限制的一个解决方案是分布式输入分布式输出(DIDO)技术的一个实施例。DIDO技术在以下专利和专利申请中有所描述,所述专利和专利申请全部转让给本专利的受让人,并且以引用方式并入。本专利申请为这些专利申请的部分继续申请(CIP)。这些专利和专利申请有时在本文中被统称为“相关专利和专利申请”。
2011年9月14日提交的名称为“Systems And Methods To ExploitAreas of Coherence in Wirless Systems”(在无线系统中利用同调性区域的系统和方法)的美国专利申请序列号13/232,996
2011年9月14日提交的名称为“Systems and Methods for PlannedEvoluation and Obsolescence of Multiuser Spectrum”(用于多用户频谱的计划演进和过时的系统和方法)的美国专利申请序列号13/233,006。
2010年11月1日提交的名称为“Systems And Methods To CoordinateTransmissions In Distributed Wireless Systems Via User Clustering”(通过用户群集化协调分布式无线系统中的传输的系统和方法)的美国专利申请序列号12/917,257
2010年6月16日提交的名称为“Interference Management,Handoff,Power Control And Link Adaptation In Distributed-Input Distributed-Output(DIDO)Communication Systems”(分布式输入分布式输出(DIDO)通信系统中的干扰管理、越区切换、功率控制及链路自适应)的美国专利申请序列号12/802,988
2010年6月16日提交的名称为“System And Method For AdjustingDIDO Interference Cancellation Based On Signal Strength Measurements”(基于信号强度测量调整DIDO干扰消除的系统和方法)的美国专利申请序列号12/802,976
2010年6月16日提交的名称为“System And Method For ManagingInter-Cluster Handoff Of Clients Which Traverse Multiple DIDO Clusters”(用于管理越过多个DIDO群集的客户端的群集间越区切换的系统和方法)的美国专利申请序列号12/802,974
2010年6月16日提交的名称为“System And Method For ManagingHandoff Of A Client Between Different Distributed-Input-Distributed-Output(DIDO)Networks Based On Detected Velocity Of The Client”(基于检测到的客户端速度管理不同的分布式输入分布式输出(DIDO)网络之间的客户端的越区切换的系统和方法)的美国专利申请序列号12/802,989
2010年6月16日提交的名称为“System And Method For Power ControlAnd Antenna Grouping In A Distributed-Input-Distributed-Output(DIDO)Network”(用于分布式输入分布式输出(DIDO)网络中的功率控制和天线分组的系统和方法)的美国专利申请序列号12/802,958
2010年6月16日提交的名称为“System And Method For Linkadaptation In DIDO Multicarrier Systems”(用于DIDO多载波系统中的链路自适应的系统和方法)的美国专利申请序列号12/802,975
2010年6月16日提交的名称为“System And Method For DIDOPrecoding Interpolation In Multicarrier Systems”(用于多载波系统中的DIDO预编码内插的系统和方法)的美国专利申请序列号12/802,938
2009年12月2日提交的名称为“System and Method For DistributedAntenna Wireless Communications”(用于分布式天线无线通信的系统和方法)的美国专利申请序列号12/630,627
2007年8月20日提交、2009年10月6日公布的名称为“System andMethod for Distributed Input Distributed Output Wireless Communication”(用于分布式输入分布式输出无线通信的系统和方法)的美国专利No.7,599,420;
2007年8月20日提交、2009年12月15日公布的名称为“System andMethod for Distributed Input Distributed Output Wireless Communication”(用于分布式输入分布式输出无线通信的系统和方法)的美国专利No.7,633,994;
2007年8月20日提交、2009年12月22日公布的名称为“System andMethod for Distributed Input Distributed Output Wireless Communication”(用于分布式输入分布式输出无线通信的系统和方法)的美国专利No.7,636,381;
2008年6月20日提交的名称为“System and Method For DistributedInput-Distributed Output Wireless Communications”(用于分布式输入-分布式输出无线通信的系统和方法)的美国专利申请序列号12/143,503;
2005年10月21日提交的名称为“System and Method For Spatial-Multiplexed Tropospheric Scatter Communications”(用于空间多路复用对流层散射通信的系统和方法)的美国专利申请序列号11/256,478;
2004年7月30日提交、2008年8月26日公布的名称为“System andMethod for Distributed Input Distributed Output Wireless Communication”(用于分布式输入分布式输出无线通信的系统和方法)的美国专利No.7,418,053;
2004年4月2日提交的名称为“System and Method For Enhancing NearVertical Incidence Skywave(“NVIS”)Communication Using Space-TimeCoding”(使用空时编码增强近垂直入射天波(“NVIS”)通信的系统和方法)的美国专利申请序列号10/817,731。
为了减小本专利申请的篇幅及复杂度,下文没有明确地列出相关专利和专利申请中的一些的公开内容。请参见相关专利和专利申请来获取本公开内容的完整的详细描述。
需注意,以下章节I(来自相关专利申请序列号12/802,988的公开内容)使用其自身的一组尾注,该尾注是指现有技术参考文献和转让给本专利申请的受让人的先前专利申请。尾注引用列出于章节I的结尾处(恰好在章节II标头前)。章节II中使用的引用针对其与章节I中使用的那些引用重叠的引用可以具有数字标记,甚至通过这些数字标记标识不同参考文献(列出于章节II的结尾处)。因此,可在使用特定数字标记的章节中识别由该数字标记标识的参考文献。
I.来自相关专利申请序列号12/802,988的公开内容
1.移除群集间干扰的方法
下文描述了利用多个分布式发射天线在空间中创建具有零RF能量的位置的无线射频(RF)通信系统和方法。当使用M个发射天线时,可以在预定义位置中创建最多至(M-1)个零RF能量点。在本发明的一个实施例中,零RF能量点为无线设备,并且发射天线知晓发射器与接收器之间的信道状态信息(CSI)。在一个实施例中,CSI在接收器处被计算并反馈至发射器。在另一个实施例中,假定利用信道互易性,经由来自接收器的训练而在发射器处计算CSI。发射器可利用CSI来确定将被同时发射的干扰信号。在一个实施例中,在发射天线处使用块对角化(BD)预编码以生成零RF能量点。
本文所述的系统和方法与上文所述的常规接收/发射波束成形技术不同。实际上,接收波束成形计算权重以抑制接收侧处的干扰(经由零控),而本文所述的本发明的一些实施例在发射侧应用权重以创建在空间中导致具有“零RF能量”的一个或多个位置的干扰样式。不同于分别被设计用于最大化到每一用户的信号质量(或SINR)或下行链路吞吐量的常规发射波束成形或BD预编码,本文所述的系统和方法最小化在某些条件下以及/或者来自某些发射器的信号质量,从而在客户端设备(在本文中有时称为“用户”)处创建零RF能量点。此外,在分布式输入分布式输出(DIDO)系统(在我们的相关专利和专利申请中有所描述)的语境中,分布在空间中的发射天线提供可用于创建多个零RF能量点以及/或者到不同用户的最大SINR的较高自由度(即,较高的信道空间分集)。例如,通过M个发射天线,可创建最多至(M-1)个RF能量点。相比之下,实际波束成形或BD多用户系统通常被设计为在发射侧处具有密集的天线,从而针对发射天线的任一数目M限制可在无线链路上服务的同时用户的数目。
考虑到具有M个发射天线和K个用户的系统,其中K<M,我们假定发射器知晓M个发射天线与K个用户之间的CSI(H∈CN×M)。为简单起见,假定每个用户都配备有单个天线,但相同的方法可扩展至每一用户多个接收天线。计算在K个用户位置处创建零RF能量的预编码权重(w∈CM×1),以满足以下条件
Hw=0K×1
其中0K×1为具有所有零项的向量,并且H为通过将从M个发射天线至K个用户的信道向量(hk∈C1×M)组合而获得的信道矩阵如下
H = h 1 . . . h k . . . h K .
在一个实施例中,计算信道矩阵H的奇异值分解(SVD),并将预编码权重w定义为对应于H的零子空间(用零奇异值识别)的右奇异向量。
发射天线使用上文所定义的权重向量发射RF能量,同时在K个用户的位置处创建K个零RF能量点,使得第k个用户处所接收的信号由下式给出
rk=hkwsk+nk=0+nk
其中nk∈C1×1为第k个用户处的加性高斯白噪声(AWGN)。
在一个实施例中,计算信道矩阵H的奇异值分解(SVD),并将预编码权重w定义为对应于H的零子空间(用零奇异值识别)的右奇异向量。
在另一个实施例中,无线系统为DIDO系统,并创建零RF能量点以预先消除对不同DIDO覆盖区域之间的客户端的干扰。在美国专利申请序列号12/630,627中,描述了DIDO系统,其包括:
·DIDO客户端
·DIDO分布式天线
·DIDO收发器基站(BTS)
·DIDO基站网络(BSN)
每个BTS经由BSN连接至多个分布式天线,所述多个分布式天线为被称为DIDO群集的给定覆盖区域提供服务。在本专利申请中,我们描述了用于移除相邻DIDO群集之间的干扰的系统和方法。如图1所示,我们假定主DIDO群集代管受来自相邻群集的干扰(或目标客户端)影响的客户端(即,由多用户DIDO系统服务的用户设备)。
在一个实施例中,相邻群集类似于常规蜂窝式系统根据频分多址(FDMA)技术在不同的频率下工作。例如,在频率复用因子为3的情况下,每隔三个DIDO群集重新使用相同的载波频率,如图2所示。在图2中,不同的载波频率被识别为F1、F2和F3。虽然该实施例可用于一些具体实施中,但该解决方案产生频谱效率的损失,因为可用频谱被分成多个子频带并且仅DIDO群集的子集在相同子频带中工作。此外,它需要复杂的小区规划将不同的DIDO群集与不同的频率相关联,从而防止干扰。类似于现有技术的蜂窝式系统,此蜂窝式规划需要天线的特定放置和发射功率的限制,以避免使用相同频率的群集之间的干扰。
在另一个实施例中,相邻群集根据时分多址(TDMA)技术在相同的频带中但在不同的时隙处工作。例如,如图3所示,仅针对某些群集允许在时隙T1、T2和T3中的DIDO发射,如图所示。时隙可被均等地分配给不同的群集,使得根据循环策略调度不同的群集。如果不同的群集通过不同的数据速率要求(即,拥挤城市环境中的群集相对于每个覆盖区域具有更少量客户端的农村区域中的群集)特征化,则将不同的优先级分配给不同的群集,使得将更多时隙分配给具有更大数据速率要求的群集。虽然如上所述的TDMA可用于本发明的一个实施例,但TDMA方法可要求跨越不同群集的时间同步并可导致较低的频谱效率,因为干扰群集无法同时使用相同的频率。
在一个实施例中,所有相邻群集同时在同一频带中发射,并使用跨越群集的空间处理以避免干扰。在该实施例中,多群集DIDO系统:(i)在主群集内使用常规DIDO预编码以在同一频带内将同步非干扰数据流发射至多个客户端(如相关专利和专利申请中所述,包括7,599,420;7,633,994;7,636,381;和专利申请序列号12/143,503);(ii)在相邻群集中使用具有干扰消除的DIDO预编码,以通过在目标客户端的位置处创建零射频(RF)能量点来避免对位于图4中干扰区8010中的客户端的干扰。如果目标客户端在干扰区410中,则其将接收含有来自主群集411的数据流的RF和来自干扰群集412-413的零RF能量的总和,其将只是含有来自主群集的数据流的RF。因此,相邻群集可同时使用相同的频率,而不会使干扰区中的目标客户端受到干扰。
在实际系统中,DIDO预编码的性能可受到不同因素的影响,例如:信道估计错误或多普勒效应(在DIDO分布式天线处产生过时信道状态信息);多载波DIDO系统中的互调失真(IMD);时间或频率偏移。由于这些效应,实现零RF能量点可为不切实际的。然而,只要在目标客户端处来自干扰群集的RF能量与来自主群集的RF能量相比可忽略,目标客户端处的链路性能就不会受到干扰影响。例如,我们假定客户端需要20dB信噪比(SNR)以使用前向纠错(FEC)编码对4-QAM星座图进行解调,以实现10-6的目标误码率(BER)。如果在目标客户端处从干扰群集接收的RF能量比从主群集接收的RF能量低20dB,那么干扰可忽略并且客户端可成功地在预定义的BER目标内对数据进行解调。因此,如本文所用,术语“零RF能量”不一定意味着来自干扰RF信号的RF能量为零。相反,这意味着RF能量相对于所需RF信号的RF能量足够低,使得可在接收器处接收到所需的RF信号。此外,虽然描述了干扰RF能量相对于所需RF能量的某些所需阈值,但本发明的基本原理并不受任何特定阈值的限制。
如图4所示,存在不同类型的干扰区8010。例如,“类型A”区(图80中用字母“A”表示)受到来自仅一个相邻群集的干扰的影响,而“类型B”区(用字母“B”表示)说明来自两个或多个相邻群集的干扰。
图5示出了用于本发明的一个实施例中的框架。点表示DIDO分布式天线,十字是指DIDO客户端且箭头指示RF能量的传播方向。主群集中的DIDO天线将预编码的数据信号发射至该群集中的客户端MC 501。同样,干扰群集中的DIDO天线经由常规的DIDO预编码服务该群集内的客户端IC 502。绿色十字503代表干扰区中的目标客户端TC 503。主群集511中的DIDO天线经由常规的DIDO预编码将预编码的数据信号发射至目标客户端(黑色箭头)。干扰群集512中的DIDO天线使用预编码创建朝目标客户端503方向(绿色箭头)的零RF能量。
图4中任何干扰区410A、410B中的目标客户端k处所接收的信号由下式给出
r k = H k W k s k + H k Σ u = 1 u ≠ k U W u s u + Σ c = 1 C H c , k Σ i = 1 I C W c , i s c , i + n k - - - ( 1 )
其中k=1,...,K,其中K为干扰区8010A、8010B中的客户端数量,U为主DIDO群集中的客户端数量,C为干扰DIDO群集412-413的数量,并且Ic为干扰群集c中的客户端数量。此外,rk∈CN×M为含有在客户端k处的接收数据流的向量,假定在客户端设备处有M个发射DIDO天线和N个接收天线;sk∈CN×1为到主DIDO群集中的客户端k的发射数据流的向量;su∈CN×1为到主DIDO群集中的客户端u的发射数据流的向量;sc,i∈CN×1为到第c个干扰DIDO群集中的客户端i的发射数据流的向量;nk∈CN×1为客户端k的N个接收天线处的加性高斯白噪声(AWGN)的向量;Hk∈CN×M为主DIDO群集中的客户端k处的从M个发射DIDO天线至N个接收天线的DIDO信道矩阵;Hc,k∈CN×M为第c个干扰DIDO群集中的客户端k处的从M个发射DIDO天线至N个接收天线的DIDO信道矩阵;Wk∈CM×N为到主DIDO群集中的客户端k的DIDO预编码权重的矩阵;Wk∈CM×N为到主DIDO群集中的客户端u的DIDO预编码权重的矩阵;Wc,i∈CM×N为到第c个干扰DIDO群集中的客户端i的DIDO预编码权重的矩阵。
为了简化记法且不失一般性,我们假定所有客户端都配备有N个接收天线,并且每个DIDO群集中存在M个DIDO分布式天线,其中M≥(N·U)和M≥(N·Ic),如果M大于群集中接收天线的总数,则使用额外的发射天线预先消除对干扰区中的目标客户端的干扰,或通过相关专利和专利申请中所述的分集方案提高到同一群集内的客户端的链路稳健性,所述相关专利和专利申请包括7,599,420;7,633,994;7,636,381;和专利申请序列号12/143,503。
计算DIDO预编码权重,以预先消除同一DIDO群集内的客户端间干扰。例如,可使用相关专利和专利申请(包括7,599,420、7,633,994、7,636,381、和专利申请序列号12/143,503以及[7])中所述的块对角化(BD)预编码来移除客户端间干扰,使得在主群集中满足以下条件
H k W u = 0 N × N ; ∀ u = 1 , . . . , U ; withu ≠ k . - - - ( 2 )
相邻DIDO群集中的预编码权重矩阵被设计为使得满足以下条件
H c , k W c , i = 0 N × N ; ∀ c = 1 , . . . , Cand ∀ i = 1 , . . . , I c . - - - ( 3 )
为了计算预编码矩阵Wc,i,估计从M个发射天线到干扰群集中的Ic客户端以及到干扰区中的客户端k的下行链路信道,并通过干扰群集中的DIDO BTS计算预编码矩阵。如果用BD方法计算干扰群集中的预编码矩阵,则构建以下有效信道矩阵来计算到相邻群集中的第i个客户端的权重
H ‾ c , i = H c , k H ~ c , i - - - ( 4 )
其中为从用于干扰群集c的信道矩阵获得的矩阵,其中对应于第i个客户端的行被移除。
将条件(2)和(3)代入(1),我们获得用于目标客户端k所接收的数据流,其中移除了群集内和群集间干扰
rk=HkWksk+nk.   (5)
在相邻群集中计算的(1)中的预编码权重Wc,i被设计用于将预编码数据流发射至那些群集中的所有客户端,同时预先消除对干扰区中的目标客户端的干扰。目标客户端仅从其主群集接收预编码数据。在不同的实施例中,从主群集和相邻群集将相同数据流发送至目标客户端,以获得分集增益。在这种情况下,将(5)中的信号模型表示为
r k = ( H k W k + Σ c = 1 C H c , k W c , k ) s k + n k - - - ( 6 )
其中Wc,k为从第c个群集中的DIDO发射器至干扰区中的目标客户端k的DIDO预编码矩阵。需注意,(6)中的方法要求跨越相邻群集的时间同步,在大型系统中实现这一点可能是很复杂的,但尽管如此,如果分集增益益处使实施成本合理化,那么它还是相当可行的。
我们以依据符号错误率(SER)随信噪比(SNR)的变化关系来评估所提议的方法的性能开始。在不失一般性的情况下,我们假定每个客户端具有单个天线而定义以下信号模型,并将(1)重新公式化为
r k = SNR h k w k s k + INR h c , k Σ i = 1 I w c , i s c , i + n k - - - ( 7 )
其中INR为干扰对噪声比,定义为INR=SNR/SIR,并且SIR为信号对干扰比。
图6示出了SER随SNR的变化关系,对于干扰区中的目标客户端假定SIR=10dB。在不失一般性的情况下,我们测量无需前向纠错(FEC)编码的4-QAM和16-QAM的SER。对于未编码系统,我们将目标SER固定为1%。该目标根据调制阶数对应于SNR的不同值(即,对于4-QAM,SNR=20dB,且对于16-QAM,SNR=28dB)。当使用FEC编码时,归因于编码增益,针对相同的SNR值可满足较低的SER目标。我们考虑其中每一群集具有两个DIDO天线和两个客户端(各自配备有单个天线)的两个群集(一个主群集和一个干扰群集)的情形。主群集中的客户端之一位于干扰区中。我们假定平坦衰落窄带信道,但可将以下结果扩展至频率选择性多载波(OFDM)系统,其中每个子载波经历平坦衰落。我们考虑两种情形:(i)一种具有DIDO群集间干扰(IDCI)的情形,其中在不考虑干扰区中的目标客户端的情况下计算预编码权重wc,i;和(ii)另一种情形,其中通过计算权重wc,i来移除IDCI以消除对目标客户端的IDCI。我们观察到,在存在IDCI的情况下,SER为高的且高于预定义的目标。通过相邻群集处的IDCI-预编码,移除了对目标客户端的干扰,并且对于SNR>20dB达到SER目标。
图6中的结果假定如(5)中的IDCI-预编码。如果相邻群集处的IDCI-预编码还用于如(6)中对至干扰区中的目标客户端的数据流进行预编码,则获得另外的分集增益。图7比较了通过以下两种技术得出的SER:(i)使用(5)中的IDCI-预编码的“方法1”;(ii)采用(6)中的IDCI-预编码的“方法2”,其中相邻群集还将预编码的数据流发射至目标客户端。与常规的IDCI-预编码相比,归因于相邻群集中的用于将预编码的数据流发射至目标客户端的DIDO天线所提供的另外的阵列增益,方法2产生约3dB增益。更一般地,方法2相对于方法1的阵列增益与10*log10(C+1)成正比,其中C为相邻群集的数量,并且因子“1”是指主群集。
然后,我们评估上述方法的性能随目标客户端相对于干扰区的位置的变化关系。我们考虑了一种简单的情形,其中目标客户端8401从主DIDO群集802向干扰群集803移动,如图8所示。我们假定主群集802内的所有DIDO天线812都采用BD预编码消除群集间干扰,以满足条件(2)。我们假定具有单个干扰DIDO群集,客户端设备801处的单个接收器天线,并且从主群集或干扰群集中的所有DIDO天线(即,围绕客户端成圆形放置的DIDO天线)到客户端的相等路径损耗。我们使用具有路径损耗指数4(如在典型的城市环境中)的一个简化的路径损耗模型[11]。
下文的分析基于扩展(7)以考虑路径损耗的以下简化信号模型
r k = SNR · D O 4 D 4 h k w k s k + SNR · D O 4 ( 1 - D ) 4 h c , k Σ i = 1 I w c , i s c , i + n k - - - ( 8 )
其中信号对干扰比(SIR)导出为SIR=((1-D)/D)4。在模型化IDCI中,我们考虑三种情形:i)没有IDCI的理想情况;ii)在干扰群集中经由BD预编码预先消除IDCI以满足条件(3);iii)具有未由相邻群集预先消除的IDCI。
图9示出了信号对干扰加噪声比(SINR随与D的函数变化关系(即,当目标客户端从主群集802朝干扰群集8403中的DIDO天线813移动时)。SINR为使用(8)中的信号模型而导出为信号功率与干扰加噪声功率的比率。我们假定对于D=Do,Do=0.1且SNR=50dB。在无IDCI的情况下,无线链路性能仅受噪声影响,并且SINR由于路径损耗而减少。在存在IDCI(即,无IDCI-预编码)的情况下,来自相邻群集中的DIDO天线的干扰有助于减少SINR。
图10示出了对于平坦衰落窄带信道中的4-QAM调制而言,上述三种情形的符号错误率(SER)性能。这些SER结果对应于图9中的SINR。我们假定用于未编码系统(即,无FEC)的1%的SER阈值对应于图9中的SINR阈值SINRT=20dB。SINR阈值取决于用于数据发射的调制阶数。较高的调制阶数通常通过较高的SINRT特征化,以实现相同的目标错误率。通过FEC,归因于编码增益,对于相同的SINR值可实现较低的目标SER。在无预编码的IDCI的情况下,仅在范围D<0.25内实现目标SER。通过在相邻群集处的IDCI-预编码,满足目标SER的范围扩展至最高至D<0.6。在所述范围外,SINR由于路径损耗而增加,且SER目标未被满足。
图11中示出了用于IDCI预编码的方法的一个实施例,其包括以下步骤:
·SIR估计1101:客户端估计来自主DIDO群集的信号功率(即,基于所接收的预编码数据)和来自相邻DIDO群集的干扰加噪声信号功率。在单载波DIDO系统中,框架结构可设计用短的静寂周期。例如,静寂周期可被定义为用于信道估计的训练与信道状态信息(CSI)反馈期间的预编码数据发射之间。在一个实施例中,来自相邻群集的干扰加噪声信号功率是在静寂周期期间由主群集中的DIDO天线测量。在实际DIDO多载波(OFDM)系统中,零音调通常用于防止直流(DC)偏移和归因于在发射侧和接收侧处的滤波的在频带边缘处的衰减。在使用多载波系统的另一个实施例中,由零音调估计干扰加噪声信号功率。可以用校正因子补偿频带边缘处的发射/接收滤波器衰减。一旦估计出来自主群集的信号加干扰和噪声功率(PS)和来自相邻群集的干扰加噪声功率(PIN),客户端就将SINR计算为
SINR = P S - P IN P IN . - - - ( 9 )
或者,由用于典型的无线通信系统中以测量无线电信号功率的接收信号强度指示(RSSI)得出SINR估计值。
我们观察到(9)中的量度无法区分噪声与干扰功率电平。例如,在无干扰环境中受到遮蔽影响(即,在使来自主群集中的所有DIDO分布式天线的信号功率衰减的障碍物后面)的客户端可以估计低SINR,即使它们未受到群集间干扰的影响也是如此。
所提议方法的更可靠量度为SIR,经计算为
SIR = P S - P IN P IN - P N - - - ( 10 )
其中PN为噪声功率。在实际多载波OFDM系统中,由零音调估计(10)中的噪声功率PN,假定来自主群集和相邻群集的所有DIDO天线使用同一组零音调。由如上所述的静寂周期估计干扰加噪声功率(PIN)。最后,由数据音调得出信号加干扰和噪声功率(PS)。由这些估计值,客户端计算(10)中的SIR。
·相邻群集处的信道估计1102-1103:如果在图11的8702处确定,(10)中估计的SIR低于预定义阈值(SIRT),那么客户端开始倾听来自相邻群集的训练信号。需注意,SIRT取决于用于数据发射的调制和FEC编码方案(MCS)。不同的SIR目标根据客户端的MCS定义。当来自不同群集的DIDO分布式天线时间同步(即,被锁定至相同的秒脉冲PPS,时间基准)时,在8703处客户端利用训练序列将其信道估计值递送至相邻群集中的DIDO天线。用于相邻群集中的信道估计的训练序列被设计用于正交于来自主群集的训练。或者,当不同群集中的DIDO天线未经时间同步时,正交序列(具有良好的互相关特性)用于不同DIDO群集中的时间同步。一旦客户端锁定至相邻群集的时间/频率基准,就在1103处执行信道估计。
·IDCI预编码1104:一旦信道估计值在相邻群集中的DIDO BTS处可用,就计算IDCI-预编码,以满足(3)中的条件。相邻群集中的DIDO天线仅发射预编码数据流至其群集中的客户端,同时预先消除对图4中的干扰区410中的客户端的干扰。我们观察到,如果客户端位于图4中的B型干扰区410中,那么对客户端的干扰由多个群集生成并且IDCI-预编码由所有的相邻群集同时执行。
越区切换方法
下文中,我们描述用于跨越DIDO群集移动的客户端的不同越区切换方法,所述DIDO群集由位于独立区域中或提供不同类型的服务(即,低或高移动性服务)的分布式天线所填充。
a.相邻DIDO群集之间的越区切换
在一个实施例中,用于移除上文所述的群集间干扰的IDCI预编码器用作DIDO系统中的越区切换方法的基线。将蜂窝式系统中的常规越区切换设想为客户端跨越由不同基站服务的小区无缝切换。在DIDO系统中,越区切换允许客户端在不损失连接的情况下从一个群集移至另一个群集。
为了说明DIDO系统的越区切换策略的一个实施例,我们再次考虑图8中的具有仅两个群集802和803的例子。当客户端801从主群集(C1)802向相邻群集(C2)803移动时,越区切换方法的一个实施例动态地计算不同群集中的信号质量并为客户端选择产生最低错误率性能的群集。
图12示出了SINR变化随客户端距群集C1中心的距离的变化关系。对于无FEC编码的4-QAM调制,我们考虑目标SINR=20dB。当C1和C2均使用没有干扰消除的DIDO预编码时,用圆标识的线代表由C1中的DIDO天线服务的目标客户端的SINR。由于路径损耗和来自相邻群集的干扰,SINR随D而减小。当在相邻群集处实施IDCI-预编码时,因为干扰被完全移除,所以SINR损耗仅归因于路径损耗(如由具有三角形的线所示)。当客户端由相邻群集服务时,经历对称行为。越区切换策略的一个实施例被定义为使得在客户端从C1向C2移动时,算法在不同的DIDO方案之间切换,以保持SINR高于预定义目标。
从图12中的曲线图,我们得出图13中针对4-QAM调制的SER。我们观察到,通过在不同预编码策略之间切换,将SER保持在预定义目标内。
越区切换策略的一个实施例如下。
·C1-DIDO和C2-DIDO预编码:当客户端位于C1内远离干扰区时,群集C1和C2均独立地通过常规的DIDO预编码工作。
·C1-DIDO和C2-IDCI预编码:当客户端朝干扰区移动时,其SIR或SINR降低。当达到目标SINRT1时,目标客户端开始估计来自C2中所有DIDO天线的信道并将CSI提供至C2的BTS。C2中的BTS计算IDCI-预编码并发射至C2中的所有客户端,同时防止对目标客户端的干扰。只要目标客户端在干扰区内,它会继续将其CSI提供至C1和C2两者。
·C1-IDCI和C2-DIDO预编码:当客户端朝C2移动时,其SIR或SINR不断减小,直到其再次达到目标。这时,客户端决定切换至相邻群集。在这种情况下,C1开始使用来自目标客户端的CSI通过IDCI-预编码以创建朝其方向的零干扰,而相邻群集使用CSI用于常规DIDO-预编码。在一个实施例中,当SIR估计值接近目标时,群集C1和C2均交替地尝试DIDO-预编码方案和IDCI-预编码方案两者,以允许客户端估计两种情况下的SIR。然后客户端选择最佳方案,以最大化某些错误率性能量度。当应用该方法时,用于越区切换策略的交叉点出现在图12中具有三角形和菱形的曲线的交汇处。一个实施例使用(6)中所述的经修改的IDCI-预编码方法,其中相邻群集还将预编码的数据流发射至目标客户端,以提供阵列增益。通过该方法,越区切换策略被简化,因为客户端不需要估计在交叉点处两种策略的SINR。
·C1-DIDO和C2-DIDO预编码:当客户端朝C2移出干扰区外时,主群集C1停止经由IDCI-预编码预先消除朝向目标客户端的干扰,并且对保留在C1中的所有客户端切换回到常规的DIDO-预编码。我们的越区切换策略中的该最终交叉点可用于避免从目标客户端至C1的不必要的CSI反馈,从而减少反馈信道上的开销。在一个实施例中,定义第二目标SINRT2。当SINR(或SIR)增加至该目标以上时,将策略切换到C1-DIDO和C2-DIDO。在一个实施例中,群集C1保持在DIDO-预编码与IDCI-预编码之间交替,以允许客户端估计SINR。然后客户端选择从上方更紧密接近目标SINRT1的用于C1的方法。
上文所述的方法实时计算不同方案的SINR或SIR估计值并用它们来选择最佳方案。在一个实施例中,基于图14中所示的有限状态机设计越区切换算法。当SINR或SIR降至低于或高于图12中所示的预定义阈值时,客户端跟踪其当前状态并切换至下一个状态。如上所述,在状态1201中,群集C1和C2均独立地通过常规的DIDO预编码工作,并且客户端由群集C1服务;在状态1202中,客户端由群集C1服务,C2中的BTS计算IDCI-预编码,并且群集C1用常规的DIDO预编码工作;在状态1203中,客户端由群集C2服务,C1中的BTS计算IDCI-预编码,并且群集C2用常规的DIDO预编码工作;以及在状态1204中,客户端由群集C2服务,并且群集C1和C2均独立地通过常规的DIDO预编码工作。
在存在遮蔽效应的情况下,信号质量或SIR可如图15所示在阈值周围波动,从而引起在图14中的连续状态之间反复切换。反复改变状态是不期望的效应,因为其导致在客户端与BTS之间的控制信道上的用以实现在发射方案之间切换的显著开销。图15示出了在存在遮蔽的情况下越区切换策略的一个例子。在一个实施例中,遮蔽系数根据具有方差3的对数正态分布来模拟[3]。在下文中,我们定义一些用以防止在DIDO越区切换期间的反复切换效应的方法。
本发明的一个实施例采用滞后回路来解决状态切换效应。例如,当在图14中的“C1-DIDO,C2-IDCI”9302与“C1-IDCI,C2-DIDO”9303状态之间切换(或反之亦然)时,阈值SINRT1可调整为在范围A1内。该方法在信号质量在SINRT1周围振荡时避免在状态之间的反复切换。例如,图16示出了在图14中的任何两种状态之间切换时的滞后回路机制。为了从状态B切换至状态A,SIR必须大于(SIRT1+A1/2),但为了从A切换回到B时,SIR必须降至低于(SIRT1-A1/2)。
在不同的实施例中,调整阈值SINRT2以避免在图14中有限状态机的第一状态和第二状态(或第三状态和第四状态)之间反复切换。例如,可以定义值A2的范围,使得根据信道条件和遮蔽效应而在该范围内挑选阈值SINRT2
在一个实施例中,根据无线链路上预期的遮蔽的方差,在范围[SINRT2,SINRT2+A2]内动态地调节SINR阈值。当客户端从其当前群集向相邻群集移动时,可根据所接收信号强度(或RSSI)的方差估计对数正态分布的方差。
上述方法假定客户端触发越区切换策略。在一个实施例中,假定启用跨越多个BTS的通信,延期到DIDO BTS的越区切换决策。
为简单起见,假定无FEC编码和4-QAM而得出上述方法。更一般地,针对不同调制编码方案(MCS)而得出SINR或SIR阈值,并结合链路自适应(参见,例如,美国专利No.7,636,381)设计越区切换策略,以优化干扰区中每个客户端的下行链路数据速率。
b.低多普勒DIDO网络与高多普勒DIDO网络之间的越区切换
DIDO系统采用封闭回路发射方案对下行链路信道上的数据流进行预编码。封闭回路方案固有地受到反馈信道上的延迟的约束。在实际DIDO系统中,当将CSI和基带预编码数据从BTS递送到分布式天线时,可以通过具有高处理能力的收发器缩短计算时间,并且预期大多数延迟是由DIDOBSN引入。BSN可包含各种网络技术,包括但不限于数字用户线路(DSL)、电缆调制解调器、光纤环、T1线路、光纤同轴混合(HFC)网络和/或固定无线(例如,WiFi)。专用光纤通常具有非常大的带宽和低延迟,在局部区域可能小于1毫秒,但其部署范围不及DSL和电缆调制解调器。今天,在美国DSL和电缆调制解调器连接通常具有在10-25ms之间的最后一英里延迟,但其部署非常广泛。
BSN上的最大延迟确定在不降低DIDO预编码性能的情况下在DIDO无线链路上可容许的最大多普勒频率。例如,在[1]中,我们示出了在400MHz的载波频率处,具有约10毫秒的延迟的网络(即DSL)可容许客户端的速度最高至8mph(奔跑速度),而具有1毫秒延迟的网络(即,光纤环)可支持最高至70mph的速度(即,高速公路交通)。
我们根据BSN上可容许的最大多普勒频率而定义两个或更多个DIDO子网络。例如,在DIDO BTS与分布式天线之间的高延迟DSL连接的BSN仅可提供低移动性或固定无线服务(即,低多普勒网络),而低延迟光纤环上的低延迟BSN可容许高移动性(即,高多普勒网络)。我们观察到,大多数宽带用户在使用宽带时是不移动的,且进一步大多数人不大可能位于许多高速物体移动经过的区域附近(如靠近高速公路),因为此类位置通常是不太理想的居住或办公地点。然而,也有在高速下(如,当在高速公路上行驶的汽车中时)使用宽带或在高速物体附近(如,在位于高速公路附近的商店里)的宽带用户。为了解决这两种不同的用户多普勒情形,在一个实施例中,低多普勒DIDO网络由散布于宽广区域的具有相对低功率(即,对于室内或屋顶安装而言,1W至100W)的通常较大数量的DIDO天线组成,而高多普勒网络由高功率发射(即,对于屋顶或塔安装而言,100W)的通常较少数量的DIDO天线组成。低多普勒DIDO网络服务通常较大数量的低多普勒用户并且可以使用便宜的高延迟宽带连接(如DSL和电缆调制解调器)而以通常较低的连接成本执行。高多普勒DIDO网络服务通常较少数量的高多普勒用户并且可以使用更昂贵的低延迟宽带连接(如光纤)而以通常较高的连接成本执行。
为了避免不同类型DIDO网络(例如,低多普勒和高多普勒)之间的干扰,可以采用不同的多址接入技术,如:时分多址(TDMA)、频分多址(FDMA)或码分多址(CDMA)。
在下文中,我们提议用以将客户端分配至不同类型的DIDO网络并允许实现其间的越区切换的方法。网络选择基于每个客户端的移动性类型。根据以下等式[6],客户端的速度(v)与最大多普勒频移成正比,
f d = v λ sin θ - - - ( 11 )
其中fd为最大多普勒频移,λ为对应于载波频率的波长,并且θ为指示方向发射器-客户端的向量与速度向量之间的角度。
在一个实施例中,通过盲估计技术计算每个客户端的多普勒频移。例如,类似于多普勒雷达系统,可通过发送RF能量至客户端并分析反射信号来估计多普勒频移。
在另一个实施例中,一个或多个DIDO天线发送训练信号到客户端。基于那些训练信号,客户端使用诸如对信道增益的过零率进行计数或进行频谱分析的技术估计多普勒频移。我们观察到,对于固定速度v和客户端的轨线而言,vsinθ(11)中的角速度可取决于客户端与每个DIDO天线的相对距离。例如,靠近移动客户端的DIDO天线产生比远离的天线大的角速度和多普勒频移。在一个实施例中,由距客户端不同距离处的多个DIDO天线估计多普勒速度,并将平均数、加权平均数或标准偏差用作客户端移动性的指示符。基于估计的多普勒指示符,DIDO BTS决定将客户端分配至低多普勒网络还是高多普勒网络。
针对所有客户端,定期监测多普勒指示符并将其发送回BTS。当一个或多个客户端改变其多普勒速度时(即,乘坐在公交车上的客户端相对于行走或坐着的客户端),那些客户端被动态地重新分配至可容许其移动性等级的不同DIDO网络。
尽管低速度客户端的多普勒可因在高速度物体附近(如靠近高速公路)而受到影响,但该多普勒通常远低于自身处于移动中的客户端的多普勒。因而,在一个实施例中,(例如,通过使用诸如用GPS监测客户端位置的方法)估计客户端的速度,并且如果速度低,则将客户端分配至低多普勒网络,而如果速度高,则将客户端分配至高多普勒网络。
用于功率控制和天线分组的方法
图17示出了具有功率控制的DIDO系统的框图。首先将每个客户端(1,...,U)的一个或多个数据流(sk)乘以由DIDO预编码单元产生的权重。将预编码数据流乘以由功率控制单元基于输入信道质量信息(CQI)计算的功率缩放因子。CQI由客户端反馈至DIDO BTS或假定上行链路-下行链路信道互易性而从上行链路信道得出。然后不同客户端的U个预编码流经组合及多路复用成M个数据流(tm),数据流针对M个发射天线中的每一者。最后,将流tm发送至数模转换器(DAC)单元、射频(RF)单元、功率放大器(PA)单元,并最终至天线。
功率控制单元测量用于所有客户端的CQI。在一个实施例中,CQI为平均SNR或RSSI。根据路径损耗或遮蔽,对于不同客户端CQI有所不同。我们的功率控制方法调整不同客户端的发射功率缩放因子Pk,并将它们乘以经生成用于不同客户端的预编码数据流。需注意,可针对每个客户端生成一个或多个数据流,这取决于客户端接收天线的数量。
为了评估所提议方法的性能,我们基于(5)定义包括路径损耗和功率控制参数的以下信号模型:
r k = SNR P k α k H k W k s k + n k - - - ( 12 )
其中k=1,...,U,U为客户端的数量,SNR=Po/No,其中Po为平均发射功率,No为噪声功率,αk为路径损耗/遮蔽系数。为了模型化路径损耗/遮蔽,我们使用以下简化模型
α k = e - a k - 1 U - - - ( 13 )
其中a=4为路径损耗指数,并且我们假定路径损耗随客户端索引(即,客户端位于距DIDO天线的渐增距离处)而增大。
图18示出了在不同情形中假定四个DIDO发射天线和四个客户端的情况下,SER与SNR的关系。理想情况假定所有客户端具有相同的路径损耗(即a=0),针对所有客户端产生Pk=1。具有正方形的曲线是指客户端具有不同路径损耗系数并且无功率控制的情况。具有点的曲线是根据功率控制系数经挑选使得Pk=1/αk的相同情形(具有路径损耗)得出。通过功率控制方法,将更多的功率分配至预期用于发生较高路径损耗/遮蔽的客户端的数据流,从而与无功率控制的情况相比导致9dB SNR增益(对于该特定情形而言)。
美国联邦通信委员会(FCC)(和其他国际监管机构)定义对可从无线设备发射的最大功率的约束条件,以限制人体在电磁(EM)辐射下的暴露。存在两种类型的限制[2]:i)“职业/受控”限制,其中让人们通过栅栏、警告或标牌使人完全知晓射频(RF)源;ii)“一般人群/不受控”限制,其中对暴露没有控制。
将不同发射等级定义用于不同类型的无线设备。一般来讲,用于室内/室外应用的DIDO分布式天线符合FCC“移动”设备类别的要求,定义为[2]:
“设计用于不在固定位置使用、通常在辐射结构保持在距用户或附近人员身体20cm或更远距离处的情况下使用的发射设备。”
“移动”设备的EM发射是依据最大允许暴露量(MPE)(以mW/cm2表示)来测量。图19示出了在700MHz载波频率下针对发射功率的不同值,MPE功率密度随距RF辐射源的距离的变化关系。用以满足通常在距人体20cm外工作的设备的FCC“不受控”限制的最大允许发射功率为1W。
针对安装于远离“一般人群”的屋顶或建筑物上的发射器定义了较少限制性的功率发射约束条件。对于这些“屋顶发射器”,FCC定义依据有效辐射功率(ERP)测量的1000W的较宽松发射限制。
基于上述FCC约束条件,在一个实施例中,我们定义了用于实际系统的两种类型的DIDO分布式天线:
·低功率(LP)发射器:位于任何高度的任何地方(即,室内或室外),具有1W的最大发射功率和5Mbps消费级宽带(例如DSL、电缆调制解调器、光纤到户(FTTH))回程连接。
·高功率(HP)发射器:在高度为大约10米的屋顶或建筑物上安装的天线,具有100W的发射功率和商业级宽带(例如光纤环)回程(与DIDO无线链路上可用的吞吐量相比,具有实际上“无限”数据速率)。
需注意,使用DSL或电缆调制解调器连接的LP发射器为低多普勒DIDO网络(如先前章节中所述)的良好候选者,因为它们的客户端大多是固定的或具有低移动性。使用商业光纤连接的HP发射器可容许更高的客户端移动性并可用于高多普勒DIDO网络。
为了获得对具有不同类型LP/HP发射器的DIDO系统的性能的实际直观感觉,我们考虑在加利福尼亚州帕洛阿尔托(Palo Alto,CA)市中心的DIDO天线安装的实际情况。图20a示出了帕洛阿尔托(Palo Alto)中的NLP=100个低功率DIDO分布式天线的随机分布。在图20b中,50个LP天线由NHP=50个高功率发射器替代。
基于图20a-图20b中的DIDO天线分布,我们得出使用DIDO技术的系统在帕洛阿尔托(Palo Alto)中的覆盖地图。图21a和图21b分别示出了对应于图20a和图20b中的配置的两种功率分布。假定在700MHz载波频率下由3GPP标准[3]定义的用于城市环境的路径损耗/遮蔽模型而得出所接收的功率分布(以dBm表示)。我们观察到使用50%的HP发射器产生对所选择的区域的较好覆盖。
图22a-图22b示出了用于以上两种情形的速率分布。基于[4,5]中3GPP长期演进(LTE)标准中所定义的不同调制编码方案的功率阈值而得出吞吐量(以Mbps表示)。在700MHz载波频率下,总可用带宽固定到10MHz。考虑两种不同的频率分配计划:i)仅分配5MHz频谱到LP站;ii)分配9MHz到HP发射器,分配1MHz到LP发射器。需注意,通常较低的带宽归因于其具有有限吞吐量的DSL回程连接而分配到LP站。图22a-图22b显示,当使用50%的HP发射器时,可以显著提高速率分布,从而将平均每客户端数据速率从图22a中的2.4Mbps提高至图22b中的38Mbps。
然后,我们定义算法以控制LP站的功率发射,使得在任何给定时间都允许较高的功率,从而增加图22b中的DIDO系统的下行链路信道上的吞吐量。我们观察到,对功率密度的FCC限制是基于时间平均而定义为[2]
S = Σ n = 1 N S n t n T MPE - - - ( 14 )
其中tn为MPE平均时间,tn为暴露于具有功率密度Sn的辐射的时间周期。对于“受控的”暴露,平均时间为6分钟,而对于“不受控”暴露,其增加最多至30分钟。然后,允许任何功率源以大于MPE限制的功率电平发射,只要(14)中的平均功率密度满足FCC的对于“不受控”暴露的30分钟平均值的限制。
基于该分析,我们定义自适应功率控制方法,以增加瞬时每天线发射功率,同时保持每个DIDO天线的平均功率低于MPE限制。我们考虑具有比活动客户端多的发射天线的DIDO系统。考虑到DIDO天线可被设想为便宜的无线设备(类似于WiFi接入点)并且可被放置在存在DSL、电缆调制解调器、光纤或其他互联网连接的任何地方,这是合理的假定。
图23示出了具有自适应每天线功率控制的DIDO系统的框架。在由多路复用器234产生的数字信号被发送至DAC单元235之前,用功率缩放因子S1,...,SM动态地调整其振幅。由功率控制单元232基于CQI 233计算功率缩放因子。
在一个实施例中,定义Ng个DIDO天线组。每个组包含至少与活动客户端(K)数量一样多的DIDO天线。在任何给定时间,仅一个组具有以大于MPE限制的功率电平(So)发射到客户端的Na>K个活动DIDO天线。根据图24中所示的循环调度策略的一种方法在跨越所有天线组上重复。在另一个实施例中,采用不同的调度技术(即比例公平调度[8])进行群集选择,以优化错误率或吞吐量性能。
假定循环功率分配,我们将每一DIDO天线的平均发射功率由(14)导出为
S = S O t o T MPE ≤ MPE ‾ - - - ( 15 )
其中to为天线组为活动时的时间周期,并且TMPE=30min为由FCC准则[2]定义的平均时间。(15)中的比率为所述组的占空比(DF),其被定义为使得来自每个DIDO天线的平均发射功率满足MPE限制根据以下定义,占空比取决于活动客户端的数量、组的数量及每组的活动天线的数量
DF = Δ K N g N a = t o T MPE . - - - ( 16 )
在具有功率控制和天线分组的DIDO系统中获得的SNR增益(以dB计)被如下表示为占空比的函数
G dB = 10 log 10 ( 1 DF ) . - - - ( 17 )
我们观察到(17)中的增益是以所有DIDO天线上的GdB额外发射功率为代价而实现。
一般来讲,来自所有Ng个组的所有Na的总发射功率被定义为
P ‾ = Σ j = 1 N g Σ i = 1 N a P ij - - - ( 18 )
其中Pij为平均每天线发射功率,由下式给出
P ij = 1 T MPE ∫ 0 T MPE S ij ( t ) dt ≤ MPE ‾ - - - ( 19 )
并且Sij(t)为第j个组内的第i个发射天线的功率谱密度。在一个实施例中,针对每个天线设计(19)中的功率谱密度,以优化错误率或吞吐量性能。
为了获得对于所提议方法的性能的某种直观感觉,考虑在给定覆盖区域中的400个DIDO分布式天线和订阅经由DIDO系统提供的无线互联网服务的400个客户端。不可能每个互联网连接将一直被完全地利用。我们假定客户端中的10%将在任何给定时间活动地使用无线互联网连接。然后,可将400个DIDO天线分成Ng=10个组,每个组有Na=40个天线,每个组以占空比DF=0.1在任何给定时间服务K=40个活动客户端。由此发射方案产生的SNR增益为GdB=10log10(1/DF)=10dB,由来自所有DIDO天线的10dB额外发射功率提供。然而,我们观察到平均每天线发射功率为恒定的且在MPE限制内。
图25比较具有天线分组的上述功率控制的(未编码的)SER性能与美国专利No.7,636,381中的常规本征模式选择。所有方案使用具有四个客户端的BD预编码,每个客户端配备有单个天线。SNR是指每发射天线功率与噪声功率的比率(即,每天线发射SNR)。以DIDO 4×4表示的曲线假定四个发射天线和BD预编码。具有正方形的曲线表示具有本征模式选择的具有两个额外发射天线和BD的SER性能,从而产生相对于常规BD预编码的10dB SNR增益(在1%SER目标处)。具有天线分组和DF=1/10的功率控制也在相同SER目标处产生10dB的增益。我们观察到归因于分集增益,本征模式选择改变SER曲线的斜率,而我们的功率控制方法归因于增加的平均发射功率而将SER曲线向左位移(维持相同斜率)。为了比较,示出具有较大占空比DF=1/50的SER而提供与DF=1/10相比的额外7dB增益。
需注意,我们的功率控制可以具有比常规的本征模式选择方法低的复杂度。实际上,可以预先计算每个组的天线ID并经由查找表在DIDO天线与客户端之间共享,使得在任何给定时间只要求K个信道估计值。对于本征模式选择,计算(K+2)个信道估计值且需要额外计算处理以选择在任何给定时间最小化所有客户端的SER的本征模式。
然后,我们描述用以在一些特殊情形中减少CSI反馈开销的涉及DIDO天线分组的另一种方法。图26a示出了一种情形,其中客户端(点)随机散布于由多个DIDO分布式天线(十字)覆盖的一个区域中。每个发射-接收无线链路上的平均功率可经计算为
A={|H|2}.   (20)
其中H为可用于DIDO BTS处的信道估计矩阵。
通过在1000个例项上平均信道矩阵而在数值上获得图26a-图26c中的矩阵A。图26b和图26c中分别描绘两种替代情形,其中客户端环绕DIDO天线的子集而分组在一起且客户端接收来自位于遥远地方的DIDO天线的可忽略功率。例如,图26b示出了产生块对角矩阵A的两组天线。一种极端的情形是当每个客户端仅非常接近一个发射器且发射器彼此远离,使得来自所有其他DIDO天线的功率可忽略时。在这种情况下,DIDO链路在多个SISO链路中退化且A为如图26c中的对角矩阵。
在上述所有三种情形中,BD预编码动态地调整预编码权重以考虑DIDO天线与客户端之间的无线链路上的不同功率电平。然而,识别DIDO群集内的多个组并仅在每个组内操作DIDO预编码是方便的。我们所提议的分组方法产生以下优点:
·计算增益:仅在群集中的每个组内计算DIDO预编码。例如,如果使用BD预编码,则奇异值分解(SVD)具有复杂度O(n3),其中n为信道矩阵H的最小维数。如果H可缩减为块对角矩阵,则以减小的复杂度计算每个块的SVD。实际上,如果将信道矩阵分成具有维数n1和n2的两个块矩阵,使得n=n1+n2,则SVD的复杂度仅为O(n1 3)+O(n2 3)<O(n3)。在极端情况下,如果H为对角矩阵,则DIDO链路缩减到多个SISO链路且无需SVD计算。
·减少的CSI反馈开销:当DIDO天线和客户端被分成组时,在一个实施例中,仅在同一组内计算从客户端到天线的CSI。在TDD系统中,假定信道互易性,天线分组减少用以计算信道矩阵H的信道估计的数量。在其中CSI是在无线链路上反馈的FDD系统中,天线分组进一步产生DIDO天线与客户端之间的无线链路上的CSI反馈开销的减少。
用于DIDO上行链路信道的多址接入技术
在本发明的一个实施例中,不同多址接入技术被定义用于DIDO上行链路信道。这些技术可用于在上行链路上从客户端到DIDO天线反馈CSI或发射数据流。下文中,我们将反馈CSI和数据流称为上行链路流。
·多输入多输出(MIMO):上行链路流是经由开放回路MMO多路复用方案从客户端发射到DIDO天线。此方法假定所有客户端经时间/频率同步。在一个实施例中,客户端之间的同步是经由来自下行链路的训练而实现且所有DIDO天线经假定为锁定到同一时间/频率基准时钟。需注意,在不同客户端处的延迟扩展的变化可生成在不同客户端的时钟之间的抖动,所述抖动可影响MIMO上行链路方案的性能。在客户端经由MMO多路复用方案发送上行链路流后,接收DIDO天线可使用非线性(即,最大似然,ML)或线性(即,逼零最小均方差)接收器来消除同信道干扰并个别地解调上行链路流。
·时分多址(TDMA):将不同的客户端分配至不同的时隙。每个客户端在其时隙可用时发送其上行链路流。
·频分多址(FDMA):将不同的客户端分配至不同的载波频率。在多载波(OFDM)系统中,将音调的子集分配给同时发射上行链路流的不同客户端,从而减少延迟。
·码分多址(CDMA):将每个客户端分配至不同的伪随机序列并在码域中实现跨越客户端的正交性。
在本发明的一个实施例中,客户端为以比DIDO天线低得多的功率发射的无线设备。在这种情况下,DIDO BTS基于上行链路SNR信息定义客户端子集,使得跨越子组的干扰被最小化。在每个子组内,将上述多址接入技术用以创建在时域、频域、空间域或码域中的正交信道,从而避免跨越不同客户端的上行链路干扰。
在另一个实施例中,结合先前章节中提出的天线分组方法使用上文描述的上行链路多址接入技术以定义DIDO群集内的不同客户端组。
用于DIDO多载波系统中的链路自适应的系统和方法
在美国专利No.7,636,381中定义利用无线信道的时间、频率和空间选择性的DIDO系统的链路自适应方法。下文描述用于利用无线信道的时间/频率选择性的多载波(OFDM)DIDO系统中的链路自适应的本发明的实施例。
我们根据[9]中的按指数规律衰减功率延迟分布(PDP)或萨利赫-巴伦苏埃拉模型(Saleh-Valenzuela model)来模拟瑞利衰落信道。为简单起见,我们假定具有多路径PDP的单群集信道被定义为
Pn=e-βn   (21)
其中n=0,...,L-1为信道抽头的索引,L为信道抽头的数量,β=1/σDS是为信道相干带宽的指示符、与信道延迟扩展(σDS)成反比的PDP指数。β的低值产生频率平坦信道,而β的高值产生频率选择性信道。对(21)中的PDP进行归一化,使得所有L信道抽头的总平均功率为统一的
P n ‾ = P n Σ i = 0 L - 1 P i . - - - ( 22 )
图27示出了DIDO 2×2系统的在延迟域或瞬时PDP(上部曲线)和频域(下部曲线)上的低频选择性信道(假定β=1)的振幅。第一个下标指示客户端,第二个下标指示发射天线。高频选择性信道(其中β=0.1)示于图28中。
接下来,我们研究在频率选择性信道中DIDO预编码的性能。假定(1)中的信号模型满足(2)中的条件,我们经由BD计算DIDO预编码权重。我们通过(2)中的条件将(5)中的DIDO接收信号模型重新公式化为
rk=Heksk+nk.   (23)
其中Hek=HkWk为用户k的有效信道矩阵。对于每个客户端单个天线的DIDO 2×2,有效信道矩阵减少到具有图29中所示的频率响应并用于由图28中的高频率选择性(如,其中β=0.1)特征化的信道的一个值。图29中的实线指代客户端1,而具有点的线指代客户端2。基于图29中的信道质量量度,我们定义根据变化的信道条件而动态地调整MCS的时域/频域链路自适应(LA)方法。
我们以评估AWGN和瑞利衰落SISO信道中的不同MCS的性能开始。为简单起见,我们假定无FEC编码,但以下LA方法可扩展到包括FEC的系统。
图30示出了不同QAM方案(即4-QAM、16-QAM、64-QAM)的SER。在不失一般性的情况下,我们对于未编码系统假定1%的目标SER。用以在AWGN信道中满足所述目标SER的SNR阈值对于三个调制方案分别为8dB、15.5dB及22dB。在瑞利衰落信道中,熟知上述调制方案的SER性能比AWGN差[13],且SNR阈值分别为:18.6dB、27.3dB和34.1dB。我们观察到DIDO预编码将多用户下行链路信道变换成的一组并行SISO链路。因此,在逐客户端基础上,用于SISO系统的与图30中相同的SNR阈值适用于DIDO系统。此外,如果执行瞬时LA,则使用AWGN信道中的阈值。
用于DIDO系统的所提议LA方法的关键思想是当信道经历时域或频域中的深衰落(示于图28中)时使用低MCS阶数以提供链路稳健性。相反,当信道被大增益特征化时,LA方法切换到较高MCS阶数以增加频谱效率。与美国专利No.7,636,381相比,本专利申请的一个贡献是使用(23)和图29中的有效信道矩阵作为量度以允许实现自适应。
LA方法的总框架示于图31中并定义如下:
·CSI估计:在3171处,DIDO BTS计算来自所有用户的CSI。用户可以配备有单个或多个接收天线。
·DIDO预编码:在3172处,BTS计算所有用户的DIDO预编码权重。在一个实施例中,BD用于计算这些权重。预编码权重是基于逐音调地计算。
·链路质量量度计算:在3173处,BTS计算频域链路质量量度。在OFDM系统中,根据CSI和用于每个音调的DIDO预编码权重计算该量度。在本发明的一个实施例中,链路质量量度为所有OFDM音调上的平均SNR。我们将该方法定义为LA1(基于平均SNR性能)。在另一个实施例中,链路质量量度为(23)中的有效信道的频率响应。我们将该方法定义为LA2(基于逐音调性能以利用频率分集)。如果每个客户端具有单个天线,则频域有效信道示于图29中。如果客户端具有多个接收天线,则将链路质量量度定义为每个音调的有效信道矩阵的Frobenius范数。或者,对于每个客户端将多个链路质量量度定义为(23)中的有效信道矩阵的奇异值。
·比特加载算法:在3174处,基于链路质量量度,BTS确定用于不同客户端和不同OFDM音调的MCS。对于LA1方法,基于图30中的瑞利衰落信道的SNR阈值而将相同的MCS用于所有客户端和所有OFDM音调。对于LA2,将不同MCS分配至不同OFDM音调,以利用信道频率分集。
·预编码数据发射:在3175处,BTS使用由比特加载算法得出的MCS将预编码的数据流从DIDO分布式天线发射至客户端。将一个标头附接到预编码数据以将用于不同音调的MCS传送至客户端。例如,如果八个MCS可用且OFDM符号是以N=64个音调定义,则需要log2(8)*N=192个比特来将当前的MCS传送至每个客户端。假定用4-QAM(2比特/符号频谱效率)将那些比特映射到符号中,仅需要192/2/N=1.5个OFDM符号来映射MCS信息。在另一个实施例中,将多个子载波(或OFDM音调)分组成子频带,并将相同的MCS分配给相同子频带中的所有音调以减少归因于控制信息的开销。此外,基于信道增益的时间变化(与相干时间成正比)调整MCS。在固定无线信道(通过低多普勒效应特征化)中,每隔信道相干时间的一部分重新计算MCS,从而减少控制信息所需的开销。
图32示出了上文所述的LA方法的SER性能。为了比较,针对所使用的三个QAM方案中的每一者绘制瑞利衰落信道中的SER性能。LA2方法使MCS适应有效信道在频域中的波动,从而与LA1相比提供用于低SNR(即SNR=20dB)的频谱效率的1.8bps/Hz的增益及SNR(对于SNR>35dB)中的15dB增益。
用于多载波系统中的DIDO预编码内插的系统和方法
DIDO系统的计算复杂度主要局限于集中式处理器或BTS。计算上代价最大的运算为根据所有客户端的CSI计算所有客户端的预编码权重。当使用BD预编码时,BTS必须执行与系统中的客户端数量一样多的奇异值分解(SVD)运算。减少复杂度的一种方式是通过并行处理,其中在用于每个客户端的独立处理器上计算SVD。
在多载波DIDO系统中,每个子载波经历平坦衰落信道,并且在每个子载波上针对每个客户端执行SVD。显然,系统的复杂度随子载波数量线性增大。例如,在具有1MHz信号带宽的OFDM系统中,循环前缀(L0)必须具有至少八个信道抽头(即,8微秒的持续时间)以避免在具有大延迟扩展的室外城市巨型小区环境中的符号间干扰[3]。用于生成OFDM符号的快速傅里叶变换(FFT)的大小(NFFT)通常被设定为L0的倍数以减少数据速率的损失。如果NFFT=64,则系统的有效频谱效率由因子NFFT/(NFFT+L0)=89%限制。NFFT的较大值以DIDO预编码器处的较高计算复杂度为代价产生较高频谱效率。
减少DIDO预编码器处的计算复杂度的一种方式是在音调的子集(我们称为导频音调)上执行SVD运算并经由内插导出用于剩余音调的预编码权重。权重内插为导致客户端间干扰的一个误差源。在一个实施例中,将最佳权重内插技术用以减少客户端间干扰,从而在多载波系统中产生改进的错误率性能及较低计算复杂度。在具有M个发射天线、U个客户端及每客户端N个接收天线的DIDO系统中,保证对其他客户端u的零干扰的第k个客户端的预编码权重(Wk)的条件是从(2)导出为
H u w k = 0 N × N ; ∀ u = 1 , . . . , U ; withu ≠ k - - - ( 24 )
其中Hu为对应于系统中的其他DIDO客户端的信道矩阵。
在本发明的一个实施例中,权重内插方法的目标函数被定义为
f ( θ k ) = Σ u = 1 u ≠ k U | | H u W ^ k ( θ k ) | | F - - - ( 25 )
其中θk为待针对用户k最优化的参数的集合,为权重内插矩阵且||·||F表示矩阵的Frobenius范数。最优化问题用公式表示为
θ k , opt = arg min θ k ∈ Θ k f ( θ k ) - - - ( 26 )
其中Θk为最优化问题的可行集合,θk,opt为最佳解。
(25)中的目标函数被定义用于一个OFDM音调。在本发明的另一个实施例中,目标函数被定义为待内插的所有OFDM音调的矩阵的(25)中的Frobenius范数的线性组合。在另一个实施例中,将OFDM频谱分成音调的子集且最佳解由下式给出
θ k , opt = arg min θ k ∈ Θ k max n ∈ A f ( n , θ k ) - - - ( 27 )
其中n为OFDM音调索引且A为音调的子集。
将(25)中的权重内插矩阵Wkk)表示为参数θk的集合的函数。一旦根据(26)或(27)确定最佳集合,就能计算最佳权重矩阵。在本发明的一个实施例中,给定OFDM音调n的权重内插矩阵被定义为导频音调的权重矩阵的线性组合。用于具有单个客户端的波束成形系统的权重内插函数的一个例子定义于[11]中。在DIDO多客户端系统中,我们将权重内插矩阵写成
W ^ k ( l N 0 + n , θ k ) = ( 1 - c n ) · W ( l ) + c n e j θ k · W ( l + 1 ) - - - ( 28 )
其中0≤l≤(L0-1),L0为导频音调的数量且cn=(n-1)/N0,其中N0=NFFT/L0。然后对(28)中的权重矩阵进行归一化,使得以保证来自每个天线的统一功率发射。如果N=1(每客户端单个接收天线),则(28)中的矩阵变成关于其范数而归一化的向量。在本发明的一个实施例中,在OFDM音调的范围内均匀地挑选导频音调。在另一个实施例中,基于CSI自适应地挑选导频音调以最小化内插误差。
我们观察到[11]中的系统和方法与本专利申请中所提议的系统和方法的一个关键差异为目标函数。具体地讲,[11]中的系统假定多个发射天线和单个客户端,因而相关方法被设计用于最大化预编码权重乘信道的积以最大化客户端的接收SNR。然而,此方法在多客户端情形中不起作用,因为其归因于内插误差而产生客户端间干扰。相比之下,我们的方法被设计用于最小化客户端间干扰,从而对于所有客户端改进错误率性能。
图33示出了对于其中NFFT=64及L0=8的DIDO 2×2系统,(28)中的矩阵的项随OFDM音调索引的变化关系。信道PDP根据(21)中的模型(其中β=1)而生成,并且信道由仅八个信道抽头组成。我们观察到L0必须经挑选为大于信道抽头的数量。图33中的实线表示理想函数,而虚线为内插函数。根据(28)中的定义,对于导频音调,内插权重匹配理想函数。在剩余音调上计算的权重归因于估计误差而仅近似于理想情况。
实施权重内插方法的一种方式为经由对(26)中的可行集合Θk进行穷举搜索。为了减少搜索的复杂度,我们将可行集合量化成均匀地在范围[0,2π]内的P值。图34示出了对于L0=8、M=Nt=2个发射天线以及可变数量的P的SER与SNR的关系。当量化等级的数量增加时,SER性能改进。我们观察到归因于减少的搜索数量的低得多的计算复杂度,P=10的情况接近P=100的性能。
图35示出了针对不同DIDO阶数及L0=16的内插方法的SER性能。我们假定客户端数量与发射天线数量相同,并且每个客户端配备有单个天线。当客户端数量增大时,SER性能归因于由权重内插误差产生的客户端间干扰增加而降低。
在本发明的另一个实施例中,使用不同于(28)中的那些权重内插函数的权重内插函数。例如,可将线性预测自回归模型[12]用以基于对信道频率相关性的估计值而跨越不同OFDM音调内插权重。
参考文献
[1]A.Forenza and S.G.Perlman,“System and method for distributedantenna wireless communications”(A.Forenza和S.G.Perlman,“用于分布式天线无线通信的系统和方法”),2009年12月2日提交的名称为“System and Method For Distributed AntennaWireless Communications”(用于分布式天线无线通信的系统和方法)的美国专利申请序列号12/630,627
[2]FCC,“Evaluating compliance with FCC guidelines for humanexposure to radiofrequency electromagnetic fields,”OET Bulletin65,Ed.97-01,Aug.1997(FCC,《评估是否符合对人体暴露于射频电磁场的FCC准则》,OET公告65,第97-01版,1997年8月)
[3]3GPP,“Spatial Channel Model AHG(Combined ad-hoc from3GPP&3GPP2)”,SCM Text V6.0,April 22,2003(3GPP,“空间信道模型AHG(来自3GPP&3GPP2的组合自组织)”,SCM文本V6.0,2003年4月22日)
[4]3GPP TR 25.912,“Feasibility Study for Evolved UTRA andUTRAN”,V9.0.0(2009-10)(3GPP TR 25.912,“演进的UTRA和UTRAN的可行性研究”,V9.0.0,2009年10月)
[5]3GPP TR 25.913,“Requirements for Evolved UTRA(E-UTRA)and Evolved UTRAN(E-UTRAN)”,V8.0.0(2009-01)(3GPP TR25.913,“对于演进的UTRA(E-UTRA)和演进的UTRAN(E-UTRAN)的要求”),V8.0.0,2009年1月)
[6]W.C.Jakes,Microwave Mobile Communications,IEEE Press,1974(W.C.Jakes,《微波移动通信》,IEEE出版社,1974年)
[7]K.K.Wong,et al.,“A joint channel diagonalization for multiuserMIMO antenna systems,”IEEE Trans.Wireless Comm.,vol.2,pp.773-786,July 2003(K.K.Wong等人,“多用户MIMO天线系统的联合信道对角化”,《IEEE无线通信学报》,第2卷,第773-786页,2003年7月);
[8]P.Viswanath,et al.,“Opportunistic beamforming using dumpantennas,”IEEE Trans.On Inform.Theory,vol.48,pp.1277-1294,June 2002(P.Viswanath等人,“使用转储天线的机会式波束成形”,《IEEE信息理论学报》,第48卷,第1277-1294页,2002年6月)。
[9]A.A.M.Saleh,et al.,“A statistical model for indoor multipathpropagation,”IEEE Jour.Select.Areas in Comm.,vol.195 SAC-5,no.2,pp.128-137,Feb.1987(A.A.M.Saleh等人,“室内多路径传播的统计模型”,《IEEE通信选域期刊》,第195 SAC-5卷,第2期,第128-137页,1987年2月)。
[10]A.Paulraj,et al.,Introduction to Space-Time WirelessCommunications,Cambridge University Press,40West 20th Street,New York,NY,USA,2003(A.Paulraj等人,《空时无线通信导论》,剑桥大学出版社,美国纽约州纽约市40西第二十街,2003年)。
[11]J.Choi,et al.,“Interpolation Based Transmit Beamforming forMIMO-OFDM with Limited Feedback,”IEEE Trans.on SignalProcessing,vol.53,no.11,pp.4125-4135,Nov.2005(J.Choi等人,“用于具有有限反馈的MIMO-OFDM的基于插值的发射波束成形”,《IEEE信号处理学报》,第53卷,第11期,第4125-4135页,2005年11月)。
[12]I.Wong,et al.,“Long Range Channel Prediction for AdaptiveOFDM Systems,”Proc.of the IEEE Asilomar Conf. on Signals,Systems,and Computers,vol.1,pp.723-736,Pacific Grove,CA,USA,Nov.7-10,2004(I.Wong等人,“用于自适应OFDM系统的长期信道预测”,《IEEE阿西洛马信号、系统与计算机会议论文集》,第1卷,第723-736页,美国加利福尼亚州太平洋丛林镇,2004年11月7-10日)。
[13]J.G.Proakis,CommunicationSystem Engineering,Prentice Hall,1994(J.G.Proakis,《通信系统工程》,普伦蒂斯霍尔出版社,1994年)
[14]B.D.Van Veen,et al.,“Beamforming:a versatile approach tospatial filtering,”IEEE ASSP Magazine,Apr.1988(B.D.VanVeen等人,“波束成形:用于空间滤波的通用方法”,《IEEEASSP杂志》,1988年4月)。
[15]R.G.Vaughan,“On optimum combining at the mobile,”IEEETrans.On Vehic.Tech.,vol37,n.4,pp.181-188,Nov.1988(R.G.Vaughan,“关于移动时的最佳组合”,《IEEE运载工具技术学报》,第37卷,第4期,第181-188页,1988年11月)
[16]F.Qian,“Partially adaptive beamforming for correlatedinterference rejection,”IEEE Trans.On Sign.Proc.,vol.43,n.2,pp.506-515,Feb.1995(F.Qian,“用于相关干扰抑制的部分自适应波束成形”,《IEEE信号处理学报》,第43卷,第2期,第506-515页,1995年2月)
[17]H.Krim,et.al.,“Two decades of array signal processingresearch,”IEEE SignalProc.Magazine,pp.67-94,July 1996(H.Krim等人,“阵列信号处理研究二十年”,《IEEE信号处理杂志》,第67-94页,1996年7月)
[19]W.R.Remley,“Digital beamforming system”,US Patent N.4,003,016,Jan.1977(W.R.Remley,“数字波束成形系统”,美国专利No.4,003,016,1977年1月)
[18]R.J.Masak,“Beamforming/null-steering adaptive array”,USPatent N.4,771,289,Sep.1988(R.J.Masak,“波束成形/零控自适应阵列”,美国专利No.4,771,289,1988年9月)
[20]K.-B.Yu,et.al.,“Adaptive digital Beamforming architecture andalgorithm for nulling mainlobe and multiple sidelobe radar jammerswhile preserving monopulse ratio angle estimation accuracy”,USPatent 5,600,326,Feb.1997(K.-B.Yu等人,“用于归零主瓣和多个旁瓣雷达干扰器同时保持单脉冲比的角度估计精度的自适应数字波束成形架构和算法”,美国专利5,600,326,1997年2月)
[21]H.Boche,et al.,“Analysis of different precoding/decodingstrategies for multiuser Beamforming”,IEEE Vehic.Tech.Conf.,vol.1,Apr.2003(H.Boche等人,“对于多用户波束成形的不同预编码/解码策略分析”,《IEEE车载技术会议》,第1卷,2003年4月)
[22]M.Schubert,et al.,“Joint′dirty paper′pre-coding and downlinkBeamforming”vol.2,pp.536-540,Dec.2002(M.Schubert等人,“联合‘脏纸’预编码和下行链路波束成形”,第2卷,第536-540页,2002年12月)
[23]H.Boche,et al.“A general duality theory for uplink and downlinkBeamforming”,vol.1,pp.87-91,Dec.2002(H.Boche等人,“上行链路和下行链路波束成形的一般对偶理论”,第1卷,第87-91页,2002年12月)
[24]K.K.Wong,R.D.Murch,and K.B.Letaief,“A joint channeldiagonalization for multiuser MIMO antenna systems,”IEEETrans.Wireless Comm.,vol.2,pp.773-786,Jul 2003(K.K.Wong、R.D.Murch和K.B.Letaief,“多用户MIMO天线系统的联合信道对角化”,《IEEE无线通信学报》,第2卷,第773-786页,2003年7月);
[25]Q.H.Spencer,A.L.Swindlehurst,and M.Haardt,“Zero forcingmethods for downlink spatial multiplexing in multiuser MIMOchannels,”IEEE Trans.Sig.Proc.,vol.52,pp.461-471,Feb.2004(Q.H.Spencer、A.L.Swindlehurst和M.Haardt,“用于多用户MIMO信道中的下行链路空间多路复用的迫零方法”,《IEEE信号处理学报》,第52卷,第461-471页,2004年2月)。
II.来自相关专利申请序列号12/917,257的公开内容
下文描述使用协作地操作以创建到给定用户的无线链路同时抑制对其他用户的干扰的多个分布式发射天线的无线射频(RF)通信系统和方法。经由用户群集化而允许实现跨越不同发射天线的协调。用户群集为其信号可由给定用户可靠地检测(即,所接收信号强度在噪声或干扰电平之上)的发射天线的子集。系统中的每个用户定义其自身用户群集(user-cluter)。由同一用户群集内的发射天线发送的波形相干地组合以在目标用户的位置处创建RF能量,并在可由那些天线达到的任何其他用户的位置处创建零RF干扰点。
考虑在一个用户群集内具有M个发射天线以及可由那些M个天线达到的K个用户的系统,其中K≤M。我们假定发射器知晓M个发射天线与K个用户之间的CSI(H∈CK×M)。为简单起见,假定每个用户都配备有单个天线,但可将相同的方法扩展至每个用户多个接收天线。考虑通过将从M个发射天线到K个用户的信道向量(hk∈C1xM)组合而获得的如下信道矩阵H
H = h 1 . . . h k . . . h K .
计算创建到用户k的RF能量及到所有其他K-1个用户的零RF能量的预编码权重(wk∈CM×1),以满足以下条件
H ~ k w k = 0 Kx 1
其中为通过移除矩阵H的第k行而获得的用户k的有效信道矩阵,且0K×1为具有全部零项的向量。
在一个实施例中,无线系统为DIDO系统且使用用户群集化以创建到目标用户的无线通信链路,同时预先消除对可由位于用户群集内的天线达到的任何其他用户的干扰。在美国专利申请序列号12/630,627中,描述了DIDO系统,其包括:
·DIDO客户端:配备有一个或多个天线的用户终端;
·DIDO分布式天线:收发器基站,其协作地操作以发射预编码的数据流到多个用户,从而抑制用户间干扰;
·DIDO收发器基站(BTS):集中式处理器,其生成到DIDO分布式天线的预编码的波形;
·DIDO基站网络(BSN):有线回程,其连接BTS与DIDO分布式天线或其他BTS。
DIDO分布式天线根据其相对于BTS或DIDO客户端位置的空间分布而被分组成不同的子集。我们定义三种类型的群集,如图36中所示:
·超级群集3640:为连接到一个或多个BTS的DIDO分布式天线组,使得所有BTS与相应用户之间的往返延迟在DIDO预编码回路的约束条件内;
·DIDO群集3641:为连接到相同BTS的DIDO分布式天线组。当超级群集仅含有一个BTS时,其定义与DIDO群集一致;
·用户群集3642:为协作地发射预编码数据到给定用户的DIDO分布式天线组。
例如,BTS为经由BSN连接到其他BTS及DIDO分布式天线的本地集线器。BSN可包含各种网络技术,包括但不限于数字用户线路(DSL)、ADSL、VDSL[6]、电缆调制解调器、光纤环、T1线路、光纤同轴混合(HFC)网络和/或固定无线(例如,WiFi)。同一超级群集内的所有BTS经由BSN共享关于DIDO预编码的信息,使得往返延迟在DIDO预编码回路内。
在图37中,分别地,点表示DIDO分布式天线,十字为用户且虚线指示用户U1和U8的用户群集。下文中描述的方法被设计用于创建到目标用户U1的通信链路,同时创建对于用户群集内部或外部的任何其他用户(U2到U8)的零RF能量点。
我们提议[5]中的类似方法,其中创建零RF能量点以移除DIDO群集之间的重叠区域中的干扰。需要额外天线来发射信号到DIDO群集内的客户端,同时抑制群集间干扰。本专利专利申请中所提议的方法的一个实施例并不试图移除DIDO群集间干扰;而是其假定群集绑定到客户端(即,用户-群集)并保证不对在所述邻域中的任何其他客户端生成干扰(或干扰可忽略)。
与所提议方法相关联的一个思想是距用户-群集足够远的用户归因于大的路径损耗而不受来自发射天线的辐射影响。靠近或在用户-群集内的用户归因于预编码而接收无干扰信号。此外,可添加额外发射天线到用户-群集(如图37所示),使得满足条件K≤M。
使用用户群集化的方法的一个实施例由以下步骤组成:
a.链路质量测量:将每一DIDO分布式天线与每一用户之间的链路质量报告到BTS。链路质量量度由信噪比(SNR)或信号对干扰加噪声比(SINR)组成。
在一个实施例中,DIDO分布式天线发射训练信号,并且用户基于该训练来估计所接收信号质量。训练信号被设计为在时域、频域或码域中正交,使得用户可区别不同发射器。或者,DIDO天线以一个特定频率(即,信标信道)发射窄带信号(即,单个音调),且用户基于该信标信号估计链路质量。一个阈值被定义为用以成功地对数据进行解调的在噪声电平之上的最小信号振幅(或功率),如图38a中所示。在此阈值之下的任一链路质量量度值皆被假定为零。通过有限数量的比特量化链路质量量度,并将其反馈到发射器。
在不同的实施例中,从用户发送训练信号或信标,并在DIDO发射天线处估计链路质量(如图38b中所示),假定上行链路(UL)路径损耗与下行链路(DL)路径损耗之间的互易性。需注意,当UL和DL频带相对接近时,路径损耗互易性为时分双工(TDD)系统(具有在同一频率下的UL及DL信道)和频分双工(FDD)系统中的现实假定。
如图37中所示,经由BSN跨越不同BTS共享关于链路质量量度的信息,使得所有BTS知晓跨越不同DIDO群集的每一天线/用户耦合之间的链路质量。
b.用户-群集的定义:DIDO群集中的所有无线链路的链路质量量度为经由BSN跨越所有BTS共享的链路质量矩阵的项。图37中情形的链路质量矩阵的一个例子示于图39中。
用链路质量矩阵定义用户群集。例如,图39示出了用于用户U8的用户群集的选择。首先识别到用户U8的具有非零链路质量量度的发射器子集(即,活动发射器)。这些发射器填充用于用户U8的用户-群集。然后选择含有从用户-群集内的发射器到其他用户的非零项的子矩阵。需注意,因为链路质量量度仅用以选择用户群集,所以其可仅通过两个比特来量化(即,以识别在图38中阈值之上或之下的状态),从而降低反馈开销。
图40中示出了用于用户U1的另一个例子。在这种情况下,活动发射器的数量低于子矩阵中的用户数量,从而违反条件K≤M。因此,将一个或多个列添加到子矩阵以满足该条件。如果发射器的数量超过用户数量,可将额外的天线用于分集方案(即,天线或本征模式选择)。
图41示出了用于用户U4的又一个例子。我们观察到,所述子矩阵可作为两个子矩阵的组合来获得。
c.到BTS的CSI报告:一旦选择用户群集,就使从用户-群集内的所有发射器到由那些发射器达到的每一用户的CSI可用于所有BTS。经由BSN跨越所有BTS共享CSI信息。在TDD系统中,可利用UL/DL信道互易性以从UL信道上的训练得出CSI。在FDD系统中,需要从所有用户到BTS的反馈信道。为了减少反馈量,仅反馈对应于链路质量矩阵的非零项的CSI。
d.DIDO预编码:最后,将DIDO预编码应用于对应于不同用户群集的每个CSI子矩阵(例如,如相关美国专利申请中所述)。
在一个实施例中,计算有效信道矩阵均奇异值分解(SVD),并将用于用户k的预编码权重wk定义为对应于的零子空间的右奇异向量。或者,如果M>K且SVD将有效信道矩阵分解为则用于用户k的DIDO预编码权重由下式给出
wk=Uo(Uo H·hk T)
其中Uo是列为均零子空间的奇异向量的矩阵。
根据基本线性代数考虑,我们观察到矩阵均零子空间中的右奇异向量等于对应于零特征值的C的特征向量。
C = H ~ H H ~ = ( VΣ U H ) H ( VΣ U H ) = U Σ 2 U H
其中根据SVD而将有效信道矩阵分解为然后,计算的SVD的一个替代方法为计算C的特征值分解。存在计算特征值分解的若干方法,如幂法。因为我们仅对对应于C的零子空间的特征向量感兴趣,所以我们使用由以下迭代描述的反幂法
U i + 1 = ( C - λI ) - 1 u i | | ( C - λI ) - 1 u i | |
其中首先迭代的向量(ui)为随机向量。
考虑到零子空间的特征值(λ)已知(即,零),反幂法仅要求一次迭代以收敛,从而减少了计算复杂度。然后,我们将预编码权重向量写为
w=C-1u1
其中u1为实项等于1的向量(即,预编码权重向量为C-1的列的总和)。
DIDO预编码计算要求一次矩阵求逆。存在若干数值求解方案以减少矩阵求逆的复杂度,如Strassen的算法[1]或Coppersmith-Winograd的算法[2,3]。由于C在定义上为埃尔米特矩阵,所以替代解决方案为将C分解成其实部和虚部并根据[4,章节11.4]中的方法计算实矩阵的矩阵求逆。
所提议方法及系统的另一特征为其可重配置性。当如图42所示客户端跨越不同的DIDO群集移动时,用户-群集跟随其移动。换句话讲,当客户端改变其位置时,发射天线的子集不断更新且有效信道矩阵(和相应的预编码权重)被重新计算。
本文所提议的方法在图36中的超级群集内起作用,因为经由BSN的BTS之间的链路必须是低延迟的。为了抑制不同超级群集的重叠区域中的干扰,可以使用[5]中的我们的方法,其使用额外天线在DIDO群集之间的干扰区域中创建零RF能量点。
应当指出的是,术语“用户”和“客户端”在本文中可互换地使用。
参考文献
[1]S.Robinson,“Toward an Optimal Algorithm for MatrixMultiplication”,SIAM News,Volume 38,Number 9,November2005(S.Robinson,“用于矩阵乘法的最优算法”,《美国工业与应用数学学会新闻》,第38卷,第9期,2005年11月)。
[2]D.Coppersmith and S.Winograd,“Matrix Multiplication viaArithmetic Progression”,J.Symb.Comp.vol.9,p.251-280,1990(D.oppersmith和S.Winograd,“经由等差数列的矩阵乘法”,《符号计算杂志》,第9卷,第251-280页,1990年)
[3]H.Cohn,R.Kleinberg,B.Szegedy,C.Umans,“Group-theoreticAlgorithms for Matrix Multiplication”,p.379-388,Nov.2005(H.Cohn、R.Kleinberg、B.Szegedy、C.Umans,“用于矩阵乘法的群论算法”,第379-388页,2005年11月)。
[4]W.H.Press,S.A.Teukolsky,W.T.Vetterling,B.P.Flannery“NUMERICAL RECIPES IN C:THE ART OF SCIENTIFICCOMPUTING”,Cambridge University Press,1992(W.H.Press、S.A.Teukolsky、W.T.Vetterling、B.P.Flannery,“C语言中的数值方法:科学计算的艺术”,剑桥大学出版社,1992年)
[5]A.Forenza and S.G.Perlman,“Interference Management,Handoff,Power Control and Link Adaptation in Distributed-Input Distributed-Output(DIDO)Communication Systems”(A.Forenza和S.G.Perlman,“分布式输入分布式输出(DIDO)通信系统中的干扰管理、越区切换、功率控制和链路自适应”),2010年6月16日提交的专利申请序列号12/802,988。
[6]Per-Erik Eriksson and Odenhammar,“VDSL2:Nextimportant broadband technology”,Ericsson Review No.1,2006(Per-Erik Eriksson和Odenhammar,“VDSL2:下一个重要的宽带技术”,《爱立信电话公司评论》,第1期,2006年)。
III.在无线系统中利用同调性区域的系统和方法
实际传播环境中的多天线系统(MAS)的容量随无线链路上可用的空间分集而变化。空间分集是由无线信道中的散射体的分布以及发射及接收天线阵列的几何形状来确定。
MAS信道的一个流行模型为所谓的群集信道模型,其将散射体组定义为定位于发射器及接收器周围的群集。一般来讲,群集越多且其角展度越大,则无线链路上可实现的空间分集及容量越高。群集信道模型已通过实际测量[1-2]验证,且那些模型的变型形式已由不同室内(即,针对WLAN的IEEE802.11ln技术组[3])及室外(针对3G蜂窝式系统的3GPP技术规范组[4])无线标准采用。
确定无线信道中的空间分集的其他因素为天线阵列的特性,包括:天线元件间距[5-7]、天线的数量[8-9]、阵列孔[10-11]、阵列几何形状[5,12,13]、极化及天线方向图[14-28]。
[29]中提出描述天线阵列设计以及传播信道的特性对无线链路的空间分集(或自由度)的影响的统一模型。[29]中的所接收信号模型由下式给出
y(q)=∫c(q,p)x(p)dp+z(q)
其中x(p)∈C3为描述发射信号的极化向量,p,q∈R3为分别描述发射阵列和接收阵列的极化向量位置,C(·,·)∈C3×3为描述发射向量位置与接收向量位置之间的系统响应的矩阵,其由下式给出
C ( q , p ) = ∫ ∫ A r ( q , m ^ ) H ( m ^ , n ^ ) A t ( n ^ , p ) d n ^ d m ^
其中At(·,·),Ar(·,·)∈C3×3分别为发射阵列响应及接收阵列响应且为信道响应矩阵,其中项为发射方向与接收方向之间的复增益。在DIDO系统中,用户设备可具有单个或多个天线。为简单起见,我们假定具有理想各向同性方向图的单天线接收器且将系统响应矩阵重写为
C ( q , p ) = ∫ H ( q , n ^ ) A ( n ^ , p ) d n ^
其中仅考虑发射天线方向图
根据麦克斯韦方程组及格林函数的远场项,可将阵列响应近似为[29]
A ( n ^ , p ) = jη e j 2 π d o 2 λ 2 d o ( I - n ^ n ^ H ) a ( n ^ , p )
其中p∈P,P为定义天线阵列的空间且其中
a ( n ^ , p ) = exp ( - j 2 π n ^ H p )
其中对于未极化天线,研究阵列响应等效于研究上文的积分核。在下文中,我们显示对于不同类型阵列的积分核的表达式的闭合。
未极化的线性阵列
对于长度为L(由波长归一化)的未极化线性阵列和沿着z轴取向且中心位于原点的天线元件而言,其积分核给出如下[29]
a(cosθ,pz)=exp(-i2πpzcosθ).
将上述等式扩展成为一系列移位并矢,我们获得,正弦函数具有为1/L的分辨率,且阵列有限及大致波向量有限的子空间的维数(即,自由度)为
DF=L|Ωθ|
其中Ωθ={cosθ:θ∈Θ}。我们观察到,对于垂射阵列|Ωθ|=|Θ|,而对于端射阵列|Ωθ|≈|Θ|2/2.
未极化的球形阵列
半径为R(由波长归一化)的球形阵列的积分核给出如下[29]
a ( n ^ , p ) = exp - j 2 πR sin θ sin θ ′ cos ( φ - φ ′ ) + cos θ cos θ ′ .
用第一类球贝塞尔函数的总和分解上述函数,我们得到球形阵列的分辨率为1/(πR2),且自由度由下式给出:
DF=A|Ω|=πR2|Ω|
其中A为球形阵列的面积,并且
| Ω | ⋐ [ 0 , π ) × [ 0,2 π ) .
无线信道中的同调性区域
球形阵列的分辨率和它们的面积A之间的关系如图43所示。中间的球体是面积为A的球形阵列。信道群集在单位球上的投影定义了大小与群集的角展度成正比的不同散射区域。每个群集内大小为1/A的区域(我们将其称之为“同调性区域”)表示阵列的辐射场的基础函数的投影并定义在波向量域中阵列的分辨率。
将图43与图44进行比较,我们观察到同调性区域的大小随阵列的大小的倒数而减少。实际上,较大的阵列可将能量聚集到较小的区域中,从而产生较大数目的自由度DF。需注意,自由度总数还取决于群集的角展度,如上文的定义中所示。
图45示出了与图44相比其中阵列大小覆盖甚至更大区域从而产生额外自由度的另一例子。在DIDO系统中,阵列孔可由所有DIDO发射器覆盖的总面积来近似(假定天线按波长的分数间隔开)。接下来,图45示出DIDO系统可通过在空间中分布天线来实现增加数目的自由度,从而减小同调性区域的大小。需注意,在假定理想球形阵列的情况下生成这些图。在实际情形中,DIDO天线随机散布在整个宽广的区域中,并且所得的同调性区域的形状可能不会像图中一样规则。
图46显示,随着阵列大小增加,当无线电波由在DIDO发射器之间增多数目的物体散射时更多的群集包含于无线信道中。因此,可激励增加数目的基础函数(跨越辐射场),从而按照上文定义产生额外自由度。
本专利申请中所述的多用户(MU)多天线系统(MAS)利用无线信道的同调性区域来创建到不同用户的多个同时独立非干扰数据流。对于给定信道条件及用户分布,选择辐射场的基础函数以创建到不同用户的独立且同时的无线链路以使得每一用户体验无干扰的链路。当MU-MAS知晓每一发射器与每一用户之间的信道时,基于所述信息来调整预编码发射以创建到不同用户的个别同调性区域。
在本发明的一个实施例中,MU-MAS采用非线性预编码,诸如脏纸编码(DPC)[30-31]或汤姆林森-哈拉希玛(Tomlinson-Harashima,TH)[32-33]预编码。在本发明的另一个实施例中,MU-MAS采用非线性预编码,诸如我们先前的专利申请[0003-0009]中所述的块对角化(BD)或迫零波束成形(ZF-BF)[34]。
为了允许实现预编码,MU-MAS需要了解信道状态信息(CSI)。经由反馈信道,CSI可用于MU-MAS,或在上行链路信道上估计CSI(假定在时分双工(TDD)系统中上行链路/下行链路信道互易性是可能的)。减少CSI所需的反馈量的一种方法是使用有限反馈技术[35-37]。在一个实施例中,MU-MAS使用有限反馈技术来减少控制信道的CSI开销。在有限反馈技术中,码本设计是关键。一个实施例从跨越发射阵列辐射场的基础函数定义码本。
当用户在空间中移动或传播环境由于移动物体(诸如人或车)而随时间变化时,同调性区域改变其位置和形状。其归因于无线通信中人们熟知的多普勒效应。当环境由于多普勒效应而改变时,本专利申请中所述的MU-MAS调整预编码以针对每一用户不断地适应同调性区域。同调性区域的此自适应是为了创建到不同用户的同时非干扰信道。
本发明的另一个实施例自适应地选择了MU-MAS系统的天线的子集来创建不同大小的同调性区域。例如,如果用户稀疏地分布于空间(即,具有无线资源的低使用率的乡村区域或时刻)中,则仅选择小的天线子集,并且同调性区域的大小相对于图43中的阵列的大小来说是大的。或者,在人口稠密的区域(即,具有无线服务的峰值使用率的市区或时刻)中,选择更多的天线以为彼此直接邻近的用户创建小的同调性区域。
在本发明的一个实施例中,MU-MAS为如先前专利申请[0003-0009]中所述的DIDO系统。DIDO系统使用线性或非线性预编码和/或有限反馈技术来创建到不同用户的同调性区域。
数值结果
我们通过根据阵列大小计算常规的多输入多输出(MMO)系统中的自由度的数目而开始。我们考虑未极化线性阵列和两种类型的信道模型:如用于WiFi系统的IEEE 802.11n标准中的室内模型和如用于蜂窝式系统的3GPP-LTE标准中的室外模型。[3]中的室内信道模型定义在范围[2,6]中的群集数目和范围[15°,40°]内的角展度。用于市区微型小区的室外信道模型定义约6个群集和基站处的约20°的角展度。
图47示出了实际室内和室外传播情形中的MIMO系统的自由度。例如,考虑具有间隔一个波长的10个天线的线性阵列,无线链路上可用的最大自由度(或空间信道的数目)对于室外情形限定为约3,对于室内情形限定为7。当然,室内信道由于更大的角展度而提供更多的自由度。
接下来,我们计算DIDO系统中的自由度。我们考虑天线在3D空间中分布的情况,诸如DIDO接入点可分布于相邻建筑物的不同楼层上的城市中心的情形。因此,我们将DIDO发射天线(均经由光纤或DSL骨干彼此连接)模型化为球形阵列。另外,我们假定群集在立体角度上均匀分布。
图48示出了DIDO系统中自由度随阵列直径的变化关系。我们观察到,对于等于10个波长的直径而言,约1000个自由度可用于DIDO系统中。理论上,可创建最多至1000个到用户的非干扰信道。归因于空间中分布的天线的增加的空间分集是DIDO相对于常规的MMO系统而提供的多路复用增益的关键。
作为比较,我们示出了可通过DIDO系统在郊区环境中实现的自由度。我们假定群集分布在仰角[α,π-α]内,并将群集的立体角度定义为|Ω|=4πcosα。例如,在具有两层建筑物的郊区情形中,散射体的仰角可为α=60°。在这种情况下,自由度的数目随波长而变化如图48所示。
参考文献
[1]A.A.M.Saleh and R.A.Valenzuela,“A statistical model forindoor multipath propagation,”IEEE Jour.Select.Areas in Comm.,vol.195 SAC-5,no.2,pp.128-137,Feb.1987(A.A.M.Saleh和R.A.Valenzuela,“室内多路径传播的统计模型”,《IEEE通信选域期刊》,第195 SAC-5卷,第2期,第128-137页,1987年2月)。
[2]J.W.Wallace and M.A.Jensen,“Statistical characteristics ofmeasured MIMO wireless channel data and comparison toconventional models,”Proc.IEEE Veh.Technol.Conf.,vol.2,no.7-11,pp.1078-1082,Oct.2001(J.W.Wallace和M.A.Jensen,“测量的MIMO无线信道数据的统计特征和与常规模型的比较”,《IEEE车载技术会议论文集》,第2卷,第7-11期,第1078-1082页,2001年10月)。
[3]V.Erceg et al.,“TGn channel models,”IEEE 802.11-03/940r4,May 2004(V.Erceg等人,“TGn信道模型”,IEEE 802.11-03/940r4,2004年5月)。
[4]3GPP Technical Specification Group,“Spatial channel model,SCM-134 text V6.0,”Spatial channel Model AHG(Combined ad-hoc from 3GPP and 3GPP2),Apr.2003(3GPP技术规范组,“空间信道模型,SCM-134文本V6.0”,空间信道模型AHG(来自3GPP和3GPP2的组合自组织),2003年4月)。
[5]D.-S.Shiu,G.J.Foschini,M.J.Gans,and J.M.Kahn,“Fadingcorrelation and its effect on the capacity of multielement antennasystems,”IEEE Trans.Comm.,vol.48,no.3,pp.502-513,Mar.2000(D.-S.Shiu、G.J.Foschini、M.J.Gans和J.M.Kahn,“衰落相关性以及它对多元件天线系统容量的影响”,《IEEE通信学报》,第48卷,第3期,第502-513页,2000年3月)。
[6]V.Pohl,V.Jungnickel,T.Haustein,and C.von Helmolt,“Antenna spacing in MIMO indoor channels,”Proc.IEEE Veh.Technol.Conf.,vol.2,pp.749-753,May 2002(V.Pohl、V.Jungnickel、T.Haustein和C.von Helmolt,“MIMO室内信道中的天线间距”,《IEEE车载技术会议论文集》,第2卷,第749-753页,2002年5月)。
[7]M.Stoytchev,H.Safar,A.L.Moustakas,and S.Simon,“Compactantenna arrays for MIMO applications,”Proc.IEEE Antennas andProp.Symp.,vol.3,pp.708-711,July 2001(M.Stoytchev、H.Safar、A.K.Moustakas和S.Simon,“用于MIMO应用的紧凑天线阵列”,IEEE天线与传播学会研讨会论文集,第3卷,第708-711页,2001年7月)。
[8]K.Sulonen,P.Suvikunnas,L.Vuokko,J.Kivinen,and P.Vainikainen,“Comparison of MIMO antenna configurations inpicocell and microcell environments,”IEEE Jour.Select.Areas inComm.,vol.21,pp.703-712,June 2003(K.Sulonen、P.Suvikunnas、L.Vuokko、J.Kivinen和P.Vainikainen,“微微小区和微小区环境中的MIMO天线配置的比较”,《IEEE通信选域期刊》,第21卷,第703-712页,2003年6月)。
[9]Shuangqing Wei,D.L.Goeckel,and R.Janaswamy,“On theasymptotic capacity of MIMO systems with fixed length linearantenna arrays,”Proc.IEEE Int.Conf.on Comm.,vol.4,pp.2633-2637,2003(Shuangqing Wei、D.L.Goeckel和R.Janaswamy,“关于具有固定长度线性天线阵列的MIMO系统的渐近容量”,IEEE国际通信大会论文集,第4卷,第2633-2637页,2003年)。
[10]T.S.Pollock,T.D.Abhayapala,and R.A.Kennedy,“Antennasaturation effects on MIMO capacity,”Proc.IEEE Int.Conf.onComm.,192vol.4,pp.2301-2305,May 2003(T.S.Pollock、T.D.Abhayapala和R.A.Kennedy,“天线饱和度对MIMO容量的影响”,IEEE国际通信大会论文集,第4卷,第2301-2305页,2003年5月)。
[11]M.L.Morris and M.A.Jensen,“The impact of array configurationon MIMO wireless channel capacity,”Proc.IEEE Antennas andProp.Symp.,vol.3,pp.214-217,June 2002(M.L.Morris和M.A.Jensen,“天线构形对MIMO无线信道容量的影响”,IEEE天线与传播学会研讨会论文集,第3卷,第214-217页,2002年6月)。
[12]Liang Xiao,Lin Dal,Hairuo Zhuang,Shidong Zhou,and Yan Yao,“A comparative study of MIMO capacity with different antennatopologies,”IEEE ICCS’02,vol.1,pp.431-435,Nov.2002(Liang Xiao、Lin Dal、Hairuo Zhuang、Shidong Zhou和YanYao,“具有不同天线拓扑结构的MIMO容量的比较研究”,2002年IEEE通信系统国际会议,第1卷,第431-435页,2002年11月)。
[13]A.Forenza and R.W.Heath Jr.,“Impact of antenna geometry onMIMO communication in indoor clustered channels,”Proc.IEEEAntennas and Prop.Symp.,vol.2,pp.1700-1703,June 2004(A.Forenza和R.W.Heath Jr.,“天线几何形状对室内群集信道中的MIMO通信的影响”,IEEE天线与传播学会研讨会论文集,第2卷,第1700-1703页,2004年6月)。
[14]M.R.Andrews,P.P.Mitra,and R.deCarvalho,“Tripling thecapacity of wireless communications using electromagneticpolarization,”Nature,vol.409,pp.316-318,Jan.2001(M.R.Andrews、P.P.Mitra和R.deCarvalho,“使用电磁极化使无线通信容量增至3倍”,《自然》,第409卷,第316-318页,2001年1月)。
[15]D.D.Stancil,A.Berson,J.P.Van’t Hof,R.Negi,S.Sheth,and P.Patel,“Doubling wireless channel capacity using co-polarised,co-located electric and magnetic dipoles,”Electronics Letters,vol.38,pp.746-747,July 2002(D.D.Stancil、A.Berson、J.P.Van’tHof、R.Negi、S.Sheth和P.Patel,“使用同极化、协同定位的电和磁偶极子使无线信道容量加倍”,《电子快报》,第38卷,第746-747页,2002年7月)。
[16]T.Svantesson,“On capacity and correlation of multi-antennasystems employing multiple polarizations,”Proc.IEEE Antennasand Prop.Symp.,vol.3,pp.202-205,June 2002(T.Svantesson,“关于采用多极化的多天线系统的容量和相关性”,IEEE天线与传播学会研讨会论文集,第3卷,第202-205页,2002年6月)。
[17]C.Degen and W.Keusgen,“Performance evaluation of MIMOsystems using dual-polarized Antennas,”Proc.IEEE Int.Conf. onTelecommun.,vol.2,pp.1520-1525,Feb.2003(C.Degen和W.Keusgen,“使用双极化天线的MIMO系统的性能评估”,IEEE国际通信大会论文集,第2卷,第1520-1525页,2003年2月)。
[18]R.Vaughan,“Switched parasitic elements for antennadiversity,”IEEE Trans.Antennas Propagat.,vol.47,pp.399-405,Feb.1999(R.Vaughan,“天线分集的切换寄生元件”,《IEEE天线与传播学报》,第47卷,第399-405页,1999年2月)。
[19]P.Mattheijssen,M.H.A.J.Herben,G.Dolmans,and L.Leyten,“Antenna-pattern diversity versus space diversity for use athandhelds,”IEEE Trans.on Veh.Technol.,vol.53,pp.1035-1042,July 2004(P.Mattheijssen、M.H.A.J.Herben、G.Dolmans和L.Leyten,“手持设备上使用的天线方向图分集与空间分集”,《IEEE车辆技术学报》,第53卷,第1035-1042页,2004年7月)。
[20]L.Dong,H.Ling,and R.W.Heath Jr.,“Multiple-input multiple-output wireless communication systems using antenna patterndiversity,”Proc.IEEE Glob.Telecom.Conf.,vol.1,pp.997-1001,Nov.2002(L.Dong、H.Ling和R.W.Heath Jr.,“使用天线方向图分集的多输入多输出无线通信系统”,IEEE全球电信会议论文集,第1卷,第997-1001页,2002年11月)。
[21]J.B.Andersen and B.N.Getu,“The MIMO cube-a compactMIMO antenna,”IEEE Proc.of Wireless Personal MultimediaCommunications Int.Symp.,vol.1,pp.112-114,Oct.2002(J.B.Andersen和B.N.Getu,“MIMO立方体-紧凑MIMO天线”,IEEE无线个人多媒体通信国际研讨会,第1卷,第112-114页,2002年10月)。
[22]C.Waldschmidt,C.Kuhnert,S.Schulteis,and W.Wiesbeck,“Compact MIMO-arrays based on polarisation-diversity,”Proc.IEEE Antennas and Prop.Symp.,vol.2,pp.499-502,June 2003(C.Waldschmidt、C.Kuhnert、S.Schulteis和W.Wiesbeck,“基于极化分集的紧凑MIMO阵列”,IEEE天线与传播学会研讨会论文集,第2卷,第499-502页,2003年6月)。
[23]C.B.Dietrich Jr,K.Dietze,J.R.Nealy,and W.L.Stutzman,“Spatial,polarization,and pattern diversity for wireless handheldterminals,”Proc.IEEE Antennas and Prop.Symp.,vol.49,pp.1271-1281,Sep.2001(C.B.Dietrich Jr、K.Dietze、J.R.Nealy和W.L.Stutzman,“无线手持终端的空间、极化和方向图分集”,IEEE天线与传播学会研讨会论文集,第49卷,第1271-1281页,2001年9月)。
[24]S.Visuri and D.T.Slock,“Colocated antenna arrays:designdesiderata for wireless communications,”Proc.of Sensor Arrayand Multichannel Sign.Proc.Workshop,pp.580-584,Aug.2002(S.Visuri和D.T.Slock,“并置天线阵列:无线通信的设计要求”,传感器阵列和多信道信号处理研讨会论文集,第580-584页,2002年8月)。
[25]A.Forenza and R.W.Heath Jr.,“Benefit of pattern diversity via 2-element array of circular patch Antennas in indoor clustered MIMOchannels,”IEEE Trans.on Communications,vol.54,no.5,pp.943-954,May 2006(A.Forenza和R.W.Heath Jr.,“在室内群集MIMO信道中经由圆形贴片天线二元阵列的方向图分集的优点”,《IEEE通信学报》,第54卷,第5期,第943-954页,2006年5月)。
[26]A.Forenza and R.W.Heath,Jr.,“Optimization Methodology forDesigning 2-CPAs Exploiting Pattern Diversity in clustered MIMOchannels”,IEEE Trans.on Communications,Vol.56,no.10,pp.1748-1759,Oct.2008(A.Forenza和R.W.Heath,Jr.,“利用群集MIMO信道中的方向图分集设计2-CPA的优化方法”,《IEEE通信学报》,第56卷,第10期,第1748-1759页,2008年10月)。
[27]D.Piazza,N.J.Kirsch,A.Forenza,R.W.Heath,Jr.,and K.R.Dandekar,“Design and Evaluation of a Reconfigurable AntennaArray for MIMO Systems,”IEEE Transactions on Antennas andPropagation,vol.56,no.3,pp.869-881,March 2008(D.Piazza、N.J.Kirsch、A.Forenza、R.W.Heath,Jr.和K.R.Dandekar,“用于MIMO系统的可重新配置的天线阵列的设计和评估”,《IEEE天线与传播学报》,第56卷,第3期,第869-881页,2008年3月)。
[28]R.Bhagavatula,R.W.Heath,Jr.,A.Forenza,and S.Vishwanath,“Sizing up MIMO Arrays,”IEEE Vehicular TechnologyMagazine,vol.3,no.4,pp.31-38,Dec.2008(R.Bhagavatula、R.W.Heath、Jr.,A.Forenza和S.Vishwanath,“评估MIMO阵列”,《IEEE车辆技术杂志》,第3卷,第4期,第31-38页,2008年12月)。
[29]Ada Poon,R.Brodersen and D.Tse,“Degrees of Freedom inMultiple Antenna channels:A Signal Space Approach”,IEEETransactions on Information Theory,vol.51(2),Feb.2005,pp.523-536(Ada Poon、R.Brodersen和D.Tse,“多天线信道中的自由度:信号空间法”,《IEEE信息理论学报》,第51卷,第2期,第523-536页,2005年2月)。
[30]M.Costa,“Writing on dirty paper,”IEEE Transactions onInformation Theory,Vol.29,No.3,Page(s):439-441,May 1983(M.Costa,“在脏纸上书写”,《IEEE信息理论学报》,第29卷,第3期,第439-441页,1983年5月)。
[31]U.Erez,S.Shamai(Shitz),and R.Zamir,“Capacity and lattice-strategies for cancelling known interference,”Proceedings ofInternationalSymposium on Information Theory,Honolulu,Hawaii,Nov.2000(U.Erez、S.Shamai(Shitz)和R.Zamir,“用于消除已知干扰的容量和格子策略”,信息理论国际研讨会论文集,夏威夷檀香山,2000年11月)。
[32]M.Tomlinson,“New automatic equalizer employing moduloarithmetic,”Electronics Letters,Page(s):138-139,March 1971(M.Tomlinson,“采用模运算的新型自动均衡器”,《电子快报》,第138-139页,1971年3月)。
[33]H.Miyakawa and H.Harashima,“A method of code conversionfor digital communication channels with intersymbolinterference,”Transactions of the Institute of Electronic(H.Miyakawa和H.Harashima,“具有码间干扰的数字通信信道的代码转换方法”,《电子研究所学报》)。
[34]R.A.Monziano and T.W.Miller,Introduction to Adaptive Arrays,New York:Wiley,1980(R.A.Monziano和T.W.Miller,《自适应阵列导论》,纽约威立出版社,1980年)。
[35]T.Yoo,N.Jindal,and A.Goldsmith,“Multi-antenna broadcastchannels with limited feedback and user selection,”IEEE Journalon Sel.Areas in Communications,vol.25,pp.1478-91,July 2007(T.Yoo、N.Jindal和A.Goldsmith,“具有有限反馈和用户选择的多天线广播信道”,《IEEE通信选域期刊》,第25卷,第1478-1491页,2007年7月)。
[36]P.Ding,D.J.Love,and M.D.Zoltowski,“On the sum rate ofchannel subspace feedback for multi-antenna broadcast channels,”in Proc.,IEEE Globecom,vol.5,pp.2699-2703,November 2005(P.Ding、D.J.Love和M.D.Zoltowski,“关于用于多天线广播信道的信道子空间反馈的总速率”,IEEE全球通信大会论文集,第5卷,第2699-2703页,2005年11月)。
[37]N.Jindal,“MIMO broadcast channels with finite-ratefeedback,”IEEE Trans.on Info.Theofy,vol.52,pp.5045-60,November 2006(N.Jindal,“具有有限速率反馈的MIMO广播信道”,《IEEE信息理论学报》,第52卷,第5046-5060页,2006年11月)。
IV.用于多用户频谱的计划演进和过时的系统和方法
对高速无线服务不断增长的要求和不断增加的蜂窝式电话用户数量在过去的三十年中使无线产业发生了根本性的技术革命,从最初的模拟语音服务(AMPS[1-2])发展到支持数字语音(GSM[3-4]、IS-95CDMA[5])、数据流量(EDGE[6]、EV-DO[7])和互联网浏览(WiFi[8-9]、WiMAX[10-11]、3G[12-13]、4G[14-15])的标准。无线技术这些年来的发展由于以下两项主要工作而得以实现:
i)美国联邦通信委员会(FCC)[16]一直在分配新的频谱以支持新出现的标准。例如,在第一代AMPS系统中,由FCC分配的信道数目从1983年最初的333个增至二十世纪八十年代后期的416个,以支持数目不断增长的蜂窝式客户端。最近,通过使用由FCC早在1985年分配的未授权ISM频带[17],类似Wi-Fi、蓝牙及ZigBee的技术的商业化才得以实现。
ii)无线产业一直在产生更有效地利用有限可用频谱以支持更高的数据速率链路和数目不断增加的用户的新技术。无线领域中的一次重大革命是二十世纪九十年代从模拟AMPS系统到数字D-AMPS和GSM的迁移,由于频谱效率提高,数字D-AMPS和GSM允许实现针对给定频带的更高的通话数。另一个根本性的转变在二十一世纪早期由空间处理技术(诸如多输入多输出(MIMO))产生,从而相对于先前无线网络在数据速率方面产生了4倍的提升,并且被不同的标准(即,针对Wi-Fi的IEEE 802.11n、针对WiMAX的IEEE 802.16、针对4G-LTE的3GPP)采用。
尽管为提供高速无线连接解决方案作出了极大努力,无线行业正面临着新的挑战:提供高清晰度(HD)视频流以满足对于类似游戏的服务增长的需求,以及在任何地方(包括乡村区域,在那里构建有线骨干成本高且不切实际)提供无线覆盖。当前,尤其是当网络由于大量并发链路而过载时,最先进的无线标准系统(即4G-LTE)无法提供支持HD流服务的数据速率要求和延迟约束条件。再一次,主要缺点是有限的频谱可用性和缺乏可真正提高数据速率并提供完全覆盖的高频谱效率的技术。
近年来出现了称为分布式输入分布式输出(DIDO)[18-21]的新技术,该技术在我们先前的专利申请[0002-0009]中有所描述。DIDO技术承诺在频谱效率方面的数量级增加,从而使得HD无线流服务在过载网络中成为可能。
同时,美国政府一直在通过实施在未来10年内释放500MHz频谱的计划来解决频谱缺乏的问题。该计划发布于2010年6月28日,其目标是允许新兴的无线技术在新频带中操作,并在市区和乡村区域提供高速无线覆盖[22]。作为该计划的一部分,2010年9月23日,FCC开放了约200MHz的VHF和UHF频谱用于未授权使用,其称为“白空间”[23]。在那些频带中操作的一个限制是不得产生对于在相同频带中操作的现有无线麦克风装置的有害干扰。因此,2011年7月22日,IEEE 802.22工作组敲定了用于采用认知无线电技术(或频谱感测)的新型无线系统的标准,该系统具有动态地监测频谱和在可用频带中操作的关键特征,从而避免对共存的无线设备的有害干扰[24]。直到最近才出现了将白空间的一部分分配给授权使用以及将其开放用于频谱拍卖的争论[25]。
相同频带内未授权设备的共存,以及未授权使用与授权使用的频谱争夺已经成为了这些年来FCC频谱分配计划的两个主要问题。例如,在白空间内,已通过认知无线电技术实现了无线麦克风与无线通信设备的共存。然而,认知无线电仅可提供使用类似DIDO的空间处理的其他技术的频谱效率的一部分。类似地,过去十年内,由于接入点数目增多以及在相同的未授权ISM频带中操作并生成不受控干扰的蓝牙/ZigBee设备的使用,Wi-Fi系统的性能显著降低。未授权频谱的一个缺点是对RF设备的不受管制的使用,在未来几年内这将继续污染频谱。RF污染还阻碍未授权频谱用于未来的授权操作,从而限制无线宽带商用服务和频谱拍卖的重要市场机会。
我们提议允许动态分配无线频谱以允许不同服务和标准共存和演进的一种新的系统和方法。我们的方法的一个实施例动态地将权限分配给RF收发器,以在频谱的某些部分中操作,并允许相同RF装置的过时,以提供:
i)频谱的可重新配置性,以允许新型无线操作(即,授权与未授权)并且/或者符合新的RF功率发射限制。该特征允许在任何必要的时候进行频谱拍卖,无需针对相对于未授权频谱的授权频谱的使用提前计划。其还允许调整发射功率电平,以满足FCC强制实施的新功率发射电平。
ii)在同一频带中操作的不同技术(即,白空间和无线麦克风、WiFi和蓝牙/ZigBee)的共存,使得在创建新技术时可以动态地对该频带进行重新分配,同时避免对现有技术的干扰。
iii)当系统迁移至可提供更高频谱效率、更佳覆盖率和改进的性能以支持要求更高QoS的新型服务(即,HD视频流)的更先进技术时,可实现无线基础结构的无缝演进。
在下文中,我们描述了用于多用户频谱的计划演进和过时的系统和方法。该系统的一个实施例包括一个或多个集中式处理器(CP)4901-4904和一个或多个分布式节点(DN)4911-4913,所述集中式处理器和分布式节点经由如图49所示的有线或无线连接进行通信。例如,在4G-LTE网络[26]的语境中,集中式处理器为连接到若干节点B收发器上的接入核心网关(ACGW)。在Wi-Fi的语境中,集中式处理器为互联网服务供应商(ISP),分布式节点为通过调制解调器连接到ISP上或直接连接到电缆或DSL上的Wi-Fi接入点。在本发明的另一个实施例中,系统为具有一个集中式处理器(或BTS)和为DIDO接入点(或经由BSN连接到BTS的DIDO分布式天线)的分布式节点的分布式输入分布式输出(DIDO)系统[0002-0009]。
DN 4911-4913与CP 4901-4904通信。从DN交换到CP的信息用于将节点的配置动态地调整到网络架构的演进设计。在一个实施例中,DN4911-4913与CP共享其识别号。CP将经由网络连接的所有DN的识别号存储于查找表或共享数据库中。那些查找表或数据库可与其他CP共享且所述信息经同步,使得所有CP总是能够接入关于网络上所有DN的最新信息。
例如,FCC可决定分配频谱的某一部分给未授权使用并且所提议系统可经设计以在所述频谱中操作。由于频谱的缺乏,FCC可能随后需要分配所述频谱的一部分给授权使用以用于商业运营商(即,美国电报和电话公司(AT&T)、韦里孙通讯(Verizon)或斯普林特公司(Sprint))、国防或公共安全。在常规的无线系统中,此共存将是不可能的,因为在未授权频带中操作的现有无线设备将对授权的RF收发器产生有害干扰。在我们所提议的系统中,分布式节点与CP 4901-4903交换控制信息以使其RF发射适应演进的频带计划。在一个实施例中,DN 4911-4913最初被设计为在可用频谱内的不同频带上操作。当FCC将该频谱的一个或多个部分分配给授权操作时,CP与未授权DN交换控制信息并将DN重新配置以关闭用于授权使用的频带,使得未授权DN不干扰授权DN。该情形示于图50中,其中未授权节点(例如,5002)用实心圆表示,并且授权节点用空心圆表示(例如,5001)。在另一个实施例中,可将整个频谱分配给新的授权服务,并且控制信息由CP使用以关闭所有未授权DN,从而避免干扰授权DN。该情形示于图51中,其中过时的未授权节点用十字覆盖。
以另一个例子的方式,可能有必要限制在给定频带下操作的某些设备的功率发射以满足FCC暴露限制[27]。例如,无线系统最初可被设计用于固定无线链路,其中DN 4911-4913连接到室外屋顶收发器天线。随后,相同系统可经更新以支持具有室内便携式天线的DN以提供较好的室内覆盖。因为可能更靠近人体,便携式设备的FCC暴露限制比屋顶发射器受到更严格限制。在这种情况下,只要调整发射功率设定,经设计用于室外应用的旧的DN便可重新用于室内应用。在本发明的一个实施例中,DN被设计为具有预定义的发射功率电平集合,并且当系统升级时CP 4901-4903发送控制信息到DN 4911-4913以选择新功率电平,从而满足FCC暴露限制。在另一个实施例中,DN被制造为仅具有一个功率发射设定,并且超过新功率发射电平的那些DN会被CP远程关闭。
在一个实施例中,CP 4901-4903周期性地监测网络中的所有DN 4911-4913,以定义其根据某一标准作为RF收发器操作的权限。并非最新的那些DN可被标记为过时并从网络移除。例如,在当前功率极限和频带内操作的DN在网络中保持活动,并且所有其他DN被关闭。需注意,由CP控制的DN参数并不限于功率发射和频带;它可以是定义DN与客户端设备之间的无线链路的任何参数。
在本发明的另一个实施例中,可将DN 4911-4913重新配置以允许不同标准系统在同一频谱内共存。例如,可调整在WLAN的语境中操作的某些DN的功率发射、频带或其他配置参数以适应采用经设计用于WPAN应用的新DN,同时避免有害干扰。
当开发新的无线标准以提高无线网络中的数据速率和覆盖率时,可更新DN 4911-4913以支持那些标准。在一个实施例中,DN为配备有可编程计算能力的软件定义的无线电(SDR),诸如执行用于基带信号处理的算法的FPGA、DSP、CPU、GPU和/或GPGPU。如果升级标准,则可将新的基带算法从CP远程上载到DN,以反映新标准。例如,在一个实施例中,第一标准为基于CDMA的标准并且随后其由OFDM技术替代以支持不同类型的系统。相似地,可将采样速率、功率和其他参数远程更新至DN。当开发了新技术以改进整体系统性能时,DN的此SDR特征允许对网络的连续升级。
在另一个实施例中,本文中描述的系统为由多个CP、分布式节点和将CP与DN互连的网络组成的云无线系统。图52示出了云无线系统的一个例子,其中全部经由网络5201,用实心圆标识的节点(例如,5203)与CP5206通信,用空心圆标识的节点与CP 5205通信,并且CP 5205-5206彼此之间通信。在本发明的一个实施例中,云无线系统为DIDO系统,并且DN连接到CP上并交换信息以周期性地或立即重新配置系统参数,并动态地调整以适应无线架构的变化条件。在DIDO系统中,CP为DIDO BTS,分布式节点为DIDO分布式天线,网络为BSN,并且多个BTS经由如我们先前专利申请[0002-0009]中描述的DIDO集中式处理器彼此互连。
云无线系统内的所有DN 5202-5203可分组于不同组中。DN的这些组可同时创建到许多客户端设备的非干扰无线链路,同时每一组支持不同多址接入技术(例如,TDMA、FDMA、CDMA、OFDMA和/或SDMA)、不同调制(例如,QAM、OFDM)和/或编码方案(例如,卷积编码、LDPC、增强代码)。相似地,每一客户端可用不同多址接入技术和/或不同调制/编码方案来服务。基于系统中的活动客户端和其针对其无线链路采用的标准,CP 5205-5206动态地选择可支持那些标准并在客户端设备范围内的DN子集。
参考文献
[1]Wikipedia,“Advanced Mobile Phone System”http://en.wikipedia.org/wiki/Advanced_Mobile_Phone_System(维基百科,“先进的移动电话系统”,http://en.wikipedia.org/wiki/Advanced_Mobile_Phone_System)
[2]AT&T,“1946:First Mobile Telephone Call”http://www.corp.att.com/attlabs/reputation/timeline/46mobile.html(美国电报和电话公司,“1946年:第一次移动电话通话”,http://www.corp.att.com/attlabs/reputation/timeline/46mobile.html)
[3]GSMA,“GSM technology”http://www.gsmworld.com/technology/index.htm(全球移动通信系统协会,“GSM技术”,http://www.gsmworld.com/technology/index.htm)
[4]ETSI,“Mobile technologies GSM”http://www.etsi.org/WebSite/Technologies/gsm.aspx(欧洲电信标准化协会,“移动技术GSM”,http://www.etsi.org/WebSite/Technologies/gsm.aspx)
[5]Wikipedia,“IS-95”http://en.wikipedia.org/wiki/IS-95(维基百科,“IS-95”,http://en.wikipedia.org/wiki/IS-95)
[6]Ericsson,“The evolution of EDGE”http://www.ericsson.com/res/docs/whitepapers/evolution_to_edge.pdf(爱立信公司,“EDGE的演进”,http://www.ericsson.com/res/docs/whitepapers/evolution_to_edge.pdf)
[7]Q.Bi(2004-03).“A Forward Link Performance Study of the 1xEV-DO Rel.0System Using Field Measurements and Simulations”(PDF).Lucent Technologies.http://www.cdg.org/resources/white_papers/files/Lucent%201xEV-DO%20Rev%20O%20Mar%2004.pdf(Q.Bi,2004年3月,“使用场测量和模拟的1xEV-DO Rel.0系统的前向链路性能研究”(PDF),朗讯科技公司,http://www.cdg.org/resources/white_papers/files/Lucent%201xEV-DO%20Rev%20O%20Mar%2004.pdf)
[8]Wi-Fi alliance,http://www.wi-fi.org/(Wi-Fi联盟,http://www.wi-fi.org/)
[9]Wi-Fi alliance,“Wi-Fi certified makes it Wi-Fi”http://www.wi-fi.org/files/WFA_Certification_Overview_WP_en.pdf(Wi-Fi联盟,“Wi-Fi CERTIFIED将Wi-Fi技术性能提升到全新阶段”,http://www.wi-fi.org/files/WFA_Certification_Overview_WP_en.pdf)
[10]WiMAX forum,http://www.wimaxforum.org/(WiMAX论坛,http://www.wimaxforum.org/)
[11]C.Eklund,R.B.Marks,K.L.Stanwood and S.Wang,“IEEEStandard 802.16:A Technical Overview of the WirelessMANTMAirInterface for Broadband Wireless Access”http://ieee802.org/16/docs/02/C80216-02_05.pdf(C.Eklund、R.B.Marks、K.L.Stanwood和S.Wang,“IEEE标准802.16:用于宽带无线接入的WirelessMANTM空中接口的技术概述”,http://ieee802.org/16/docs/02/C80216-02_05.pdf)
[12]3GPP,“UMTS”,http://www.3gPp.org/article/umts
[13]H.A.J.Karlsson,M.Meyer,S.Parkvall,J.Torsner,and M.Wahlqvist“Technical Solutions for the 3G Long-Term Evolution”,IEEE Communications Magazine,pp.38-45,Mar.2006(H.A.J.Karlsson、M.Meyer、S.Parkvall、J.Torsner和M.Wahlqvist,“用于3G长期演进的技术解决方案”,《IEEE通信杂志》,第38-45页,2006年3月)
[14]3GPP,“LTE”,http://www.3gpp.org/LTE
[15]Motorola,“Long Term Evolution(LTE):A TechnicalOverview”,http://business.motorola.com/experiencelte/pdf/LTETechnicalOverview.pdf(摩托罗拉公司,“长期演进(LTE):技术概述”,http://business.motorola.com/experiencelte/pdf/LTETechnicalOverview.pdf)
[16]Federal Communications Commission,“Authorization of SpreadSpectrum Systems Under Parts 15 and 90 of the FCC Rules andRegulations”,June 1985(美国联邦通信委员会,“根据FCC规则和条例的第15部分和90部分的扩频系统的授权”,1985年6月)。
[17]ITU,“ISM band”http://www.itu.int/ITU-R/terrestrial/faq/index.html#g013(ITU,“ISM频带”,http://www.itu.int/ITU-R/terrestrial/faq/index.html#g013)
[18]S.Perlman and A.Forenza“Distributed-input distributed-output(DIDO)wireless technology:a newapproach to multiuserwireless”,Aug.2011http://www.rearden.com/DIDO/DIDO_White_Paper_110727.pdf(S.Perlman和A.Forenza,“分布式输入分布式输出(DIDO)无线技术:用于多用户无线的新方法”,2011年8月,http://www.rearden.com/DIDO/DIDO_White_Paper_110727.pdf)
[19]Bloomberg Businessweek,“Steve Perlman’s Wireless Fix”,July27,2011http://www.businessweek.com/magazine/the-edison-of-silicon-valley-07272011.html(《彭博商业周刊》,“Steve Perlman的无线定位法”,2011年7月27日,http://www.businessweek.com/magazine/the-edison-of-silicon-valley-07272011.html)
[20]Wired,“Has OnLive’s Steve Perlman Discovered Holy Grail ofWireless?”,June 30,2011http://www.wired.com/epicenter/2011/06/perlman-holy-grail-wireless/(《连线》,“OnLive公司的Steve Perlman发现了无线技术的圣杯?”,2011年6月30日,http://www.wired.com/epicenter/2011/06/perlman-holy-grail-wireless/)
[21]The Wall Street Joumal“Silicon Valley Inventor’s Radical Rewriteof Wireless”,July 28,2011http://blogs.wsj.com/digits/2011/07/28/silicon-valley-inventors-radical-rewrite-of-wireless/(《华尔街日报》,“硅谷的发明家彻底改写了无线网络”,2011年7月28日,http://blogs.wsj.com/digits/2011/07/28/silicon-valley-inventors-radical-rewrite-of-wireless/)
[22]The White House,“Presidential Memorandum:Unleashing theWireless Broadband Revolution”,June 28,2010http://www.whitehouse.gov/the-press-office/presidential-memorandum-unleashing-wireless-broadband-revolution(白宫,“总统备忘录:发动无线宽带革命”,2010年6月28日,http://www.whitehouse.gov/the-press-office/presidential-memorandum-unleashing-wireless-broadband-revolution)
[23]FCC,“Open commission meeting”,Sept.23rd,2010http://reboot.fcc.gov/open-meetings/2010/september(FCC,“公开的委员会会议”,2010年9月23日,http://reboot.fcc.gov/open-meetings/2010/september)
[24]IEEE 802.22,“IEEE 802.22Working Group on Wireless RegionalArea Networks”,http://www.ieee802.org/22/(IEEE 802.22,“针对无线区域网的IEEE 802.22工作组”,http://www.ieee802.org/22/)
[25]“A bill”,112th congress,1stsession,July 12,2011http://republicans.energycommerce.house.gov/Media/file/Hearings/Telecom/071511/DiscussionDraft.pdf(第112届国会第一次会议“议案”,2011年7月12日)
[26]H.A.J.Karlsson,M.Meyer,S.Parkvall,J.Torsner,and M.Wahlqvist“Technical Solutions for the 3G Long-Term Evolution”,IEEE Communications Magazine,pp.38-45,Mar.2006(H.A.J.Karlsson、M.Meyer、S.Parkvall、J.Torsner和M.Wahlqvist,“用于3G长期演进的技术解决方案”,《IEEE通信杂志》,第38-45页,2006年3月)
[27]FCC,“Evaluating compliance with FCC guidelines for humanexposure to radiofrequency electromagnetic fields,”OET Bulletin65,Edition 97-01,Aug.1997(FCC,“针对人体暴露于射频电磁场的FCC指南的兼容性评估”,OET第65号公告,97-01版,1997年8月)
V.对分布式输入-分布式输出无线系统中的多普勒效应进行补偿的 系统和方法
在具体实施方式的该部分中,我们描述了用于多用户无线传输的多用户(MU)多天线系统(MAS),其自适应地重新配置参数,以补偿由于用户移动性或传播环境的改变而造成的多普勒效应。在一个实施例中,MAS为分布式输入-分布式输出(DIDO)系统,如共同待审的专利申请[0002-0016]中所述以及图53中所示。一个实施例的DIDO系统包括以下部件:
·用户装置(UE):一个实施例的UE 5301包括用于固定或移动客户端的RF收发器,其接收来自DIDO回程的下行链路(DL)信道上的数据流并通过上行链路(UL)信道将数据发射至DIDO回程。
·收发器基站(BTS):一个实施例的BTS 5310-5314将DIDO回程与无线信道对接。BTS 5310-5314为包括DAC/ADC和射频(RF)链的接入点,以便将基带信号转换成RF信号。在一些情况下,BTS为配备有功率放大器/天线的简单RF收发器,RF信号通过射频光纤传输技术被传输至BTS,如我们的专利申请中所述。
·控制器(CTR):一个实施例中的CTR 5320为一种特定类型的BTS,其被设计用于某些特定用途,如传输用于BTS和/或UE的时间/频率同步的训练信号,接受来自UE的控制信息或传输控制信息至UE,接收来自UE的信道状态信息(CSI)或信道质量信息。
·集中式处理器(CP):一个实施例的CP 5340为将互联网或其他类型的外部网络5350与DIDO回程对接的DIDO服务器。CP计算DIDO基带处理并将波形发送至用于DL传输的分布式BTS。
·基站网络(BSN):一个实施例的BSN 5330为将CP连接到分布式BTS上的网络,所述BTS携带用于DL信道或UL信道的信息。BSN为有线或无线网络或两者的组合。例如,BSN为DSL、电缆、光纤网络或视线或非视线无线链路。此外,BSN为专有网络或局域网或互联网。
如共同待审的专利申请中所述,DIDO系统为多个用户创建独立的信道,使得每个用户接收无干扰信道。在DIDO系统中,这是通过采用分布式天线或BTS以利用空间分集来实现的。在一个实施例中,DIDO系统采用空间、极化和/或方向图分集,以提高每个信道内的自由度。无线链路的提高的自由度用于向数量更多的UE传输独立数据流(即多路复用增益)并且/或者提高覆盖率(即分集增益)。
BTS 5310-5314布置在方便接入互联网或BSN的任何地方。在本发明的一个实施例中,UE 5301-5305任意布置在BTS或分布式天线之间、周围和/或被它们包围,如图54所示。
在一个实施例中,BTS 5310-5314通过DL信道将训练信号和/或独立数据流发送至UE 5301,如图55所示。训练信号被UE用于不同的目的,如时间/频率同步、信道估计和/或信道状态信息(CSI)的估计。在本发明的一个实施例中,MU-MAS DL采用非线性预编码,诸如脏纸编码(DPC)[1-2]或汤姆林森-哈拉希玛(Tomlinson-Harashima,TH)[3-4]预编码。在本发明的另一个实施例中,MU-MAS DL采用非线性预编码,如共同待审的专利申请[0003-0009]中所述的块对角化(BD)或迫零波束成形(ZF-BF)[5]。如果BTS的数量大于UE,则额外的BTS用于通过分集方案来提高到每个UE的链路质量,如[0002-0016]中所述的天线选择或本征模式选择。如果BTS的数量小于UE,则额外的UE通过常规的多路复用技术(如,TDMA、FDMA、CDMA、OFDMA)与其他UE共享无线链路。
UL信道用于从UE 5301向CP 5340和/或DIDO预编码器使用的CSI(或信道质量信息)发送数据。在一个实施例中,将来自UE的UL信道通过常规的多路复用技术(如,TDMA、FDMA、CDMA、OFDMA)多路复用至如图56所示的CTR或复用至最近的BTS。在本发明的另一个实施例中,使用空间处理技术分离从UE 5301至分布式BTS 5310-5314的UL信道,如图57所示。例如,通过多输入多输出(MIMO)多路复用方案将UL流从客户端传输至DIDO天线。MIMO多路复用方案包括传输来自客户端的独立数据流和使用DIDO天线处的线性或非线性接收器移除共信道干扰。在另一个实施例中,在上行链路上使用下行链路权重以解调上行链路流,假定保持UL/DL信道互易性并且信道不会由于多普勒效应而在DL和UL传输之间有显著差异。在另一个实施例中,在UL信道上使用最大比合并(MRC)接收器,以提高来自每个客户端的DIDO天线的信号质量。
通过DL/UL信道发送的数据、控制信息和CSI通过BSN 5330在CP5340和BTS 5310-5314之间共享。可将用于DL信道的已知训练信号存储在BTS 5310-5314处的存储器中,以降低通过BSN 5330的开销。根据网络类型(即,无线/有线,DSL/电缆或光纤),BSN 5330上可用的数据速率可能不足以在CP 5340与BTS 5310-5314之间交换信息,尤其是在将基带信号递送至BTS时。例如,我们假定BTS通过5MHz带宽向每个UE传输10Mbps的独立数据流(取决于无线链路上使用的数字调制和FEC编码方案)。如果量化16比特用于实部,并且量化16比特用于虚部,则基带信号需要通过BSN从CP至BTS的160Mbps的数据吞吐量。在一个实施例中,CP和BTS配备有编码器和解码器,以压缩和解压缩通过BSN发送的信息。在前向链路中,压缩从CP发送至BTS的预编码基带数据,以减小比特数量和通过BSN发送的开销。相似地,在反向链路中,(通过上行链路信道从UE发送至BTS的)CSI以及数据经压缩后再通过BSN从BTS向CP传输。采用不同的压缩算法来减小比特的数量和通过BSN发送的开销,包括但不限于无损和/或有损技术[6]。
一个实施例中使用的DIDO系统的一个特征是使CP 5340知晓所有BTS 5310-5314与UE 5301之间的CSI或信道质量信息,以允许预编码。如上文所述,DIDO的性能取决于相对于无线链路的变化速率向CP递送CSI的速率。熟知的是,信道复用增益的变化是由引起多普勒效应的UE移动性和/或传播环境的改变而导致的。根据与最大多普勒频移成反比的信道相干时间(Tc)测量信道的变化速率。为了使DIDO传输可靠地进行,由于CSI反馈而导致的延迟必须为信道相干时间的分数(例如,1/10或更小)。在一个实施例中,测量CSI反馈回路上的延迟,即发送CSI培训时的时间与在UE侧解调预编码数据时的时间之间的时间,如图58所示。
在频分双工(FDD)DIDO系统中,BTS 5310-5314将CSI训练发送至UE 5301,其估计CSI以及对BTS的反馈。然后BTS通过BSN将CSI发送至CP 5340,其计算DIDO预编码数据流并通过BSN 5330将它们发送回BTS。最后BTS将预编码流发送至解调数据的UE。参考图58,DIDO反馈回路的总延迟由下式给出
2*TDL+TUL+TBSN+TCP
其中TDL和TUL分别包括构建、发送和处理下行链路和上行链路帧的时间,TBSN为BSN上的往返延迟,TCP为CP处理CSI、生成用于UE的预编码数据流和调度用于当前传输的不同UE所花费的时间。在这种情况下,考虑到训练信号时间(从BTS至UE)和反馈信号时间(从UE至BTS),将TDL乘以2。在时分双工(TDD)中,如果可以采用信道互易性,在UE向计算CSI并将其发送至CP的BTS发送CSI训练时,则跳过第一步(即,从BTS至UE传输CSI训练信号)。因此,在该实施例中,DIDO反馈回路的总延迟为
TDL+TUL+TBSN+TCP
延迟TBSN取决于BSN的类型是专用电缆、DSL、光纤连接还是一般互联网。典型的值可以在1毫秒至50毫秒的范围之间变化。如果在专用处理器(如ASIC、FPGA、DSP、CPU、GPU和/或GPGPU)上的CP处实施DIDO处理,则CP处的计算时间可以缩短。此外,如果BTS 5310-5314的数量超过UE 5301的数量,则可以同时为所有UE提供服务,从而清除由于多用户调度而导致的延迟。因此,与TBSN相比,延迟TCP可忽略不计。最后,用于DL和UL的发射和接收处理通常在计算时间可忽略的ASIC、FPGA或DSP上实施,并且如果信号带宽相对较大(如,大于1MHz),则帧持续时间可以变得非常短(即,小于1毫秒)。因此,与TBSN相比,TDL和TUL也可忽略不计。
在本发明的一个实施例中,CP 5340跟踪所有UE 5301的多普勒速度,并将具有最低BSN的BTS 5310-5314动态地分配给具有较高多普勒的UE。该自适应基于不同的标准:
·BSN的类型:例如,专用光纤链路经历的延迟通常比电缆调制解调器或DSL更低。延迟较低的BSN用于高移动性UE(如,高速公路上的汽车、火车),而延迟较高的BSN用于固定无线或低移动性UE(如,住宅区内的家庭设备、行人和车)。
·QoS的类型:例如,BSN可支持不同类型的DIDO或非DIDO通信。可以为不同的通信类型定义不同优先级的服务质量(QoS)。例如,BSN将高优先级分配给DIDO通信,将低优先级分配给非DIDO通信。或者,将高优先级QoS分配给用于高移动性UE的通信,将低优先级QoS分配给具有低移动性的UE。
·长期统计值:例如,BSN上的通信可以根据一天中的时间而显著变化(例如,晚上家庭使用,白天办公室使用)。较高的通信负载会导致较高的延迟。然后,在一天中的不同时间,如果具有较高通信的BSN导致较高的延迟,则用于低移动性UE,而如果具有较低通信的BSN导致较低的延迟,则用于高移动性UE。
·短期统计值:例如,任何BSN都会受到临时网络拥塞的影响而导致较高的延迟。然而,CP可自适应地从拥塞的BSN中选择BTS(如果拥塞导致较高的延迟)用于低移动性UE,并将剩余的BSN(如果它们的延迟较低)用于高移动性UE。
在本发明的另一个实施例中,基于每个单独的BTS-UE链路上经受的多普勒来选择BTS 5310-5314。例如,在图59中的视线(LOS)链路B中,根据熟知的等式,最大多普勒频移为BTS-UE链路与车辆速度(v)之间的角度(φ)的函数
f d = v λ · cos φ
其中λ为对应于载波频率的波长。因此,在LOS信道中,图59中的链路A的多普勒频移最大,链路C的多普勒频移接近于零。在非LOS(NLOS)中,最大多普勒频移取决于UE周围的多路径的方向,但一般来讲,因为BTS在DIDO系统中的分布性质,一些BTS中将对于给定的UE经受较高的多普勒(例如BTS 5312),而其他BTS将对于给定的UE经受较低的多普勒(例如BTS 5314)。
在一个实施例中,CP跟踪每个BTS-UE链路上的多普勒速度并且只选择对每个UE具有最低多普勒效应的链路。与所述技术相似,CP 5340定义每个UE 5301的“用户群集”。用户群集为具有用于UE的良好链路质量(基于一定的信噪比、SNR、阈值定义)和低多普勒(例如,基于预定义的多普勒阈值定义)的BTS组,如图60所示。在图60中,BTS 5至10均具有用于UE1的良好SNR,但只有BTS 6至9经受低多普勒效应(例如,低于指定的阈值)。
该实施例的CP将每个BTS-UE链路的所有SNR和多普勒值记录到矩阵中并且针对每个UE选择符合SNR和多普勒阈值的子矩阵。在图61所示的例子中,子矩阵用包围C2,6、C2,7、C3,9、C4,7、C4,8、C4,9和C5,6的绿色虚线标识。基于该子矩阵计算所述UE的DIDO预编码权重。需注意,BTS 5和10是UE 2、3、4、5和7可达到的,如图61的表中所示。然后,为了避免在向那些其他UE传输时对UE1的干扰,BTS 5和10必须基于常规的多路复用技术(诸如TDMA、FDMA、CDMA或OFDMA)关闭或分配至不同的正交信道。
在另一个实施例中,通过线性预测减小多普勒效应对DIDO预编码系统性能的不利影响,所述线性预测是一种基于过去的信道估计来估计未来的复信道系数的技术。以举例且非限制性的方式,[7-11]中提议了用于单输入单输出(SISO)和OFDM无线系统的不同预测算法。已知未来的信道复系数可以减少由于过时的CSI而导致的错误。例如,图62示出了不同时间处的信道增益(或CSI):i)tCTR为图58中的CTR接收来自FDD系统中的UE的CSI(或等效地,BTS利用TDD系统中的DL/UL互易性估计来自UL信道的CSI)的时间;ii)tCP为通过BSN将CSI递送至CP的时间;iii)tBTS为将CSI用于无线链路上的预编码的时间。在图62中,我们观察到,由于延迟TBSN(也示于图58中),在时间tCTR处估计的CSI在用于在时间tBTS处在DL信道上无线传输时将会过时(即,复信道增益已经改变)。避免由于多普勒而造成的这种效应的一种方法是在CP处运行预测方法。在时间tCTR和CP处可用的CSI估计由于CTR-CP延迟而延迟TBSN/2并且对应于图62中时间t0处的信道增益。然后,CP使用在时间t0之前估计并存储在存储器中的CSI的全部或部分以预测时间t0+TBSN=tCP处的未来信道系数。如果预测算法具有最小的误差传播,则在时间tCP处预测的CSI在未来可靠地再现信道增益。预测的CSI与当前CSI之间的时间差值称为预测时域,并且在SISO系统中,通常用信道相干时间来标定。
在DIDO系统中,预测算法更复杂,因为它要估计时域和空间域两者中的未来信道系数。[12-13]中描述了采用MIMO无线信道的空间-时间特征的线性预测算法。在[13]中,其显示了MIMO系统中的预测算法(根据均方误差或MSE测量)的性能针对较高的信道相干时间(即,减小了多普勒效应)和较低的信道相干距离(由于较低的空间相关性)而有所改善。因此,空间-时间方法的预测时域(用秒表示)与信道相干时间成正比,并且与信道相干距离成反比。在DIDO系统中,相干距离低是由于分布式天线所产生的高空间选择性。
本文描述了利用DIDO系统的时间和空间分集来预测未来的向量信道(即,从BTS至UE的CSI)的预测技术。这些实施例利用无线信道中可用的空间分集获得可忽略的CSI预测误差和任何现有SISO和MIMO预测算法的扩展预测时域。这些技术的一个重要特征是利用分布式天线,因为它们从分布式UE接收不相关的复信道系数。
在本发明的一个实施例中,将时间和空间预测器与频域中的估计器结合,以允许通过系统(诸如OFDM系统)中的所有可用子载波进行CSI预测。在本发明的另一个实施例中,基于DIDO权重的先前估计来预测DIDO预编码权重(而不是CSI)。
参考文献
[1]M.Costa,“Writing on dirty paper,”IEEE Transactions onInformation Theory,Vol.29,No.3,Page(s):439-441,May 1983(M.Costa,“在脏纸上书写”,《IEEE信息理论学报》,第29卷,第3期,第439-441页,1983年5月)。
[2]U.Erez,S.Shamai(Shitz),and R.Zamir,“Capacity and lattice-strategies for cancelling known interference,”Proceedings ofInternationalSymposium on Information Theory,Honolulu,Hawaii,Nov.2000(U.Erez、S.Shamai(Shitz)和R.Zamir,“用于消除已知干扰的容量和格子策略”,信息理论国际研讨会论文集,夏威夷檀香山,2000年11月)。
[3]M.Tomlinson,“New automatic equalizer employing moduloarithmetic,”Electronics Letters,Page(s):138-139,March 1971(M.Tomlinson,“采用模运算的新型自动均衡器”,《电子快报》,第138-139页,1971年3月)。
[4]H.Miyakawa and H.Harashima,“A method of code conversionfor digital communication channels with intersymbolinterference,”Transactions of the Institute of Electronic(H.Miyakawa和H.Harashima,“具有码间干扰的数字通信信道的代码转换方法”,《电子研究所学报》)。
[5]R.A.Monziano and T.W.Miller,Introduction to Adaptive Arrays,New York:Wiley,1980(R.A.Monziano和T.w.Miller,《自适应阵列导论》,纽约威立出版社,1980年)。
[6]Guy E.Blelloch,“Introduction to Data Compression”,CarnegieMellon University Tech.Report Sept.2010(Guy E.Blelloch,“数据压缩技术导论”,《卡耐基梅隆大学技术报告》,2010年9月)。
[7]A.Duel-Hallen,S.Hu,and H.Hallen,“Long-Range Prediction ofFading Signals,”IEEE Signal Processing Mag.,vol.17,no.3,pp.62-75,May 2000(A.Duel-Hallen、S.Hu和H.Hallen,“衰落信号的长期预测”,《IEEE信号处理杂志》,第17卷,第3期,第62-57页,2000年5月)。
[8]A.Forenza and R.W.Heath,Jr.,“Link Adaptation and channelPrediction in Wireless OFDM Systems,”in Proc.IEEE MidwestSymp.on Circuits and Sys.,Aug 2002,pp.211-214(A.Forenza和R.W.Heath,Jr.,“无线OFDM系统中的链路自适应和信道预测”,IEEE中西部电路与系统研讨会论文集,2002年8月,第211-214页)。
[9]M.Sternad and D.Aronsson,“channel estimation and predictionfor adaptive OFDM downlinks[vehicular applications],”in Proc.IEEE Vehicular Technology Conference,vol.2,Oct 2003,pp.1283-1287(M.Sternad和D.Aronsson,“针对自适应OFDM下行链路的信道估计和预测[车辆应用]”,车辆技术会议论文集,第2卷,2003年10月,第1283-1287页)。
[10]D.Schafhuber and G.Matz,“MMSE and Adaptive Prediction ofTime-Varying channels for OFDM Systems,”IEEE Trans.Wireless Commun.,vol.4,no.2,pp.593-602,Mar 2005(D.Schafhuber和G.Matz,“针对OFDM系统时变信道的MMSE和自适应预测”,《IEEE无线通信学报》,第4卷,第2期,第593-602页,2005年3月)。
[11]I.C.Wong and B.L.Evans,“Joint channel Estimation andPrediction for OFDM Systems,”in Proc.IEEE GlobalTelecommunications Conference,St.Louis,MO,Dec 2005(C.Wong和B.L.Evans,“针对OFDM系统的联合信道估计和预测”,IEEE全球电信会议论文集,美国密苏里州圣路易斯,2005年12月)。
[12]M.Guillaud and D.Slock,“A specular approach to MIMOfrequencyselective channel tracking and prediction,”in Proc.IEEESignal Processing Advances in Wireless Communications,July 2004,pp.59-63(M.Guillaud和D.Slock,“用于MIMO频率选择性信道跟踪和预测的镜面方法”,IEEE无线通信中的信号处理进展论文集,2004年7月,第59-63页)。
[13]Wong,I.C.Evans,B.L.,“Exploiting Spatio-Temporal Correlationsin MIMO Wireless channel Prediction”,IEEE Globecom Conf.,pp.1-5,Dec.2006(Wong,I.C.和Evans,B.L.,“在MIMO无线信道预测中利用时空相关性”,IEEE全球通信会议,第1-5页,2006年12月)。
本发明的实施例可包括如上所示的各种步骤。所述步骤可体现为使通用或专用处理器执行某些步骤的机器可执行指令。例如,上述基站/AP和客户端设备内的各种部件可实现为在通用或专用处理器上执行的软件。为避免混淆本发明的相关方面,图中不列出各种熟知的个人计算机部件,诸如计算机存储器、硬盘驱动器、输入设备等。
可替换地,在一个实施例中,本文示出的各种功能模块和相关步骤可通过包含用于执行步骤的硬连线逻辑的特定硬件部件,诸如专用集成电路(“ASIC”),或通过编程计算机部件和定制硬件部件的任何组合执行。
在一个实施例中,某些模块,例如上述编码、调制和信号处理逻辑单元903可在可编程的数字信号处理器(“DSP”)(或DSP组)例如使用美国德州仪器公司(Texas Instruments)的TMS320x架构的DSP(例如,TMS320C6000、TMS320C5000、...等)上实现。该实施例中的DSP可嵌入在个人计算机的附加卡(诸如PCI卡)内。当然,可使用多种不同的DSP架构,同时仍符合本发明的基本原理。
本发明的元件也可以作为用于存储机器可执行指令的机器可读介质提供。机器可读介质可包括但不限于闪存存储器、光盘、CD-ROM、DVDROM、RAM、EPROM、EEPROM、磁卡或光卡、传播介质或适于存储电子指令的其他类型的机器可读介质。例如,本发明可下载为计算机程序,所述计算机程序可以数据信号的方式从远程计算机(例如,服务器)经由通信链路(例如,调制解调器或网络连接)转移至请求计算机(例如,客户端),所述数据信号体现为载波或其他传播介质。
在整个前述说明书中,出于解释目的,示出了许多具体细节,以提供对本发明系统和方法的深入理解。然而,对于本领域技术人员显而易见的是,所述系统和方法可在没有这些具体细节中的一些的情况下实施。因此,本发明的范围和实质应以如下权利要求书判断。
此外,在整个前述说明书中,引用了许多出版物以提供对本发明的更透彻的理解。所有这些引用的参考文献均以引用方式并入本专利申请中。
用于空间多路复用对流层散射通信的系统和方法
背景技术
技术领域
本专利申请是2004年7月30日提交的名称为“System And MethodFor Distributed Input-Distributed Output Wireless Communications”(用于分布式输入-分布式输出无线通信的系统和方法)的共同待审的美国专利申请No.10/902,978的部分继续申请。
本发明整体涉及通信系统领域。更具体地讲,本发明涉及使用空时编码技术的分布式输入-分布式输出无线通信的系统和方法。
相关技术的描述
通信信号的空时编码
一个无线技术中的相对新的进展被称为空间多路复用和空时编码。空时编码的一种特定类型被称为MIMO即“多输入多输出”,因为在每端上使用多个天线。多个独立的无线电波可通过使用多个天线发送和接收而在相同的频率范围内同时发射。以下文章提供了MIMO的概述:
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,VOL.21,NO.3,APRIL 2003:“From Theory to Practice:An Overview of MIMOSpace–Time Coded Wireless Systems”,by David Gesbert,Member,IEEE,Mansoor Shafi,Fellow,IEEE,Da-shan Shiu,Member,IEEE,Peter J.Smith,Member,IEEE,and Ayman Naguib,Senior Member,IEEE(《IEEE通信选域杂志》,第21卷,第3期,2003年4月:“从理论到实践:MIMO空时编码无线系统的概述”,David Gesbert(IEEE会员)、Mansoor Shafi(IEEE会士)、Da-shan Shiu(IEEE会员)、Peter J.Smith(IEEE会员)和Ayman Naguib(IEEE高级会员))。
IEEE TRANSACTIONS ON COMMUNICATIONS,VOL.50,NO.12,DECEMBER 2002:“Outdoor MIMO Wireless Channels:Models andPerformance Prediction”,David Gesbert,Member,IEEE,Helmut Member,IEEE,Dhananjay A.Gore,and Arogyaswami J.Paulraj,Fellow,IEEE(《IEEE通信学报》,第50卷,第12期,2002年12月:“室外MIMO无线信道:模型和性能预测”,David Gesbert(IEEE会员)、Helmut(IEEE会员)、Dhananjay A.Gore和Arogyaswami J.Paulraj(IEEE会士))。
从根本上说,MIMO技术基于用于在通用频带内创建并行空间数据流的空间分布天线的使用。以此类方式发射无线电波使得单独信号即使在相同的频带内发射也可在接收器处分离并解调,这可得到多个统计上独立的(即有效分离的)通信信道。因此,与试图禁止多路径信号(即,处于时间上延迟的相同频率下并且振幅和相位改变的多个信号)的标准无线通信系统相比,MIMO可依赖于不相关或弱相关的多路径信号,以实现给定频带内更高的吞吐量和提高的信噪比。以示例的方式,Airgo Networks公司最近在802.11g系统内使用MIMO技术能够在频谱中实现108Mbps,而常规802.11g系统在相同频谱中仅可实现54Mbps(这在Airgo的网站,目前为http://www.airgonetworks.com中有所描述)。
MIMO系统通常面临每个设备小于10个天线的实际限制(因此网络中的吞吐量提高小于10倍),这有多个原因:
1.物理限制:给定设备上的MIMO天线必须在它们之间具有足够的间隔距离,使得每个天线接收统计上独立的信号。虽然可在均等六分之一波长(λ/6)的天线间距处看到MIMO带宽提高,但随着天线的靠近效率迅速下降,导致MIMO带宽倍增下降。另外,由于天线挨在一起,因此通常必须使天线更小,这也可影响带宽效率。最后,随着频率下降和波长增长,单个MIMO设备的物理尺寸可变得难以管理。一个极端例子是在HF频带中,其中MIMO设备天线可能不得不彼此分隔10米或更远。
2.噪声限制。每个MIMO接收器/发射器子系统产生一定水平的噪声。随着越来越多的这些子系统彼此接近放置,本底噪声增加。同时,随着需要在多天线MIMO系统中将越来越多的不同信号彼此区分,需要越来越低的本底噪声。
3.成本和功率限制。虽然存在成本和功率消耗不是问题的MIMO应用,但在典型的无线产品中,成本和功率消耗二者是开发成功产品的关键约束条件。独立的RF子系统是每个MIMO天线所必需的,包括独立的模数(A/D)和数模(D/A)转换器。与按摩尔定律尺度变化的数字系统的多个方面不同的是,此类模拟密集型子系统通常具有某些物理结构尺寸和功率要求,并且在成本和功率方面线性地随尺度变化。因此,与单天线设备相比,多天线MIMO设备将变得过分昂贵和耗电的。
作为上述的结果,目前设想的大多数MIMO系统具有大约2至4个天线,使得由于多天线系统的分集益处,带宽增加2至4倍并且SNR在一定程度上增加。已设想最多10个天线的MIMO系统(特别是由于波长较短并且天线间距较近而在较高微波频率下),但远超出该数目则是不切实际的,非常特殊和对成本不敏感的应用除外。
虚拟天线阵列
MIMO型技术的一个具体应用是虚拟天线阵列。此类系统在EuropeanCooperation in the field of Scientific and Technical Research,EURO-COST,Barcelona,Spain,Jan 15-17,2003:Center for Telecommunications Research,King’s College London,UK:“A step towards MIMO:Virtual AntennaArrays”,Mischa Dohler&Hamid Aghvami(欧洲科技领域研究合作组织EURO-COST,西班牙巴塞罗那,2003年1月15-17日,英国伦敦大学国王学院电信研究中心:“迈向MIMO的一步:虚拟天线阵列”,MischaDohler和Hamid Aghvami)中提出的研究论文中提议。
如论文中所述,虚拟天线阵列是合作无线设备(例如手机)的系统,其彼此之间在独立的通信信道而非其主要通信信道上与其基站通信(如果它们彼此足够靠近以及当它们彼此足够靠近时),以便协同工作(例如如果它们是UHF频带中的GSM蜂窝式电话,这可以是5GHz工业、科研及医疗(ISM)无线频带)。这允许例如单个天线设备通过在多个设备之间于彼此范围内中继信息(除在基站的范围内之外),使它们好像是物理上具有多个天线的一个设备那样工作,以潜在地实现带宽的类MIMO增加。
然而,在实施过程中,此类系统的实施极其困难,并且实用性有限。首先,每个设备现在具有最少两条不同的通信路径,该路径必须保持以实现提高的吞吐量,其中第二中继链路的可用性通常不确定。另外,因为设备最少具有第二通信子系统和更大的计算需求,所以设备更昂贵、物理上更大并且消耗更多功率。此外,潜在地通过多个通信链路,该系统依赖于非常复杂的所有设备的实时协调。最后,随着同时信道利用(例如,利用MIMO技术的同时电话呼叫传输)增加,每个设备的计算负担增加(随着信道利用线性增加而潜在地呈指数增加),这对于具有严格的功率和尺寸约束条件的便携式设备很可能是不切实际的。
发明内容
本发明描述了一种方法,所述方法包括:利用对流层散射将训练信号从基站的每个天线发射至多个客户端设备中的每一者,客户端设备中的每一者分析每个训练信号以生成信道特征数据,并且利用对流层散射将信道特征数据传输回到基站;存储多个客户端设备中的每一者的信道特征数据;接收要发射至客户端设备中的每一者的数据;以及使用与每个相应客户端设备相关的信道特征数据预编码所述数据,以生成针对基站的每个天线的预编码数据信号;以及通过基站的每个天线将预编码数据信号发射至每个相应客户端设备。
附图说明
通过结合附图的以下详细描述可以获得对本发明的更好理解,其中:
图1示出了现有技术的MIMO系统。
图2示出了与多个单天线客户端设备通信的N-天线基站。
图3示出了与三个单天线客户端设备通信的三天线基站。
图4示出了用于本发明的一个实施例的训练信号技术。
图5示出了根据本发明的一个实施例从客户端设备发射至基站的信道特征数据。
图6示出了根据本发明的一个实施例的多输入分布式输出(“MIDO”)下行传输。
图7示出了根据本发明的一个实施例的多输入多输出(“MIMO”)上行传输。
图8示出了根据本发明的一个实施例的循环遍历不同客户端组以分配带宽的基站。
图9示出了根据本发明的一个实施例的基于接近度的客户端分组。
图10示出了本发明的在NVIS系统内使用的实施例。
图11示出了本发明的利用对流层散射的实施例。
图12示出了现有技术的对流层散射传输系统。
图13示出了本发明的利用覆盖区域上的对流层散射传输系统的实施例。
图14示出了本发明的实施例中的直播卫星碟型天线和RF信号路径。
图15示出了本发明的利用具有对流层散射的常规MIMO的实施例。
图16示出了12个3天线群集围绕的覆盖区域的俯视图。
图17a-图17c示出了不同正视图的覆盖区域中的3个客户端天线。
优选实施例的具体实施方式
在以下描述中,出于说明的目的,阐述了很多具体细节,以便深入理解本发明。然而,对于本领域技术人员显而易见的是,本发明可在没有这些具体细节中的一些的情况下实施。在其他情况下,熟知的结构和设备以框图形式示出,以避免混淆本发明的基本原理。
图1示出了具有发射天线104和接收天线105的现有技术的MIMO系统。这样的系统可实现可用信道中通常可实现的吞吐量的最多至3倍。存在用于实现这种MIMO系统的细节的许多不同方法,所述方法在有关本主题的已出版文献中有所描述,并且以下说明描述一个这样的方法。
数据在图1的MIMO系统中传输之前,信道被“特征化”。这通过最初将“训练信号”从发射天线104中的每一者传输到接收器105中的每一者来实现。训练信号连续不断地由编码和调制子系统102生成,被D/A转换器(未示出)转换成模拟信号,并随后由每个发射器103从基带信号转换成RF信号。每个耦合到其RF接收器106的接收天线105接收每个训练信号并将该信号转换成基带信号。基带信号由D/A转换器(未示出)转换成数字信号,然后信号处理子系统107特征化该训练信号。每个信号的特征可以包括很多因素,包括例如相对于接收器内部的基准信号的相位和振幅、绝对基准信号、相对基准信号、特征噪声或其他因素。每个信号的特征通常定义为当信号通过信道传输时表征信号几个方面的相位和振幅变化的向量。例如,在正交幅度调制(“QAM”)调制的信号中,所述特征可以是信号的若干多径映像的相位与振幅偏移的向量。又如,在正交频分多路复用(“OFDM”)调制的信号中,它可以是OFDM频谱中几个或所有单个分量信号(sub-signal)的相位与振幅偏移的向量。
信号处理子系统107存储由每个接收天线105和对应接收器106接收的信道特征。在所有三个发射天线104已完成它们的训练信号发射之后,随后信号处理子系统107将已存储用于三个接收天线105中的每一者的三个信道特征,得到3×3矩阵108,被称为信道特征矩阵“H”。每个单独的矩阵元素Hi,j为发射天线104i的如被接收天线105j接收到的训练信号发射的信道特征(该信道特征通常为向量,如以上所述)。
此时,信号处理子系统107对矩阵H 108求逆,以产生H-1,并且等候来自发射天线104的实际数据的发射。注意,可利用可用文献中所述的各种现有技术的MIMO技术以确保可对H矩阵108求逆。
在操作中,将待发射数据的有效载荷提供至数据输入子系统100。该有效载荷随后在被提供至编码和调制子系统102之前被分配器101分割为三个部分。例如,如果有效载荷是“abcdef”的ASCII比特,它就可以被分配器101分割为三个ASCII比特子有效载荷“ad”、“be”和“cf”。随后,将这些子有效载荷中的每一者单独地提供至编码和调制子系统102。
通过使用适用于每个信号的统计独立性和纠错能力两者的编码系统,单独地对子有效载荷中的每一者进行编码。这些编码系统包括但不限于里德-所罗门编码、维特比编码和涡轮码(Turbo Codes)。最后,使用信道的适当调制方案来调制三个经编码的子有效载荷中的每一者。示例性调制方案为差分相移键控(“DPSK”)调制、64-QAM调制和OFDM。在此应当指出的是,由MIMO提供的分集增益允许另外在利用相同信道的SISO(单输入单输出)系统中可行的高阶调制星座图。每个经编码和调制的信号在通过D/A转换单元(未示出)进行D/A转换和通过每个发射器103进行RF生成后,通过其自身的天线104发射。
假定发射和接收天线之间存在足够的空间分集,则接收天线105中的每一者将从天线104接收三个发射信号的不同组合。每个信号被每个RF接收器106接收并向下转换成基带,随后被A/D转换器(未示出)数字化。如果yn是由第n个接收天线105接收到的信号,xn是由第n个发射天线104发射的信号,并且N是噪声,则这可通过以下三个等式来描述。
y1=x1H11+x2H21+x3H31+N
y2=x1H12+x2H22+x3H32+N
y3=x1H13+x2H23+x3H33+N
假设这是一个具有三个未知量的三个等式的系统,那么这就是信号处理子系统107推导出x1、x2和x3的线性代数的问题了(假设N在足够低的水平,允许对信号进行解码):
x1=y1H-1 11+y2H-1 12+y3H-1 13
x2=y1H-1 21+y2H-1 22+y3H-1 23
x3=y1H-1 31+y2H-1 32+y3H-1 33
一旦这样推导出三个发射信号xn,它们就被信号处理子系统107解调、解码和纠错,以恢复出原来由分配器101分开的三个比特流。这些比特流在合并器单元108中合并,并从数据输出109中输出为单数据流。假设系统强健性能够克服噪声损伤,那么数据输出109产生的比特流将和引入到数据输入100中的比特流一样。
尽管刚才所述的现有技术系统通常有效最多至4个天线,或许最多至10个之多的天线,但由于在本公开的背景技术部分中描述的原因,具有大量天线(例如,25个、100个或1000个)时其变得很不实际。
通常,这样的现有技术系统是双向的,返回路径以完全相同的方式实现,但是反过来,在通信信道的每一侧都具有发射和接收子系统。
图2示出了本发明的一个实施例,其中基站200配置有广域网接口(例如,用于通过T1或其他高速连接接入互联网)201并且提供有一定数量的(n个)天线202。有一些客户端设备203-207,每个具有单天线,基站200通过无线方式对它们进行服务。虽然出于该示例的目的最容易认为这种基站位于该基站正在为客户端设备203-207提供服务的办公环境中,其中客户端设备203-207是配备无线网络的个人计算机,但是该架构将适用于其中基站正在为无线客户端提供服务的位于室内外的大量应用。例如,基站能够设在蜂窝式电话塔处,或以广播电视塔为基础。在一个实施例中,基站200定位在地面上并且被配置为以HF频率(例如,高达24MHz的频率)向上发射以使信号从电离层反弹回来,如在2004年4月2日提交的名称为“SYSTEM AND METHOD FOR ENHANCING NEAR VERTICALINCIDENCE SKYWAVE(“NVIS”)COMMUNICATION USING SPACE-TIME CODING”(使用空时编码来增强近垂直入射天波(“NVIS”)通信的系统和方法)且序列号为10/817,731的共同待审专利申请中所述,所述共同待审专利申请转让给本专利申请的受让人并且以引用方式并入本文。在另一个实施例中,基站200定位在地面上并且被配置为使用对流层散射技术成一角度发射至对流层中。
上文示出的与基站200和客户端设备203-207相关联的某些细节仅出于示例性目的并且不需要遵守本发明的基本原理。例如,基站可经由WAN接口201连接至多种不同类型的广域网,包括专用广域网,诸如用于数字视频分发的那些。相似地,客户端设备可以是任何种类的无线数据处理和/或通信设备,包括但不限于蜂窝式电话、个人数字助理(“PDA”)、接收器和无线摄像机。
在一个实施例中,基站的n个天线202在空间上是分开的,使得所述天线各自发射和接收非空间相关的信号,就像基站是现有技术的MIMO收发器一样。如在背景技术中所述,天线以不到λ/6(即,1/6波长)间隔放置的实验已经做出,其成功地实现了从MIMO的带宽提升,但一般来说,这些基站天线越进一步分开放置,系统的性能就越好,λ/2是令人满意的最小距离。当然,本发明的基本原理不限于天线间任何特定的分离。
注意,单个基站200可以很好地使其天线相隔很远定位。例如,在HF频谱中,天线可以相隔10米或更远(例如,在上文提及的NVIS具体实施中)。如果使用100个这种天线,则基站的天线阵列可以充分地占据若干平方公里。
除了空间分集技术之外,为了提高系统的有效带宽,本发明的一个实施例将信号极化。通过极化来增大信道带宽是一种公知的技术,其已经被卫星电视供应商使用了很多年。使用极化技术,可以使多个(例如,三个)基站天线彼此非常接近,并且仍然是非空间相关的。尽管常规的RF系统通常将仅受益于极化的二维(例如,x和y)分集,但是本文描述的架构可进一步受益于极化的三维(x、y和z)分集。
图3提供了图2中所示的基站200和客户端设备203-207的一个实施例的额外细节。出于简化的目的,将基站300示出为具有仅三个天线305和仅三个客户端设备306-308。然而,需要注意的是,本文所描述的本发明的实施例可以用几乎无限数量的天线305(即,仅受到可用空间和噪声的限制)和客户端设备306-308来实现。
图3与图1所示的现有技术MIMO架构类似,其中,两者在通信信道的每一侧具有三个天线。显著的区别在于,在现有技术的MIMO系统中,图1右侧的三个天线105彼此之间全部是固定距离(例如,集成在单个设备上),并且从天线105中的每一者接收到的信号一起在信号处理子系统107中得到处理。相比之下,在图3中,图右侧的三个天线309各自耦合到不同的客户端设备306-308,所述客户端设备中的每一者可分布在基站305的范围内的任何地方。鉴于此,每个客户端设备接收到的信号在其编码、调制、信号处理子系统311中独立于其他两个接收到的信号而得到处理。因此,与多输入(即天线105)多输出(即天线104)“MIMO”系统相比,图3示出了多输入(即天线309)分布式输出(即天线305)系统,在下文中被称为“MIDO”系统。
图3中示出的MIDO架构对于给定数量的发射天线实现了类似于MIMO在SISO系统上实现的带宽增大。然而,MIMO与图3中所示的特定MIDO实施例之间的一个区别是,为实现由多个基站天线提供的带宽增大,每个MIDO客户端设备306-308仅需要单个接收天线,而对于MIMO,每个客户端设备至少需要与希望实现的带宽倍数一样多的接收天线。假设通常有一实际限制,其限制能够在客户端设备上放置多少天线(如在背景技术中解释的),这通常将MIMO系统限制在4个至10个天线之间(4倍至10倍的带宽)。因为基站300通常从固定和配备电力的位置对许多客户端设备提供服务,所以将该基站扩展为远超过10个天线,并且用合适的距离分开天线以实现空间分集是很实际的。如图所示,每个天线配备有收发器304以及编码、调制和信号处理部件303的处理能力的一部分。值得注意的是,在该实施例中,无论基站300扩展多少,每个客户端设备306-308将仅需要一个天线309,因此对于单个用户客户端设备306-308的成本将很低,并且基站300的成本可以在大基数的用户中分担。
在图4至图6中示出了可如何实现从基站300到客户端设备306-308的MIDO传输的例子。
在本发明的一个实施例中,在MIDO传输开始之前,信道被特征化。与MIMO系统一样,训练信号通过天线405中的每一者一个接一个进行传输(在本文所述的实施例中)。图4仅示出了第一个训练信号的传输,但对于三个天线405来说,共有三个分开的传输。每个训练信号由编码、调制和信号处理子系统403生成,通过D/Α转换器转换成模拟信号,并作为RF信号通过每个RF收发器404发射出去。可利用各种不同的编码、调制和信号处理技术,包括但不限于以上描述的那些(例如,里德所罗门编码、维特比编码;QAM、DPSK、QPSK调制、…等等)。
每个客户端设备406-408通过其天线409接收训练信号,并通过收发器410将该训练信号转换成基带信号。A/D转换器(未示出)在该信号被每个编码、调制和信号处理子系统411处理的地方将其转换成数字信号。然后信号特征逻辑单元320表征所得信号(例如,识别如上所述的相位和振幅失真)并将该特征存放在存储器中。这个特征处理过程类似于现有技术的MIMO系统的处理过程,一个显著的区别是,每个客户端设备仅仅计算其一个天线,而不是n个天线的特征向量。例如,使用已知模式的所述训练信号将客户端设备406的编码、调制和信号处理子系统420初始化(在制备时通过在发射的消息中接收它,或通过另一种初始化处理)。当天线405以该已知模式发射训练信号的时候,编码、调制和信号处理子系统420使用相关法来找到最强的训练信号接收模式,其将相位和振幅偏移保存起来,然后其将该模式从接收到的信号中减掉。接下来,其找到与所述训练信号相关的第二强接收模式,将相位和振幅偏移保存起来,然后其将该第二强模式从所述接收到的信号中减掉。该处理一直进行,直到存储了某固定数量的相位和振幅偏移(例如,8个),或可检测的训练信号模式下降到给定的本底噪声之下。该相位/振幅偏移的向量成为向量413的元素H11。与此同时,客户端设备407和408的编码、调制和信号处理子系统执行同样的处理,产生它们的向量元素H21和H31
所述特征存储其中的存储器可以是非易失性存储器,诸如闪存存储器或硬盘驱动器,和/或易失性存储器,诸如随机存取存储器(例如,SDRAM、RDAM)。此外,不同的客户端设备可以同时采用不同类型的存储器来存储特征信息(例如,PDA可使用闪存存储器,而笔记本计算机可使用硬盘驱动器)。在各种客户端设备或基站上,本发明的基本原理不限于任何特定类型的存储机构。
如上所述,根据所采用的方案,由于每个客户端设备406-408仅具有一个天线,故每个仅存储H矩阵的1×3列413-415。图4示出了第一训练信号传输后的阶段,这里,1×3列413-415的第一行已存储了三个基站天线405的第一个天线的信道特征信息。其余两列存储了来自其余两个基站天线的接下来的两个训练信号传输的以下信道特征。应注意,出于说明目的,所述三个训练信号在分开的时间传输。如果选择了三个训练信号模式诸如互不相关,那么它们可以同时传输,因此减少训练时间。
如图5中所示,在所有三个导频传输完成之后,每个客户端设备506-508将已存储起来的矩阵H的1×3列513-515传送回基站500。为了简单起见,在图5中仅显示有一个客户端设备506传送其特征信息。结合适当的纠错编码(例如,里德所罗门编码、维特比编码、和/或涡轮码),可以使用合适的信道调制方案(例如DPSK、64QAM、OFDM)来确保基站500准确地接收列513-515中的数据。
虽然在图5中示出所有三个天线505均在接收信号,但是对于接收每1×3列513-515的传输,基站500的单天线和单收发器已经足够了。然而,在一定条件下,使用很多或所有天线505和收发器504来接收每个传输(即,在编码、调制和信号处理子系统503中使用现有技术的单输入多输出(“SIMO”)处理技术)可以产生比利用单天线505和单收发器504更佳的信噪比(“SNR”)。
当基站500的编码、调制和信号处理子系统503从每个客户端设备507-508接收所述1×3列513-515的时候,其将所述1×3列513-515存入3×3的H矩阵516中。与客户端设备一样,基站可以使用各种不同的存储技术来存储矩阵516,所述存储技术包括但不限于非易失性海量存储器(例如,硬盘)和/或易失性存储器(例如,SDRAM)。图5示出了基站500已经接收和存储了来自客户端设备509的1×3列513的阶段。当从其余客户端设备接收到1×3列514和515的时候,所述1×3列514和515可以被传输并存储在H矩阵516中,直到整个H矩阵516被存储起来。
现在将参考图6描述从基站600到客户端设备606-608的MIDO传输的一个实施例。因为每个客户端设备606-608是独立的设备,所以通常每个设备接收不同的数据传输。鉴于此,基站600的一个实施例包括可通信地定位于WAN接口601与编码、调制和信号处理子系统603之间的路由器602,该路由器602从WAN接口601获得多个数据流(格式为比特流),随后分别对应于每个客户端设备606-608将所述数据流按分开的比特流u1-u3路由发送。为此目的,该路由器602可以使用各种众所周知的路由技术。
如图6所示,随后将所述三个比特流u1-u3路由进所述编码、调制和信号处理子系统603中,将它们编码为统计独立的纠错流(例如,使用里德所罗门、维特比、或涡轮码),并使用对信道合适的调制方案(诸如DPSK、64QAM或OFDM)将它们调制。此外,图6中所示的实施例包括信号预编码逻辑单元630,基于信号特征矩阵616,该信号预编码逻辑单元630用于对从每个天线605发射来的信号进行唯一编码。更具体地讲,在一个实施例中,预编码逻辑单元630将图6中的三个比特流u1-u3与H矩阵616的逆矩阵相乘,得到三个新的比特流u’1-u’3,而不是将三个经编码和调制的比特流中的每一者路由到分开的天线(如在图1中进行的)。然后,D/A转换器(未示出)将所述三个预编码比特流转换为模拟信号,收发器604和天线605将其作为RF信号发射出去。
在解释客户端设备606-608如何接收所述比特流之前,将描述预编码模块630执行的操作。类似于上面图1中的MIMO例子,三个源比特流中每一个比特流的经编码和调制的信号将表示为un。在图6所示的实施例中,每个ui包含来自路由器602所路由的三个比特流之一的数据,每个这样的比特流旨在用于三个客户端设备606-608中的一个。
然而,不同于图1的MIMO例子,那里,每个xi由每个天线104发射,在图6所示的本发明的实施例中,在每个客户端设备天线609处接收每个ui(加上信道中存在的任何噪声N)。为实现该结果,三个天线605中的每一者的输出(我们将其中的每一者表示为vi)是ui和特征化每个客户端设备的信道的H矩阵的函数。在一个实施例中,编码、调制和信号处理子系统603内的预编码逻辑单元630通过执行下列公式来计算每个vi
v1=u1H-1 11+u2H-1 12+u3H-1 13v2=u1H-1 21+u2H-1 22+u3H-1 23
v3=u1H-1 31+u2H-1 32+u3H-1 33
因此,不同于MIMO,其中,在信道已将信号变换之后在接收器处计算每个xi,而本文所述的本发明的实施例在信道已将信号变换之前在发射器处求解每个vi。每个天线609接收已经从其他旨在用于其他天线609的un-1比特流中分离出来的ui。每个收发器610将各自接收到的信号转换成基带信号,这里Α/D转换器(未示出)对其进行数字化,并且每个编码、调制和信号处理子系统611对其xi比特流进行解调和解码,并将其比特流发送到客户端设备将使用的数据接口612(例如,通过客户端设备上的应用程序)。
本文所述的本发明的实施例可以使用多种不同的编码和调制方案来实现。例如,在OFDM具体实施中,其中频谱被分为多个子频带,在此描述的技术可用于特征化每个单独的子频带。然而,如上所述,本发明的基本原理不限于任何特定的调制方案。
如果客户端设备606-608是便携式数据处理设备,诸如PDA、笔记本电脑和/或无线电话,那么由于客户端设备可能会从一个位置移动到另外一个位置,则信道特征可能频繁发生改变。鉴于此,在本发明的一个实施例中,基站处的信道特征矩阵616不断地得到更新。在一个实施例中,基站600周期性地(例如,每250毫秒)发出新的训练信号到每个客户端设备,随后每个客户端设备将其信道特征向量不断地传送回基站600以确保信道特征保持准确(例如,如果环境改变或客户端设备移动从而影响到信道)。在一个实施例中,在发送到每个客户端设备的实际数据信号中对训练信号进行交织。典型地,所述训练信号的带宽远低于所述数据信号的带宽,因此这对系统总的吞吐量将几乎没有影响。相应地,在该实施例中,信道特征矩阵616在基站主动与每个客户端设备进行通信时可以不断得到更新,从而当客户端设备从一个位置移动到下一个位置,或环境发生改变从而影响到信道的时候保持准确的信道特征。
图7中所示的本发明的一个实施例使用MIMO技术来改善上游通信信道(即,从客户端设备706-708到基站700的信道)。在该实施例中,基站内的上游信道特征逻辑单元741不断地对来自客户端设备中每一者的信道进行分析和特征化。更具体地讲,客户端设备706-708中的每一者将训练信号发射到基站700,信道特征逻辑单元741分析该信号(例如,就像在典型的MIMO系统中那样)以产生N×M的信道特征矩阵741,这里N是客户端设备的数量,M是基站所使用的天线的数量。图7中所示的实施例在基站处使用三个天线705和三个客户端设备706-608,这导致了存储在基站700处的3×3信道特征矩阵741。客户端设备可以将图7中所示的MIMO上行传输用于将数据传送回基站700和将信道特征向量传送回基站700两者,如图5中所示。但是和图5中所示的实施例不同的是,在图5中,每个客户端设备的信道特征向量以分开的时间进行传输,而图7中所示的方法允许从多个客户端设备同时将信道特征向量传输回基站700,从而大大降低信道特征向量对回程信道吞吐量的影响。
如上所述,每个信号的特征可以包括很多因素,包括例如相对于接收器内部的基准信号的相位和振幅、绝对基准信号、相对基准信号、特征噪声或其他因素。例如,在正交幅度调制(“QAM”)调制的信号中,所述特征可以是信号的若干多径映像的相位与振幅偏移的向量。又如,在正交频分多路复用(“OFDM”)调制的信号中,它可以是OFDM频谱中几个或所有单个分量信号(sub-signal)的相位与振幅偏移的向量。训练信号可由每个客户端设备的编码和调制子系统711生成,被D/A转换器(未示出)转换成模拟信号,并随后由每个客户端设备的发射器709从基带信号转换成RF信号。在一个实施例中,为了确保使训练信号同步,客户端设备仅在基站请求时传送训练信号(例如,以循环(round robin)的方式)。此外,可以在从每个客户端设备发送来的实际数据信号中对训练信号进行交织,或者训练信号可以和所述实际数据信号同时传输。因此,即使客户端设备706-708是移动的,上游信道特征逻辑单元741也可以连续地传输和分析该训练信号,从而确保信道特征矩阵741保持最新。
可将本发明的前述实施例所支持的总信道带宽定义为min(N,M),其中N是客户端设备的数量,M是基站天线的数量。也就是说,容量由基站侧或客户端侧的天线数量所限定。鉴于此,本发明的一个实施例使用同步技术来确保在给定时间内不超过min(N,M)个天线在发射/接收。
在典型的情形下,基站700上的天线705的数量将少于客户端设备706-708的数量。图8示出了示例性的情形,其允许五个客户端设备804-808与具有三个天线802的基站进行通信。在该实施例中,在确定客户端设备804-808的总数量并且收集必要的信道特征信息(例如,如上所述)之后,基站800选择第一组与其进行通信的三个客户端810(因为min(N,M)=3,所以在该例子中是三个客户端)。在与第一组客户端810通信了指定的一段时间之后,基站就选择另一组与其通信的三个客户端811。为了均匀分配通信信道,基站800选择没有包含在第一组中的两个客户端设备807、808。此外,由于额外的天线是可用的,基站800就选择包含在第一组中的额外的客户端设备806。在一个实施例中,基站800以该方式在多组客户端之间循环,使得随时间推移为每个客户端有效分配相同量的带宽。例如,为了均匀地分配带宽,基站可以接着选择除客户端设备806之外的三个客户端设备的任何组合(即,由于客户端设备806在开始的两个循环中参与了与基站的通信)。
在一个实施例中,除了标准数据通信之外,基站还可以使用前述技术来将训练信号传送到客户端设备中的每一者,并且从客户端设备中的每一者接收训练信号和信号特征数据。
在一个实施例中,某些客户端设备或客户端设备组可以分配到不同水平的带宽。例如,可以把客户端设备区分优先次序,使得可以确保相对较高优先级的客户端设备比相对较低优先级的客户端设备有更多的通信周期(即,更多的带宽)。基于多个变量,可以对客户端设备的“优先级”进行选择,所述变量包括(例如)用户的对无线服务的预订费(例如,用户可能愿意为额外的带宽付出更多),和/或正通信至/自客户端设备的数据类型(例如,实时通信诸如电话语音和视频可能获得高于非实时通信诸如电子邮件的优先级)。
在一个实施例中,其中基于每个客户端设备要求的当前负载,基站动态地分配带宽。例如,如果客户端设备804正在直播视频流,而其他设备805-808正在执行诸如电子邮件的非实时功能,那么基站800可以给该客户端804分配相对较多的带宽。然而,应当注意的是,本发明的基本原理不限于任何特定的带宽分配技术。
如图9中所示,两个客户端设备907、908可以非常接近,使得所述客户端的信道特征实际上是相同的。结果是,基站将接收和存储两个客户端设备907、908的实际上相等的信道特征向量,因此这将不能创建对于每个客户端设备唯一的、空间分布的信号。因此,在一个实施例中,基站将确保相互距离非常接近的任何两个或更多个客户端设备被分配给不同的组。例如,在图9中,基站900首先与客户端设备904、905和908的第一组910通信;随后与客户端设备905、906、907的第二组911通信,从而确保客户端设备907和908在不同的组中。
作为另外一种选择,在一个实施例中,基站900同时与客户端设备907和908两者通信,但是使用已知的信道多路复用技术来对通信信道进行多路复用。例如,基站可以使用时分多路复用(“TDM”)、频分多路复用(“FDM”)或码分多址(“CDMA”)技术来分开客户端设备907和908之间单个的、空间相关的信号。
尽管上述每个客户端设备配备有单个天线,但可以通过使用具有多个天线的客户端设备来实现本发明的基本原理以提高吞吐量。例如,当用在上述的无线系统上时,具有2个天线的客户端将实现2倍的吞吐量提升,具有3个天线的客户端将实现3倍的吞吐量提升,等等(即,假设天线之间的空间和角度分离是足够的)。当通过具有多个天线的客户端设备循环的时候,基站可以应用同样的一般规则。例如,其可以将每个天线看作分开的客户端,并将带宽分配给该“客户端”,就如同它是任何其他客户端一样(例如,确保每个客户端提供有足够或相当的通信周期)。
如上所述,本发明的一个实施例利用上述MIDO和/或MIMO信号传输技术来增加近垂直入射天波(“NVIS”)系统内的信噪比和传输带宽。参见图10,在本发明的一个实施例中,配备有N个天线1002的矩阵的第一NVIS站1001被配置为与M个客户端设备1004进行通信。所述NVIS天线1002和各种客户端设备1004的天线以和垂直方向约成15度以内的角度将信号上行传送以获得想要的NVIS并且将地面波干扰效应降到最低。在一个实施例中,天线1002和客户端设备1004使用上述各种MIDO和MIMO技术在NVIS频谱内的指定频率下(例如,在等于或低于23MHz,但通常低于10MHz的载波频率下)支持多个独立的数据流1006,从而显著提高了在指定频率下的带宽(即,以和统计独立的数据流的数量成正比)。
服务于给定站点的所述NVIS天线相互之间可以有很远的物理距离。考虑到低于10MHz的长波长和信号行进的长距离(多达300英里的往返距离),几百码、甚至是几英里的天线物理间隔能够在分集上提供益处。在此类条件下,单独的天线信号可以被收回到集中位置,以便用常规的有线或无线通信系统对其进行处理。作为另外一种选择,每个天线可以具有本地设施来处理其信号,然后使用常规的有线或无线通信系统来将该数据传输回集中位置。在本发明的一个实施例中,NVIS基站1001具有到互联网1010(或其他广域网)的宽带链路1015,从而为客户端设备1003提供远程、高速的无线网络访问。
如上所述,本发明的一个实施例采用上述MIDO和/或MIMO信号传输技术(此前统称为“DIDO”)以增加对流层散射系统内的信噪比和传输带宽。参见图11,在本发明的一个实施例中,配备有N个天线1102的矩阵的第一对流层散射站1101被配置为与M个客户端设备1104通信。(出于示例性目的,在图11中放大向上的发射角。现有技术图12中示出了对流层散射传输的更典型低角度。)各种客户端设备1104的天线通过对流层散射将信号传输回来,并且所述信号由基站天线1102接收。
对流层散射基站天线1102对准向上的角度,使得发射的一部分从对流层散射并反射回来,以命中M个客户端设备1104所在的目标区域。计算具体天线仰角并且优化对流层散射的天线是本领域技术人员熟知的,并且存在多个进行此类计算的在线计算器。例如,一个此类计算器可从http://home.planet.nl/~alphe078/propagat1.htm下载。该特定对流层散射计算器的输入参数包括发射和接收天线之间的距离、发射频率、天线高度、输出功率、站点噪声特性、障碍物距离/高度、天线增益和带宽。
目前美国军方使用的示例性现有技术对流层散射无线电终端(即收发器和天线)是AN/TRC-170V3对流层微波无线电终端。该系统具有100英里的标称发射范围。此类系统通常发射小于1Mbps。更新的对流层散射调制解调器例如General Dynamics和Radyne Corporation TM-20调制解调器可实现最高达20Mbps。但是在给定信道内,两个系统只可通过单个数据流实现此类数据速率。
在一个实施例中,天线1102和客户端设备1104使用本文所述的各种DIDO技术在对流层散射频谱内的指定频率下(如,在低于50MHz至高于10GHz的载波频率下)支持多个独立的数据流1106。这些DIDO技术包括但不限于训练信号的发射、信道向量的特征化以及传输回到信道向量的对流层散射基站1101,以便形成信道矩阵。
由给定对流层散射基站1101服务的对流层散射天线可彼此靠近(如近至λ/6)或物理上彼此远离(数十或数百英里)和/或它们可群集成组。因此,如本文所用,术语“对流层散射基站1101”是指通用信道矩阵计算系统,类似于图2的基站200,但其中发射天线1102实际上可远离给定站点分布。具体构造将取决于所需的覆盖区域,避免地形中的障碍物的需要,以及如有必要,实现更多分集和/或发射天线之间的更宽角度的需要。如先前所述,通过利用发送训练信号后来自客户端设备的信道状态信息反馈,DIDO基站将生成从其天线1102发射的信号的组合,使得客户端设备将接收独立的信号。并且,当客户端设备1104传输回到基站天线1102时,基站将使用由客户端设备训练信号确定的信道状态信息。
因为对流层散射在很大程度上保留偏振,所以2D和3D偏振可与天线1102和1104配合使用以实现另外的分集。
在本发明的一个实施例中,对流层散射站1101具有与互联网1110(或其他广域网)的宽带链路1115,从而为客户端设备1103提供远程、高速的无线网络访问。
如果对流层散射基站天线1102和客户端设备天线1104各自具有对流层至共用空间1121的视线(LOS)视野,则工作状态最佳。共用空间1121是对流层中对流层散射将引起发射信号中的一些反射回到地面的区域。通常,大多数发射信号将穿过对流层,如1120所指示的那样。以天线之间极窄角度的经过长距离的完全LOS传输可导致分集变差。这可通过将基站天线1102分开较大距离来缓解,但对流层本身的散射效应也可形成分集。
虽然在安装基站天线1102时可规划通向共用空间1121的LOS路径,但更困难的是保证客户端设备天线1104具有共用空间1121的LOS视野。具体地讲,共用空间1121通常将在天空中成低角度。例如,如果消费者希望将客户端设备天线1104置于其房子的窗户中,或其房子的屋顶,即使天线可具有天空的一部分的视野,但是具有包含共用空间1121的天空的特定部分的视野可能有困难。
此问题可通过使多个对流层散射基站天线1102从各个方向发射在覆盖区域上来缓解。图13中示出了一个此类构造的顶视图(“俯视图”)。对流层散射基站1301具有与对流层散射基站1101相同的功能,但其天线有意地远离天线群集1341-1344分布。对准天线群集1341-1344使得其发射从对流层反射回共用地面覆盖区域1360。该覆盖区域可以是城镇、城市、农村区域或勘测中的无人区。该覆盖区域也可以是水体上的区域。天线群集1341发射RF发射1330,其在共用空间1321中散射,然后以RF反射1331反射回地球进入覆盖区域1360,在该区域中该RF传输随后通过一个或多个客户端天线1361-1363接收于覆盖区域1360中。同时,天线群集1342-1344发射分别在共用空间1322-1324中散射的RF,然后RF反射回地球进入覆盖区域1360,在该区域中该RF随后被一个或多个客户端天线1361-1363接收。并且,一个或多个客户端天线1361-1363通过共用空间1321-1324传输回天线群集1341-1344作为返回路径。
一些或所有客户端天线1361-1363可不具有查看所有共用空间1321-1324的天空的LOS视野。但只要每个客户端天线1361-1363可查看至少一个共用空间1321-1324,那么其就能够与对流层散射基站1301通信。明显地,在覆盖区域1360周围建立的天线群集1341-1344越多,客户端天线1361不能查看至少一个共用空间1321-1324的可能性就越小。
对流层散射基站1101通过通信链路1351-1354与天线群集1341-1344通信。这些通信链路1351-1354可通过各种方式在物理上实现,包括光纤、租用通信线路(例如DS3线路),或它们可通过无线通信实现。事实上,通信链路1351-1354可使用对流层散射通信实现。
由于通信链路1351-1354所需的长距离,在本发明的优选实施例中,天线群集1341-1344中的每一者均具有其自身的本地RF收发器,该收发器由对流层散射基站1301精确地按照要同步生成的RF信号来引导,使得所有天线群集1341-1344作为单个DIDO系统以协调的方式工作。
在可供选择的实施例中,每个天线群集1341-1344将具有其自身的基站1301,并且将独立于其他天线群集1341-1344工作。在这种情况下,每个天线群集可以不同的频率发射,以避免干扰其他群集,或可将定向天线用于客户端天线1361-1363,以便阻隔来自除信号天线群集1341-1344之外的所有天线群集的发射。
图13中示出的系统的可供选择的实施例在图16和图17a-图17c中示出。为简洁起见,图16和图17a-图17c中未示出图13的通信链路以及基站和共用空间,但此类部件仍然存在,并且如先前所述实施。
图16示出了12个群集1611-1643围绕的覆盖区域1360的顶视图(俯视图),每个群集具有3个天线1651-1653,共36个天线。所有这些天线均对准,使得当它们从其相应的共用空间散射时,反射RF到达覆盖区域1360。覆盖区域1360具有多个客户端天线,其中示出了3个1361-1363。图16还指示了示意图的北/南/东/西方向。
图17a-图17c将覆盖区域1360中的3个客户端天线1361-1363示意性地示出为天线1701。图17a示出了从南面查看的天线1701的正视图;图17b示出了从西面查看的天线1701的正视图;以及图17c示出了从上方查看的天线1701的顶视图(俯视图)。需注意,天线1701的示意图在正视图中将它们显示为三角形,在顶视图中显示为正方形,但它们是相同的天线。天线可为多个现有技术天线形状中的任何形状。另外,除排列成行之外,3个天线可位于相对于彼此的多个不同位置,包括相隔数英里。并且最后,在一个实施例中,在给定覆盖区域中部署远远超过3个天线。
图17a-图17c示出了图16中来自各种天线的RF波束如何以各种角度到达天线1701。例如,天线群集1613的发射以角度1713到达,1612的发射以角度1712到达,并且1611的发射以角度1711到达。这是由于以下事实:天线群集1613-1615从覆盖区域1360进一步连续定位,但均旨在向下反射到覆盖区域1360,从而得到各种到达角。同样,天线群集1631-1633的发射分别以角度1731-1733到达;群集1621-1623分别以角度1721-1723到达;并且群集1641-1643分别以角度1741-1743到达。
另外,图17c中可以看出来自在图16的北、南、东和西的天线群集的每一组的发射从其相应的方向到达,并且进一步地天线群集1611的3个天线1651-1653分别以角度1751-1753到达。并且其余的单独天线(未编号)均以不同的角度到达。
图17a-图17c中示出的各种到达角的全部均得到显著的角分集。此类分集可使用本文所述的现有技术的MIMO技术或DIDO技术或其他空间多路复用技术加以利用,以实现总体信道带宽和SNR的显著改善。另外,如果一些到达角难以到达一些天线1701,则通过如此多的到达角,至少一些RF到达角将到达每个天线具有很高的概率。
当天线1701传输回到各种天线群集1611-1643时,该相同分集可用于返回路径。在一个实施例中,天线1701中的一些或全部可为定向的,并且仅使用某些发射和接收角。这可用于增加信号的增益(如使用碟型天线),或可用于将返回路径传输限制到某些角度,以避免干扰使用相似频率的其他接收器。
一个用于对流层通信的所需频率范围是12GHz以上。一些12GHz频带目前在美国用于直播卫星(DBS)通信。通常,DBS无线电信号从地球同步卫星发射,并且消费者将碟型天线安装在其房子的顶部(或碟型天线指向所需卫星的方向上具有南方天空视野的某处)。卫星信号以图14的角度1410接收,然后被碟型天线1401收集,并且反射到天线和高频头(LNB)1402。一些卫星碟型天线1401被构造为接收来自2个或3个角度的卫星信号,并将它们反射至多个LNB 1402。除了此目的,12GHz频带大部分未用于美国。由于高频率12GHz易于被各种地面物体(如树叶)吸收,因此难以用于除LOS应用之外的应用。
在本发明的一个实施例中,上述以及图11和13中示出的DIDO对流层散射系统在相同的频率下用作DBS卫星传输1410,但基站天线(1102或1341-1344)的定位和角度使得从共用空间1121或1321-1324的RF反射的角度使其不被卫星碟型天线1401反射至其LNB 1402中。这可通过将基站天线1102或1341-1344置于这样的角度实现:使其不再以与卫星信号1410相同的方向发射(如总是从北方发射,因为所有地球同步卫星均从南方发射),或选择发射的仰角使得回到地面的RF反射1420反弹离开LNB1402。
必须注意从客户端天线1104或1361-1363至基站的返回路径传输,使它们不干扰LNB 1402。这可通过使用类似于用于接收卫星信号的碟型天线1401的定向返回路径天线来实现。
在可供选择的实施例中,刚刚所述的12GHz对流层散射方法不仅适用于DIDO系统,还可用于无返回路径或空间多路复用的单向常规广播。在这种情况下,每个客户端接收器将接收相同的信号。
在可供选择的实施例中,常规双向MIMO技术与对流层散射通信一起使用,如图15中所示。在该实施例中,基站1101和客户端站1102二者具有多个天线,并且在训练后每个接收器创建完整的H矩阵,然后对该矩阵求逆,并且乘以从多个天线接收的数据。常规MIMO系统的配置在图1中示出。
本发明的实施例可包括如上所示的各种步骤。所述步骤可体现为使通用或专用处理器执行某些步骤的机器可执行指令。例如,上述基站和客户端设备内的各种部件可实现为在通用或专用处理器上执行的软件。为避免混淆本发明的相关方面,图中不列出各种熟知的个人计算机部件,例如计算机存储器、硬盘驱动器、输入设备等。
作为另外一种选择,在一个实施例中,本文示出的各种功能模块和相关步骤可通过包含用于执行步骤的硬连线逻辑的特定硬件部件,例如专用集成电路(“ASIC”),或通过编程计算机部件和定制硬件部件的任何组合执行。
在一个实施例中,某些模块,例如上述编码、调制和信号处理逻辑单元603可在可编程的数字信号处理器(“DSP”)(或DSP组)例如使用美国德州仪器公司(Texas Instruments)的TMS320x架构的DSP(例如,TMS320C6000、TMS320C5000、……等)上实现。该实施例中的DSP可嵌入在个人计算机的附加卡(诸如PCI卡)内。当然,可使用多种不同的DSP架构,同时仍符合本发明的基本原理。
本发明的元件也可以作为用于存储机器可执行指令的机器可读介质提供。机器可读介质可包括但不限于闪存存储器、光盘、CD-ROM、DVDROM、RAM、EPROM、EEPROM、磁卡或光卡、传播介质或适于存储电子指令的其他类型的机器可读介质。例如,本发明可下载为计算机程序,所述计算机程序可以数据信号的方式从远程计算机(例如,服务器)经由通信链路(例如,调制解调器或网络连接)转移至请求计算机(例如,客户端),所述数据信号体现为载波或其他传播介质。
在整个前述说明书中,出于解释目的,示出了许多具体细节,以提供对本发明系统和方法的深入理解。然而,对于本领域技术人员显而易见的是,所述系统和方法可在没有这些具体细节中的一些的情况下实施。因此,本发明的范围和实质应以如下权利要求书判断。
用于分布式天线无线通信的系统和方法
相关申请
本专利申请是以下共同待审的美国专利申请的部分继续申请:
2008年6月20日提交的名称为“System and Method For DistributedInput-Distributed Output Wireless Communications”(用于分布式输入-分布式输出无线通信的系统和方法)的美国专利申请序列号12/143,503;
2007年8月20日提交的名称为“System and Method for DistributedInput Distributed Output Wireless Communications”(用于分布式输入分布式输出无线通信的系统和方法)的美国专利申请序列号11/894,394;
2007年8月20日提交的名称为“System and method for DistributedInput-Distributed Wireless Communications”(用于分布式输入-分布式无线通信的系统和方法)的美国专利申请序列号11/894,362;
2007年8月20日提交的名称为“System and Method For DistributedInput-Distributed Output Wireless Communications”(用于分布式输入-分布式输出无线通信的系统和方法)的美国专利申请序列号11/894,540;
2005年10月21日提交的名称为“System and Method For Spatial-Multiplexed Tropospheric Scatter Communications”(用于空间多路复用对流层散射通信的系统和方法)的美国专利申请序列号11/256,478;
2004年4月2日提交的名称为“System and Method For Enhancing NearVertical Incidence Skywave(“NVIS”)Communication Using Space-TimeCoding”(用于使用空时编码来增强近垂直入射天波(“NVIS”)通信的系统和方法)的美国专利申请序列号10/817,731。
背景技术
现有技术的多用户无线系统可包括仅单个基站或若干个基站。
在不存在其他WiFi接入点(例如,连接到农村用户家中的DSL的WiFi接入点)的区域内连接到宽带有线互联网连接的单个WiFi基站(例如,利用2.4GHz 802.11b、g或n协议)是由在其发射范围内的一个或多个用户共享的单个基站的相对简单的多用户无线系统的示例。如果用户与无线接入点处于同一个房间中,则该用户通常将体验到几乎没有传输中断的高速链路(例如,可能由于2.4GHz干扰器(如,微波炉)而存在数据包丢失,但不会由于与其他WiFi装置的频谱共享而存在数据包丢失),如果用户为中等距离远或在用户与WiFi接入点之间的路径中有几处障碍,则用户将可能体验到中速链路。如果用户正在接近WiFi接入点的范围的边缘,则该用户将可能体验到低速链路,并且如果信道的变化导致信号SNR降到低于可用的水平,则用户可能经受周期性中断(drop-out)。并且最终,如果用户在WiFi基站的范围之外,则用户将完全没有链路。
当多个用户同时接入WiFi基站时,则在其间共享可用数据吞吐量。不同用户通常将在给定时间对WiFi基站提出不同吞吐量需求,但有时当聚集吞吐量需求超过从WiFi基站到用户的可用吞吐量时,则一些或所有用户将接收比其正寻求的数据吞吐量少的数据吞吐量。在WiFi接入点在非常大量的用户之间共享的极端情形中,到每一用户的吞吐量可减慢到蠕动速度,且更糟的是,到每一用户的数据吞吐量可按由完全没有数据吞吐量的长周期分开的短脉冲到达,在所述长周期时间期间为其他用户服务。该“断断续续的”数据传送可能损害类似媒体流的某些应用。
在具有大量用户的情形中添加额外的WiFi基站将仅在一定程度上有帮助。在美国的2.4GHz ISM频带内,存在可用于WiFi的3个非干扰信道,且如果在相同覆盖区域中的3个WiFi基站被配置为各自使用不同的非干扰信道,则在多个用户之间的覆盖区域的聚集吞吐量将增加最多至3倍。但除此之外,在相同覆盖区域中添加更多WiFi基站将不增加聚集吞吐量,因为它们将开始在其间共享相同的可用频谱,从而通过“轮流”使用该频谱而有效地利用时分多路复用接入(TDMA)。此情形常见于具有高人口密度的覆盖区域中(诸如,多住宅单元中)。例如,在具有WiFi适配器的大公寓建筑物中的用户可能归因于服务于同一覆盖区域中的其他用户的许多其他干扰WiFi网络(例如,在其他公寓中)而显著地经历非常差的吞吐量,即便用户的接入点在与接入基站的客户端设备相同的房间中也是如此。虽然链路质量可能在所述情形中是良好的,但用户将会接收来自在同一频带中工作的相邻WiFi适配器的干扰,从而减少到用户的有效吞吐量。
当前的多用户无线系统(包括未授权频谱(诸如WiFi)和授权频谱两者)遭受若干限制。这些限制包括覆盖区域、下行链路(DL)数据速率以及上行链路(UL)数据速率。下一代无线系统(诸如WiMAX和LTE)的关键目标是经由多输入多输出(MIMO)技术改良覆盖区域以及DL和UL数据速率。MIMO在无线链路的发射和接收侧使用多个天线以改善链路质量(产生较宽覆盖)或数据速率(通过创建到每一用户的多个非干扰空间信道)。然而,如果足够的数据速率可用于每一用户(注意,术语“用户”和“客户端”在本文中可互换地使用),则可能需要根据多用户MIMO(MU-MIMO)技术[20-27]利用信道空间分集来创建到多个用户(而非单个用户)的非干扰信道。例如,在10MHz带宽、16-QAM调制且具有3/4速率的前向纠错(FEC)编码(产生3bps/Hz的频谱效率)的MIMO 4×4系统(即,四个发射天线和四个接收天线)中,对于每一用户在物理层处可实现的理想峰值数据速率为4×30Mbps=120Mbps,其比传送高清晰度视频内容(其可能仅需要约10Mbps)所需的速率高得多。在具有四个发射天线、四个用户以及每一用户单个天线的MU-MIMO系统中,在理想情形(即,独立且恒等分布的(i.i.d.)信道)中,下行链路数据速率可在四个用户中共享且可利用信道空间分集以创建到用户的四个平行30Mbps数据链路。
已提议不同MU-MIMO方案作为LTE标准[1-3]的一部分,但它们仅可通过四个发射天线提供DL数据速率方面的最多至2倍的改进。由类似爱瑞通信(ArrayComm)[4]的公司在标准及专属蜂窝式系统中对MU-MIMO技术的实际实施已经由空分多址(SDMA)产生DL数据速率方面的最多至约3倍的增加(通过四个发射天线)。蜂窝式网络中的MU-MIMO方案的关键限制是在发射侧处缺乏空间分集。空间分集随无线链路中的天线间距和多路径角展度而变。在使用MU-MIMO技术的蜂窝式系统中,基站处的发射天线通常归因于天线支撑结构(本文中称为“塔”,不论物理上是高还是不高)上的有限占地面积并归因于塔可位于何处的限制而群集在一起并仅相隔一个或两个波长而放置。此外,因为小区塔通常放置在障碍物之上很高处(10米或更多)以产生较宽覆盖,所以多路径角展度较低。
蜂窝式系统部署的其他实际问题包括蜂窝式天线位置的过多成本及位置的有限可用性(例如,归因于对天线放置的市政限制、不动产的成本、物理障碍物等)以及到发射器的网络连接(本文中称为“回程”)的成本和/或可用性。此外,蜂窝式系统通常归因于由于墙壁、天花板、地板、家具和其他阻碍的损耗而难以到达位于建筑物深处的客户端。
的确,广域无线网络的蜂窝式结构的整个概念预先假定了蜂窝式塔的相当固定的放置、相邻小区之间的频率的交替,以及频繁地扇区化,以便避免使用同一频率的发射器(基站或用户)之间的干扰。因此,给定小区的给定扇区最终成为所述小区扇区中的所有用户之间的DL和UL频谱的共享块,接着主要仅在时域中在这些用户之间共享所述DL和UL频谱。例如,基于时分多址(TDMA)和码分多址(CDMA)的蜂窝式系统两者均在时域中在用户之间共享频谱。通过用扇区化覆盖此类蜂窝式系统,也许能够实现2-3倍的空间域益处。并且,接着通过用MU-MIMO系统(诸如先前描述的那些)覆盖此类蜂窝式系统,也许能够实现另外的2-3倍空间-时间域益处。但是,考虑到蜂窝式系统的小区和扇区通常在固定位置(常由可放置塔的位置指定)中,如果在给定时间用户密度(或数据速率需求)不与塔/扇区放置很好地匹配,则甚至这些有限益处也难以利用。蜂窝式智能电话用户通常经历下述结果:今天用户可能完全无任何问题地在电话中交谈或下载网页,且接着在行驶(或甚至步行)到一个新位置之后将突然发现语音质量降低或网页减缓到蠕动速度,或甚至完全丢失连接。但是,在不同日子,用户可在每一位置中遭遇完全相反的情况。假定环境条件相同,用户可能正在经历的情况是用户密度(或数据速率需求)为高度变化的,但待在给定位置处在用户之间共享的可用总频谱(且因此总数据速率,使用现有技术的技术)很大程度上固定的事实。
此外,现有技术蜂窝式系统依赖在不同的相邻小区中使用不同频率,通常3个不同频率。对于给定频谱量,此将可用数据速率减少到三分之一。
所以,总而言之,现有技术的蜂窝式系统可归因于蜂窝化而丢失也许3倍的频谱利用,并且可通过扇区化提升频谱利用也许3倍并经由MU-MIMO技术再提升也许3倍,从而产生净3*3/3=3倍的可能频谱利用。接着,所述带宽通常基于用户在给定时间属于何小区的何扇区而在时域中在用户之间分割。甚至进一步存在归因于给定用户的数据速率需求通常无关于用户的位置但可用数据速率视用户与基站之间的链路质量而变化的事实而导致的低效率。例如,距蜂窝式基站更远的用户通常将具有比更接近基站的用户小的可用数据速率。因为数据速率通常在给定蜂窝式扇区中的所有用户之间共享,所以此情况的结果是所有用户均受来自具有差链路质量的远方用户(例如,在小区的边缘)的高数据速率需求影响,因为这些用户仍将需求相同量的数据速率,然而他们将消耗更多的共享频谱才能得到所述数据速率。
其他提议的频谱共享系统(诸如由WiFi使用的频谱共享系统(例如802.11b、g和n)和由白空间联盟(White Spaces Coalition)提议的那些系统)非常低效地共享频谱,因为由在用户的范围内的基站进行的同时发射导致干扰,且因而系统利用冲突避免和共享协议。这些频谱共享协议在时域内,且因此当存在大量的干扰基站和用户时,不论每个基站自身在频谱利用方面效率如何,基站集体地受限于彼此之间的频谱的时域共享。其他现有技术频谱共享系统类似地依赖类似方法以减轻基站(无论是具有在塔上的天线的蜂窝式基站还是小规模基站,诸如WiFi接入点(AP))之间的干扰。这些方法包括:限制来自基站的发射功率以便限制干扰的范围;波束成形(经由合成或物理方式)以使干扰的区域变窄;频谱的时域多路复用;以及/或者在用户设备、基站或两者上具有多个群集天线的MU-MIMO技术。并且,就现今已安排好或在规划中的高级蜂窝式网络而言,经常同时使用这些技术中的许多技术。
但是,通过与单个用户利用频谱相比甚至高级蜂窝式系统也仅可实现频谱利用的约3倍增加的事实显而易见的是,所有这些技术对增大给定覆盖区域中的共享用户之间的聚集数据速率成效不彰。具体而言,当给定覆盖区域在用户方面缩放时,变得越来越难以在给定频谱量内缩放可用数据速率以跟上用户的增长。例如,在使用蜂窝式系统的情况下,为了增大给定区域内的聚集数据速率,小区通常被细分成较小小区(通常称为微型小区(nano-cell)或超微型小区(femto-cell))。考虑到对塔可放置于何处的限制,以及对塔必须以适当结构化样式放置以便提供具有最小“死区”的覆盖,然而避免使用同一频率的邻近小区之间的干扰的要求,这些小的小区可能变得极端昂贵。实质上,覆盖区域必须被绘出,用于放置塔或基站的可用位置必须经识别,且接着考虑到这些约束条件,蜂窝式系统的设计者必须尽其最大努力设法完成。并且,当然,如果用户数据速率需求随时间而增长,则蜂窝式系统的设计者必须再一次重新绘制覆盖区域,设法找到塔或基站的位置,并再次在环境的约束条件内工作。并且,常常根本没有好的解决方案,从而导致覆盖区域中的死区或不充足的聚集数据速率容量。换言之,为了避免利用同一频率的塔或基站之间的干扰的对蜂窝式系统的严格物理放置要求导致蜂窝式系统设计中的显著困难和约束条件,且常常不能满足用户数据速率和覆盖要求。
所谓的现有技术“协作式”和“认知式”无线电系统设法通过在无线电内使用智能算法以使得无线电能够最小化彼此之间的干扰并且/或者使得无线电能够潜在地“收听”其他频谱使用以便等到信道无干扰为止来增加给定区域中的频谱利用。此类系统被提议以尤其用于未授权频谱中以便增加对此频谱的频谱利用。
移动自组网络(MANET)(参见http://en.wikipedia.org/wiki/ Mobile_ad_hoc_network)为旨在用于提供对等通信的协作式自配置网络的实例,且可用于在没有蜂窝式基础结构的情况下在无线电之间创建通信,且在具有充分低功率通信的情况下可潜在地减轻在彼此范围之外的同时发射之间的干扰。针对MANET系统已提议并实施了大量路由协议(对于各种类别的许多路由协议的列表,参见http://en.wikipedia.org/wiki/List_of_ad- hoc_routing_protocols),但它们之间的共同主题是它们都是为了达到特定效率或可靠性典范的目标的用于路由(例如,重复)发射以使得最小化在可用频谱内的发射器干扰的技术。
所有现有技术的多用户无线系统均设法通过利用允许在基站与多个用户之间的同时频谱利用的技术而改良给定覆盖区域内的频谱利用。注意,在所有这些状况下,用于在基站与多个用户之间的同时频谱利用的技术通过减轻到多个用户的波形之间的干扰而实现多个用户的同时频谱使用。例如,在3个基站各自使用不同的频率来发射到3个用户中的一者的情况下,因为3个发射是在3个不同的频率下,所以其中干扰被减轻。在从基站到3个不同用户的扇区化(相对于基站,每一者相隔180度)的情况下,因为波束成形防止3个发射在任一用户处重叠,所以干扰被减轻。
当此类技术通过MU-MIMO强化,并且(例如)每个基站具有4个天线时,则此通过创建到给定覆盖区域中的用户的四个非干扰空间信道而具有将下行链路吞吐量增加4倍的潜力。但情况仍是必须利用一些技术以减轻到不同覆盖区域中的多个用户的多个同时发射之间的干扰。
并且,如先前所述,这些现有技术的技术(例如,蜂窝化、扇区化)不仅通常因增加多用户无线系统的成本和/或部署的灵活性而受损,而且其通常会遇上对给定覆盖区域中的聚集吞吐量的物理或实际限制。例如,在蜂窝式系统中,可能没有足够的可用位置来安装更多基站以创建更小的小区。并且,在MU-MIMO系统中,考虑到在每个基站位置处的群集天线间距,随着更多天线被添加到基站,有限的空间分集导致吞吐量的渐近收益递减。
并且此外,在用户位置和密度不可预测的多用户无线系统的情况下,其导致不可预测的吞吐量(具有频繁急剧变化),这对于用户是不方便的且致使一些应用(例如,要求可预测吞吐量的服务的递送)不实际或低质量。因此,现有技术的多用户无线系统在其为用户提供可预测和/或高质量服务的能力方面仍有许多待改进之处。
尽管随时间推移现有技术的多用户无线系统已变得非常精密和复杂,但存在共同的主题:将发射分布于不同基站(或自组收发器)之间并且结构化和/或控制发射,以便避免来自不同基站和/或不同自组收发器的RF波形发射在给定用户的接收器处彼此干扰。
或者,换言之,被认为是已知的事实是如果用户碰巧同时接收到来自一个以上基站或自组收发器的发射,则来自多个同时发射的干扰将导致到用户的信号的SNR和/或带宽的减小,其(如果足够严重)将导致原本会由用户接收到的潜在数据(或模拟信息)中的全部或一些丢失。
因此,在多用户无线系统中,必须利用一个或多个频谱共享方法或另一方法来避免或减轻来自同时以同一频率发射的多个基站或自组收发器的对用户的这种干扰。存在避免这种干扰的大量现有技术方法,包括控制基站的物理位置(例如,蜂窝化),限制基站和/或自组收发器的功率输出(例如,限制发射范围),波束成形/扇区化,以及时域多路复用。简言之,所有这些频谱共享系统均设法处理多用户无线系统的限制,即:在同时以同一频率发射的多个基站和/或自组收发器由同一用户接收时,所得干扰减少或破坏到受影响用户的数据吞吐量。如果多用户无线系统中的用户中的大部分或全部经受来自多个基站和/或自组收发器的干扰(例如,在多用户无线系统的组件发生故障的情况下),则其可能导致多用户无线系统的聚集吞吐量急剧减少或甚至丧失功能的情形。
现有技术的多用户无线系统增加复杂度并对无线网络引入限制,且频繁地导致给定用户的体验(例如,可用带宽、延迟、可预测性、可靠性)受区域中的其他用户对频谱的利用影响的情形。考虑到对于由多个用户共享的无线频谱内的聚集带宽的渐增的需求,以及可依赖用于给定用户的多用户无线网络的可靠性、可预测性和低延迟的应用的不断增长,显然现有技术的多用户无线技术遭受许多限制。实际上,由于适用于特定类型的无线通信(例如,在可有效穿透建筑物墙壁的波长下)的频谱的有限可用性,可能的情况是现有技术的无线技术将不足以满足对于可靠、可预测和低延迟的带宽的渐增的需求。
所需要的是不遭受前述限制的多用户无线系统,所述限制为:
(a)在给定频谱量中聚集带宽方面的限制;
(b)针对给定用户缺乏可靠、可预测和低延迟的通信;
(c)一个用户对无线网络的使用负面地影响另一用户的使用;
(d)在形成多用户无线系统的收发器和/或天线的放置方面缺乏灵活性;
(e)缺乏允许收发器和/或天线由商业网络提供商或个人进行安装的灵活性;或者
(f)具体实施不切实际或代价高昂。
附图说明
由结合附图的以下详细描述可以获得对本发明的更好理解,在附图中:
图1示出了现有技术的MIMO系统。
图2示出了与多个单天线客户端设备进行通信的N天线基站。
图3示出了与三个单天线客户端设备进行通信的三天线基站。
图4示出了在本发明的一个实施例中采用的训练信号技术。
图5示出了根据本发明的一个实施例的从客户端设备发射至基站的信道特征数据。
图6示出了根据本发明的一个实施例的多输入分布式输出(“MIDO”)下行传输。
图7示出了根据本发明的一个实施例的多输入多输出(“MIMO”)上行传输。
图8示出了根据本发明的一个实施例的循环遍历不同客户端组以分配吞吐量的基站。
图9示出了根据本发明的一个实施例的基于接近度的客户端分组。
图10示出了本发明的在NVIS系统内使用的实施例。
图11示出了具有I/Q补偿功能单元的DIDO发射器的实施例。
图12示出了具有I/Q补偿功能单元的DIDO接收器。
图13示出了具有I/Q补偿的DIDO-OFDM系统的一个实施例。
图14示出了在具有和不具有I/Q补偿的情况下DIDO 2×2性能的一个实施例。
图15示出了在具有和不具有I/Q补偿的情况下DIDO 2×2性能的一个实施例。
图16示出了在具有和不具有I/Q补偿的情况下针对不同QAM星座图的SER(符号错误率)的一个实施例。
图17示出了在不同用户设备位置具有和不具有补偿的情况下DIDO 2×2性能的一个实施例。
图18示出了在理想(i.i.d.(独立且恒等分布的))信道中具有和不具有I/Q补偿的情况下SER的一个实施例。
图19示出了自适应DIDO系统的发射器框架的一个实施例。
图20示出了自适应DIDO系统的接收器框架的一个实施例。
图21示出了自适应DIDO-OFDM的方法的一个实施例。
图22示出了用于DIDO测量的天线布局的一个实施例。
图23示出了用于不同级别DIDO系统的阵列配置的实施例。
图24示出了不同级别DIDO系统的性能。
图25示出了用于DIDO测量的天线布局的一个实施例。
图26示出了具有4-QAM和1/2FEC率的DIDO 2×2性能随用户设备位置的变化关系的一个实施例。
图27示出了用于DIDO测量的天线布局的一个实施例。
图28示出了在一个实施例中DIDO 8×8如何产生比用于较低TX功率需求的DIDO 2×2更大的SE。
图29示出了在具有天线选择情况下的DIDO 2×2性能的一个实施例。
图30示出了不同DIDO预编码方案在i.i.d.信道中的平均误码率(BER)性能。
图31示出了ASel的信噪比(SNR)增益随i.i.d.信道中额外发射天线的数量的变化关系。
图32示出了在i.i.d.信道中具有1个和2个额外天线的情况下SNR阈值随用于块对角化(BD)和ASel的用户数量(M)的变化关系。
图33示出了针对位于相同角度方向且具有不同角度扩展(AS)值的两个用户的BER对每用户平均SNR的关系。
图34示出了与图33类似的结果,但用户之间具有更高的角距。
图35绘制了针对用户的平均到达角度(AOA)的不同值,SNR阈值随AS的变化关系。
图36示出了针对五个用户的示例性情况的SNR阈值。
图37针对两个用户的情况,提供了在具有1个和2个额外天线的情况下,BD的SNR阈值与ASel的比较。
图38示出了与图37类似的结果,但是针对五个用户的情况。
图39示出了针对具有不同AS值的BD方案的SNR阈值。
图40示出了对于具有1个和2个额外天线的BD和ASel,在具有AS=0.1°的空间相关信道中的SNR阈值。
图41示出了针对AS=5°的另外两个信道情形的SNR阈值的计算。
图42示出了针对AS=10°的另外两个信道情形的SNR阈值的计算。
图43-图44分别显示了在具有1个和2个额外天线的情况下,SNR阈值随用户数量(M)和BD和ASel方案的角度扩展(AS)的变化关系。
图45示出了配备有频率偏移估计器/补偿器的接收器。
图46示出了根据本发明的一个实施例的DIDO 2×2系统模型。
图47示出了根据本发明的一个实施例的方法。
图48示出了在具有和不具有频率偏移的情况下,DIDO 2×2系统的SER结果。
图49依据SNR阈值将不同DIDO方案的性能进行了比较。
图50将不同方法实施例所需的开销量进行了比较。
图51示出了在fmax=2Hz的小频率偏移且没有整数偏移校正的情况下的模拟。
图52示出了当关闭整数偏移估计器时的结果。
图53示出了单位为[bps/Hz]的下行链路频谱效率(SE)随单位为[bps/Hz]的交互信息的变化关系。
图54示出了平均每用户符号错误率(SER)性能随单位为[bps/Hz]的交互信息的变化关系。
图55示出了平均每用户SER性能随单位为[bps/Hz]的最小交互信息和用于在不同DIDO模式之间切换的阈值的变化关系。
图56示出了针对固定调制系统和自适应DIDO系统的平均每用户SER对SNR的关系。
图57示出了针对固定调制系统和自适应DIDO系统的下行链路SE对SNR的关系。
图58示出了针对具有不同阈值的自适应DIDO系统的平均每用户SER对SNR的关系。
图59示出了针对具有不同阈值的自适应DIDO系统的下行链路SE对SNR的关系。
图60示出了平均每用户SER性能随有效信道矩阵的最小奇异值和4-QAM星座图的CQI阈值的变化关系。
图61示出了收发器基站(DIDO天线)的环形拓扑结构的一个实施例。
图62示出了DIDO天线的另选布置的一个实施例。
图63示出了其中使用基站网络(BSN)来将预编码基带数据从集中式处理器(CP)传送至DIDO天线的一个实施例。
图64示出了其中使用BSN来运载调制信号的一个实施例。
图65示出了由完美同步的两个DIDO基站以及具有视距(LOS)信道的两个用户组成的一个实施例。
图66示出了使用Hata-Okumura模型获得的DIDO在85MHz和400MHz下的路径损耗。
图67示出了信道状态信息与数据发射之间的周期最大延迟随针对UHF频带中不同频率的发射器与接收器之间的相对速度的变化关系。
图68示出了DIDO系统中针对三个不同载波频率的传播效应。
图69示出了美国领土中当前被在航海频带中工作的收发器站覆盖的区域。颜色(从航海频带中可用的146个信道中)识别出活动信道的数目,所述活动信道将在任何位置处导致对DIDO-NVIS站的有害干扰。
图70示出了从1900年1月一直到2009年6月的太阳黑子数。
图71示出了WiMAX、LTE和NVIS系统的路径损耗。
图72示出了DIDO-NVIS发射器(TX)和接收器(RX)站的位置。
图73示出了DIDO-NVIS接收天线位置。“λ”表示3.9MHz下的波长(约77米)。
图74示出了在DIDO-NVIS链路上的三个用户的位置处解调的典型4-QAM星座图。
图75示出了SER随DIDO-NVIS 3×3的PU-SNR的变化关系。
图76示出了跨越美国48个相邻州的领土的DIDO-NVIS小区。
具体实施方式
1.DIDO系统描述
克服上述现有技术限制中的许多限制的一个解决方案是分布式输入分布式输出(DIDO)技术的一个实施例。DIDO技术在以下专利和专利申请中有所描述,所述专利和专利申请全部转让给本专利的受让人,并且以引用方式并入:
2007年8月20日提交、2009年10月6日公布的名称为“System andMethod for Distributed Input Distributed Output Wireless Communication”(用于分布式输入分布式输出无线通信的系统和方法)的美国专利No.7,599,420;
2008年6月20日提交的名称为“System and Method For DistributedInput-Distributed Output Wireless Communications”(用于分布式输入-分布式输出无线通信的系统和方法)的美国专利申请序列号12/143,503;
2007年8月20日提交的名称为“System and Method for DistributedInput Distributed Output Wireless Communications”(用于分布式输入分布式输出无线通信的系统和方法)的美国专利申请序列号11/894,394;
2007年8月20日提交的名称为“System and method for DistributedInput-Distributed Wireless Communications”(用于分布式输入-分布式无线通信的系统和方法)的美国专利申请序列号11/894,362;
2007年8月20日提交的名称为“System and Method For DistributedInput-Distributed Output Wireless Communications”(用于分布式输入-分布式输出无线通信的系统和方法)的美国专利申请序列号11/894,540;
2005年10月21日提交的名称为“System and Method For Spatial-Multiplexed Tropospheric Scatter Communications”(用于空间多路复用对流层散射通信的系统和方法)的美国专利申请序列号11/256,478;
2004年7月30日提交、2008年8月26日公布的名称为“System andMethod for Distributed Input Distributed Output Wireless Communication”(用于分布式输入分布式输出无线通信的系统和方法)的美国专利No.7,418,053;
2004年4月2日提交的名称为“System and Method For Enhancing NearVertical Incidence Skywave(”NVIS”)Communication Using Space-TimeCoding”(用于使用空时编码来增强近垂直入射天波(“NVIS”)通信的系统和方法)的美国专利申请序列号10/817,731。
上述专利申请在下文中称为“相关专利申请”。
DIDO系统在相关美国专利申请7,418,053中有所描述,其中图2中的同一DIDO基站的多个天线协同地工作,以预先消除干扰并创建到多个用户的并行非干扰数据流。具有或不具有本地发射器和/或接收器的这些天线可遍及广覆盖区域并经由有线或无线链路(包括诸如互联网的网络)互连至同一个DIDO基站。例如,如在相关美国专利7,418,053中在第6栏第31行处开始的段落中所公开,单个基站可具有相隔很远定位的天线,从而潜在地导致基站的天线阵列占据若干平方公里。并且,例如如在相关美国专利7,599,420中在第17栏第4行处开始的段落中,以及在美国专利申请序列号11/894,362和美国专利申请序列号11/894,540的段落中所公开,天线与单个DIDO基站的分离可物理地分隔数百码或甚至数英里,从而潜在地提供分集优势,并且每个天线装置的信号可要么在每个天线位置处进行本地处理,要么被送回到集中位置进行处理。此外,在相关的美国专利申请No.7,599,420、美国专利申请No.11/894,362以及美国专利申请No.11/894,540中描述了用于实际部署DIDO系统的方法,包括用广泛分布的DIDO天线来解决与处理信号相关联的实际问题。
近期的出版物[32,33]从理论上分析了在蜂窝式系统语境中的协作式基站的性能。在实施过程中,当这些协作式基站如在美国专利No.7,418,053、美国专利No.7,599,420、美国专利申请序列号11/894,362以及美国专利申请序列号11/894,540中所述经由无线、有线或光学网络(即,广域网、WAN主干网、路由器)彼此连接以共享预编码数据、控制信息和/或时间/频率同步信息时,它们充当如图2和图3中所示的单个DIDO基站的多个分布式天线。然而,在[32,33]中的系统中,多个基站(或同一DIDO基站的分布式天线)受到它们源于小区规划的物理放置的约束,如在常规的蜂窝式系统中。
DIDO系统相比现有技术系统的显著优点在于,DIDO系统使多个协作的分布式天线的分布成为可能,且不显著地限制所述分布式天线的物理放置,所述多个协作的分布式天线在同一个广覆盖区域中在同一时间全部使用相同的频率。与在给定的用户接收器处避免来自多个基站发射器的干扰的现有技术多用户系统相比,来自多个DIDO分布式天线的同时RF波形发射刻意地在每个用户的接收器处彼此干扰。所述干扰是在增强数据接收而不是损害数据接收的每个接收天线上入射的RF波形的精确控制的相长和相消干扰。此还实现了一个有价值的目标:其致使多个同时非干扰信道经由空时预编码技术到达用户,从而增加了给定覆盖区域中的聚集吞吐量、增加了到达给定用户的吞吐量,并且显著增加了到达给定用户的吞吐量的可靠性和可预测性。
因此,当使用DIDO时,多分布式天线RF波形发射干扰和用户信道干扰具有逆反关系:多分布式天线RF波形干扰导致同时的非干扰用户信道。
借助现有技术的多用户系统,多基站(和/或自组收发器)RF波形发射干扰和用户信道干扰具有直接关系:多基站(和/或自组收发器)RF波形干扰导致同时的干扰用户信道。
因此,DIDO为实现远优于现有技术系统的性能所利用和依赖的那些正是现有技术系统要避免的且对现有技术系统造成损害的那些。
并且,因为非干扰信道的数量(和聚集吞吐量)很大程度上随DIDO分布式天线的数量增加而成比例地增长(不同于MU-MIMO系统,其中聚集吞吐量随基站处群集天线的数量增加而渐进地呈平稳状态),所以给定覆盖区域的频谱利用可随着区域中用户数量的缩放而缩放,完全不需要通过频率或扇区对覆盖区域进行细分,并且不要求对放置DIDO分布式天线的显著限制。这导致频谱利用以及聚集用户下行链路(DL)和上行链路(UL)数据速率方面的效率极大提高,并使得商业或消费级基站安装具备极大的放置灵活性。
以此方式,DIDO通过专门实现现有技术系统曾被严谨地设计以避免出现的那些特定状态,而使多用户无线频谱效率的极大提高成为可能。
如图61-图62中所示,在一个实施例中,DIDO系统由以下部分构成:
·DIDO客户端6110:其为估计信道状态信息(CSI)、将CSI反馈到发射器并解调预编码数据的无线设备。每个用户通常具有一台DIDO客户端设备。
·DIDO分布式天线6113:其为将预编码数据发射到所有DIDO客户端的通过网络互连的无线设备。可使用各种各样的网络类型来互连分布式天线6113,包括但不限于局域网(LAN)、广域网(WAN)、互联网、商业光纤环路、无线网络、或它们的任何组合。在一个实施例中,为了将同时的独立信道提供给每个客户端,DIDO分布式天线的数量至少等于经由预编码对其提供服务的客户端的数量,从而避免了在客户端之间共享信道。可使用比客户端多的DIDO分布式天线经由发射分集技术改进链路可靠性,或者可将所述比客户端多的DIDO分布式天线与多天线客户端结合地使用以提高数据速率并且/或者改进链路可靠性。注意,如本文所用的“分布式天线”可能不仅仅是天线,而是指能够通过至少一个天线发射和/或接收的设备。例如,所述设备可将网络接口结合到DIDO BTS 6112(下文将进行描述)和收发器、以及附接到收发器的天线中。分布式天线6113是被DIDO BTS 6112用来实现DIDO多用户系统的天线。
·DIDO收发器基站(“BTS”或“基站”)6112:其基于从DIDO系统中的所有用户获得的CSI来计算预编码权重,并将预编码数据发送到DIDO分布式天线。BTS可连接到互联网、公用交换电话网(PSTN)或专用网络,以提供用户与此类网络之间的连接。例如,在客户端请求访问网页内容时,CP通过互联网获取数据并经由DIDO分布式天线将数据发射到客户端。
·DIDO基站网络(BSN)6111:DIDO技术的一个实施例使遍布于广大区域并通过网络互连的多个DIDO分布式天线之间能够实现精确控制的协作。在一个实施例中,用于互连DIDO分布式天线的网络为城域光纤环(优选地,其中DIDO分布式天线在方便的位置处连接到城域光纤环),其特征在于具有相对低的延迟和相当高的吞吐量(例如,到每个DIDO天线的吞吐量与可由该DIDO天线实现的无线吞吐量相当)。使用该光纤环在不同的基站之间共享控制信息和预编码数据。注意,可使用许多其他通信网络来代替城域光纤环,包括采用除环之外的不同拓扑结构的光纤网络、光纤到户(FFTH)、数字用户线路(DSL)、电缆调制解调器、无线链路、电力线上数据、以太网等。将DIDO分布式天线互连的通信网络可以很好地由不同网络技术的组合构成。例如,可将一些DIDO分布式天线连接到DSL、一些连接到光纤、一些连接到电缆调制解调器、一些连接在以太网上等。所述网络可以是专用网络、互联网、或其组合。因此,与消费级和商业WiFi基站通过多种网络技术在每个方便的位置处连接的现有技术非常类似,DIDO分布式天线也可能是这样。无论该网络采取何种形式,即无论其采用一致的技术还是多种技术,本文都将其称为基站网络或“BSN”。在BSN的一个实施例中,归因于现有光纤网络或DSL网络的分组交换性质,在BTS与DIDO分布式天线之间存在大约10毫秒至30毫秒的往返时间(RTT)延迟。该延迟的变化(即,抖动)为大约数毫秒。如果DIDO系统要求较低的延迟(即,<1毫秒)和抖动,则BSN可使用专用光纤链路来设计。取决于提供给不同DIDO客户端的服务的质量,可采用低延迟BSN和高延迟BSN的组合。
取决于将DIDO分布式天线6113互连的网络的布局,可在给定覆盖区域中使用一个或多个DIDO BTS。我们将DIDO小区定义为由一个DIDOBTS提供服务的覆盖区域。具有环形拓扑结构的一个实施例在图61中示出(点为DIDO客户端6110,并且十字形为DIDO分布式天线6113)。在更真实的情形中,BSN不具有如图61中那样的环形形状。实际上,DIDO分布式天线可随机地布置在DIDO小区内,在到BSN的连接为可用的和/或方便到达的任何地方,如图62中所示出。如果覆盖区域是一个城市,则在一个实施例中可设计多个DIDO小区(与多个DIDO BTS相关联)来覆盖整个城市。在该情况下,需要蜂窝式规划来将不同的频率信道分配给相邻DIDO小区以避免小区间干扰。作为另外一种选择,可将一个DIDO小区设计为以在DIDO BTS处具有更高的计算复杂度(例如,BTS即将处理来自同一DIDO小区中的所有用户的更多CSI数据)且在将DIDO分布式天线互连的网络上具有对更大吞吐量的要求为代价,来覆盖整个城市。
在本发明的一个实施例中,使用BSN 6111将预编码基带数据从BTS6112传送到DIDO分布式天线6113。如图63中所示,DIDO分布式天线6313包括无线电收发器6330,该无线电收发器6330配备有数模转换器(DAC)、模数转换器(ADC)、混频器并且耦合到(或包括)功率放大器6338。每个DIDO分布式天线通过BSN 6311(诸如光纤电缆6331)从BTS6312接收基带预编码数据6332、以载波频率调制信号并且通过天线6339经由无线链路将调制信号发射到客户端。如图63中所示,基准时钟生成器6333将基准时钟信号提供到无线电收发器。
在本发明的另一个实施例中,使用BSN如图64中所示运载调制信号,其中图64示出了采用射频光纤传输技术的DIDO系统的结构。例如,如果BSN为具有足够带宽的光纤信道6431,则根据诸如[17,18]中所述的系统经由光纤发送射频(RF)调制信号。可在BTS 6412处使用多个无线电设备6440(最多与DIDO分布式天线的数量一样多),以调制运载预编码数据的基带信号。RF调制信号被无线电接口单元(RIU)6441转换成光信号。用于UHF的RIU的一个例子是Syntonics公司的FORAX LOS1[19]。光信号经由BSN 6411从BTS传播到DIDO分布式天线6413。DIDO分布式天线配备有将光信号转换成RF的一个放大器接口单元(AIU)6445。RF信号被放大器6448放大并通过天线6449经由无线链路发送。使用射频光纤传输技术解决方案的DIDO的优点为显著降低了DIDO分布式天线的复杂度和成本。实际上,DIDO分布式天线仅由一个AIU 6445、功率放大器6448和天线6449构成。此外,如果光纤传播延迟是已知且固定的,则可将BTS处的所有无线电设备锁定到与图64中相同的基准时钟6442,用适当的延迟来补偿传播延迟,并且在DIDO分布式天线处不要求时间/频率同步,从而进一步简化DIDO系统的复杂度。
在另一个实施例中,具有天线、收发器和回程连接的现有蜂窝式塔被重新配置成使得回程连接到DIDO BTS 6112。回程连接在功能上变得等效于BSN 6111。随后,如先前所述,蜂窝式收发器和天线在功能上变得等效于DIDO分布式天线6113。取决于安装在现有蜂窝式电话塔中的收发器和天线,它们可能需要被重新配置或替换,以便能够在DIDO配置中工作。例如,发射器可能已被配置为以低功率水平发射,以便不产生对使用相同频率的邻近小区的干扰。借助DIDO,不需要减轻这种波形干扰,并且实际上,这种波形干扰使对覆盖区域的频谱利用增大到超过现有技术蜂窝式配置中可实现的对覆盖区域的频谱利用。
在另一个实施例中,现有蜂窝式塔部分地用于DIDO,如在前述段落中所述,并且部分地用作常规的蜂窝式塔,以便支持与现有蜂窝式设备的兼容性。这种组合式系统能够以多种不同的方式来实现。在一个实施例中,使用TDMA在DIDO使用与常规的蜂窝式使用之间交替。所以,在任何给定时间,蜂窝式塔仅用于DIDO或仅用于常规的蜂窝式通信。
与典型的多用户无线系统(包括采用MU-MIMO技术的蜂窝式系统)相比,DIDO系统的一些关键特征和益处为:
·大空间分集:因为DIDO分布式天线可位于覆盖区域内的任何位置,并且无信道干扰地协同工作,所以这导致较大的发射天线间距和多路径角展度。因此,可以使用多得多的天线,同时仍保持空间分集。与现有技术的商业或消费级基站不同,DIDO分布式天线可被布置在存在相当快的互联网(或其他网络)连接的任何位置,即便该位置距室内或室外的地面仅几英尺也可以。因为不存在对更高功率的发射会干扰使用相同频率的另一小区或WiFi接入点的顾虑(或比使用现有技术蜂窝式系统时的顾虑小得多),所以覆盖范围的减小(例如,归因于发射天线的高度较低或物理障碍物)可由更大的发射功率(例如100W,而不是与在城市地区中的典型蜂窝式系统中一样为约200mW,或与在典型的WiFi接入点中一样为约250mW)进行补偿。更大空间分集转变成可针对多个用户创建的更大数量的非干扰信道。理论上(例如,归因于大的天线间距和角展度),空间信道的数量等于发射DIDO站的数量。这产生了聚集DL数据速率的n倍提升,其中n为DIDO站的数量。例如,鉴于现有技术蜂窝式系统可以实现聚集频谱利用的最大净3倍提升,DIDO系统可以实现聚集频谱利用的10倍、100倍或甚至更大提升。
·均匀的速率分布:因为DIDO分布式天线能够分散遍及广大区域,所以更多的用户可通过来自一个或多个DIDO分布式天线的良好信噪比(SNR)表征。随后,更多的用户能够体验到类似的数据速率,这与小区边缘的用户遭受不良的链路预算和低数据速率的蜂窝式系统不同。
·节省成本:可将DIDO分布式天线设计为具有单个天线收发器的廉价设备(类似于WiFi接入点)。此外,由于这些天线能够灵活地定位在覆盖区域内,因此不会像蜂窝式塔那样需要代价高昂的不动产或昂贵的安装。
2.用于实施和部署DIDO系统的方法
以下描述DIDO系统的实际部署的不同实施例。
a.下行链路信道
在一个实施例中用于允许实现经由无线链路的DIDO通信的一般算法描述如下。
·CSI计算:所有DIDO客户端基于从如图4中所示的DIDO分布式天线接收的训练序列来计算来自所有DIDO分布式天线发射器的CSI。CSI通过如相关专利申请和图5中所述的TDMA或MIMO技术从DIDO客户端以无线方式反馈到DIDO分布式天线6113,并且随后DIDO分布式天线6113通过DIDO BSN 6111将CSI发送到DIDO BTS 6112。
·预编码计算:DIDO BTS 6112根据来自整个DIDO小区的CSI反馈计算预编码权重。预编码数据从DIDO BTS 6112经由DIDO BSN 6111发送到图6中的DIDO分布式天线。将一个预编码数据流发送到DIDO分布式天线中的每一者。
·预编码数据发射:DIDO分布式天线经由无线链路将预编码数据发射到所有客户端。
·解调:DIDO客户端对预编码数据流进行解调。
在DIDO系统中,图19-图20中的反馈回路由以下部分组成:用于信道估计的训练序列从DIDO分布式天线发射到客户端;由客户端进行CSI估计;来自客户端的CSI反馈经由DIDO分布式天线通过DIDO BSN 6111到达DIDO BTS 6112;来自DIDO BTS 6112的预编码数据发射通过DIDOBSN 6111到达DIDO分布式天线,并到达客户端。为保证CSI是最新的以便在客户端侧成功进行DIDO预编码和数据解调,反馈回路上的延迟应当低于信道相干时间。反馈回路延迟取决于涉及DIDO预编码的计算复杂度的BTS计算资源以及BSN上的延迟。取决于硬件和处理器速度,在每个客户端和DIDO分布式天线处的处理通常非常有限(即,使用单个DSP或CPU时大约为1微秒或更短)。大多数反馈回路延迟归因于预编码数据从DIDO BTS 6112经由DIDO BSN 6111发射到DIDO分布式天线6113的延迟(例如,大约数毫秒)。
如以上所讨论,可将低延迟BSN或高延迟BSN用于DIDO系统中,具体取决于可用的网络。在一个实施例中,DIDO BTS 6112基于每个用户的信道相干时间在两种或更多种类型的BSN网络基础结构之间切换。例如,室外的客户端通常由归因于客户端或对象在信道内快速移动的可能性(即,导致低信道相干时间)而更为严重的多普勒效应来表征。室内的客户端具有通常是固定的无线链路或低移动性链路(例如,高信道相干时间)。在一个实施例中,将连接到低延迟BSN网络基础结构(例如,专用光纤环)的DIDO分布式天线分配给室外客户端,而将连接到高延迟BSN网络基础结构(例如,消费级互联网连接,诸如DSL或电缆调制解调器)的DIDO分布式天线分配成服务于室内客户端。为避免到不同类型的客户端的发射之间的干扰,可通过TDMA、FDMA或CDMA方案对室内客户端和室外客户端进行多路复用。
此外,连接到低延迟BSN的DIDO分布式天线还可用于对延迟敏感的算法,诸如用于客户端时间和频率同步的那些算法。
我们观察到,当使用不止一个DIDO分布式天线来到达用户时,DIDO提供固有安全的网络。实际上,从BTS到DIDO分布式天线的预编码流由(不同客户端的)数据与DIDO预编码权重的线性组合构成。随后,从BTS发送到BSN的数据流通常不能在DIDO分布式天线处解调,因为DIDO分布式天线不知晓被BTS使用的预编码权重。另外,预编码权重随着从DIDO分布式天线到客户端的无线信道的复增益变化(归因于多普勒效应)而随时间推移改变,从而增加附加安全性水平。此外,预期到达每个客户端的数据流可仅在客户端的位置处被解调,在此处来自所有发射DIDO分布式天线的预编码信号重新组合以提供给用户无干扰的数据。在任何其他位置处,由于存在高水平的用户间干扰,因此对预期到达一个特定用户的数据进行解调是不可能的。
b.上行链路信道
在上行链路(UL)信道中,客户端发送数据(例如,用于从互联网请求到达DIDO BTS 6112的网页内容)、CSI和控制信息(例如,时间/频率同步、信道质量信息、调制方案等)。在一个实施例中,存在可以单独使用或组合使用的针对UL信道的两种可选方案:i)客户端经由TDMA、FDMA或CDMA方案与DIDO BTS 6112直接通信;ii)客户端通过经由如图7中的MIMO技术创建空间信道来与多个DIDO分布式天线通信(然而,在MIMO情况下,要求客户端之间的发射时间同步)。
c.时间和频率同步
在一个实施例中,使DIDO分布式天线在时间和频率方面同步。如果使用如图64中的射频光纤传输技术,则将BTS处的所有无线电收发器锁定到同一个基准时钟6442,由此保证完美的时间和频率同步。假定DIDOBSN 6111上的抖动可忽略不计,可将人为的延迟添加到DIDO BTS 6112侧处的发射RF波形,以补偿DIDO BSN 6111上的到不同DIDO分布式天线的传播延迟。
如果使用DIDO BSN 6111来运载如图63中的基带波形,则需要对不同DIDO分布式天线处的无线电收发器进行时间和频率同步。存在用来实现这种同步的各种方法,并且同时可使用不止一种方法。
i.经由GPSDO实现时间和频率同步
在一个实施例中,通过将无线电收发器6330中的发射器连接到GPS锁定晶体振荡器(GPSDO)来实现时间/频率同步。在一个实施例中使用了具有高频率稳定性和低抖动的晶石钟(例如,恒温晶体振荡器,OCXO)。
ii.经由电力线基准实现时间和频率同步
一个另选的实施例利用可在电力线上获得的60Hz(美国,在其他地区为50Hz)信号作为所有发射器的公共时钟基准。基于经验测量,60Hz基准信号(在低通滤波之后)的抖动可能为大约100纳秒。然而,将有必要对归因于在不同位置处沿电力线的传播路径长度改变的确定偏移进行补偿。
iii.使用自由运行时钟实现时间和频率同步
使用一个另选的实施例来补偿跨越不同DIDO分布式天线的时间和频率偏移,所述不同DIDO分布式天线的时钟不与外部时钟基准同步,而是如相关美国专利No.7,599,420中以及图45、46和图47中所述的那样自由运行。
·粗略时间同步:在一个实施例中,所有DIDO分布式天线均具有如图46中示出的自由运行时钟,该自由运行时钟可生成周期性基准信号(在一个实施例中为每秒一个脉冲(PPS))。DIDO BTS 6112通过DIDOBSN 6111将初始触发信号发送到所有DIDO分布式天线,以便在下一个PPS触发其发射。假定BSN上的往返时间(RTT)具有大致特定的时间间隔(在一个实施例中为10毫秒,或在每个方向上为约5毫秒),因此所有DIDO分布式天线将以至多1秒+5毫秒的相对时间偏移开始发射。每个DIDO分布式天线将一个训练信号(即,用于[6]中的GPS系统的Zadoff-Chu序列或方法)发送到所有用户以进行初始的时间偏移估计。作为另外一种选择,可仅选择用户(具有最高SNR的那些用户)的子集以降低算法的复杂度。来自不同DIDO分布式天线的训练信号是正交的,或通过TDMA/FDMA发送以避免干扰。用户通过将接收信号与已知的训练序列相关联来估计从每个发射器发射的信号到达的相对时间。可周期性地发送同一个训练序列并且可在较长的一段时间(例如,在一个实施例中为大约数分钟)内对所述相关性进行平均,以使多路径效应达到平均数,尤其是在移动用户的情况下。在本发明的一个实施例中,可应用时间反演技术[31]来对发射器处的多路径效应进行预补偿并且获得精确的到达时间估计值。随后,用户计算每个发射器相对于给定时间基准(例如,可选择DIDO分布式天线中的一个作为绝对时间基准)的延迟(即,确定的时间偏移)。将相对时间偏移从客户端反馈到DIDO分布式天线,或直接反馈到DIDO BTS6112。随后,每个DIDO天线对从所有用户获得的时间偏移信息进行平均,并根据该平均来调整其PPS(和时钟基准)。
在一个实施例中,由用于使跨越用户的传播延迟的差值达到平均数的多个用户的测量值计算时间偏移。例如,图65示出了其中两个DIDO分布式天线6551和6552完美地同步(例如,通过GPSDO)并且两个用户6553和6554具有视距(LOS)信道的一种情况。我们将TX16551用作绝对时间基准。因为我们假定发射器完美同步,所以用户之间的平均时间偏移应为零。然而,如果我们仅跨越两个用户对偏移信息进行平均,如在图65中那样,则TX26552相对于TX16551的平均偏移将为(7+(-2))/2=2.5微秒。借助蒙特卡罗方法,我们可在用户的数量增加时使该效应达到平均数。可以根据TX/RX分布和信道延迟扩展来模拟该算法的偏差。
·精细时间同步:一旦移除了粗略时间偏移,DIDO分布式天线便可以周期性地持续运行所述算法以改进偏移估计。此外,DIDO发射站通常位于固定位置处(例如,连接到DIDO BSN 6111的收发器DIDO分布式天线)。因此,所述算法在一段时间之后应当收敛。每当一个DIDO分布式天线改变其位置或新的DIDO分布式天线添加到DIDO BSN 6111,便重新运行同一个算法。
·频率偏移补偿:一旦在所有DIDO分布式天线处的1PPS基准信号同步,DIDO分布式天线便将训练发送到一个或多个用户以估计站点之间的相对频率偏移。随后,应用在相关美国专利No.7,599,420和图47中所述的频率偏移补偿法,在对偏移进行补偿的同时将预编码数据发射到所有用户。注意,为了使该算法的性能最佳,需要满足以下两个条件:i)在所有DIDO发射器与一个用户(或多个用户)之间具有负责进行频率偏移估计的良好SNR;ii)时钟的稳定性良好:如果DIDO分布式天线处的OCXO是稳定的,则频率偏移估计可能仅偶尔进行,从而减少反馈信息。
d.经由BSN的控制信道
在一个实施例中,使用DIDO BSN 6111以达到至少以下三个目的:
·CSI反馈:DIDO客户端以无线方式将CSI反馈到DIDO分布式天线。如果使用TDMA、FDMA或CDMA方案来进行反馈,则仅选择一个DIDO分布式天线(对所有用户具有最佳SNR的那个天线)来接收CSI。如果采用MIMO技术,则同时使用所有DIDO分布式天线以对来自所有客户端的CSI进行解调。随后,CSI从DIDO分布式天线经由DIDO BSN6111反馈到DIDO BTS 6112。作为另外一种选择,CSI可通过TDMA或CDMA方案从客户端(或DIDO分布式天线)以无线方式直接反馈到配备有一个天线的DIDO BTS 6112。该第二个解决方案具有避免由DIDO BSN6111导致的延迟的优点,但如果客户端(或DIDO分布式天线)中的每一者与DIDO BTS 6112之间的无线链路不具有足够高的SNR和可靠性,则该方案可能无法实现。为了降低UL信道上的吞吐量要求,可将CSI量化或者可以应用本领域中已知的任何数量的有限反馈算法[28-30]。
·控制信息:DIDO BTS 6112将控制信息经由DIDO BSN 6111发送到DIDO分布式天线。控制信息的例子为:不同DIDO分布式天线的发射功率(用于允许实现功率控制算法);活动的DIDO分布式天线ID(用于允许实现天线选择算法);用于时间同步的触发信号和频率偏移值。
·预编码数据:DIDO BTS 6112将预编码数据经由DIDO BSN 6111发送到所有DIDO分布式天线。该预编码数据随后从DIDO分布式天线通过无线链路同步地发送到所有客户端。
案例研究1:UHF频谱中的DIDO
a.UHF和微波频谱分配
在美国可利用不同的频带作为DIDO系统部署的可能候选频带:(i)介于54MHz至698MHz之间的未使用电视频带(具有6MHz信道带宽的TV信道2-51),其被白空间联盟(White Spaces Coalition)推荐用于传送高速互联网服务;(ii)被AT&T和Verizon公司分别规划用于LTE系统的未来开发的734-746MHz和746-756MHz;(iii)用于宽带无线服务(BRS)的2.5GHz频带,其由分裂为五个信道以用于WiMAX系统未来部署的67.5MHz频谱构成。
b.UHF频谱中的传播信道
首先,我们以针对白空间(White Spaces)分配的不同频率计算DIDO系统在城市环境中的路径损耗。我们使用在[7]中描述的Hata-Okumura模型,采用1.5米的发射和接收天线高度(例如,DIDO分布式天线在室内安装)和100W发射功率。为了确定范围,我们使用典型无线设备的-90dBm目标接收灵敏度。图66示出了在85MHz和400MHz下的路径损耗。在一个实施例中,DIDO系统的预期范围取决于频率而介于1Km与3Km之间。
针对白空间(White Spaces)提议的一些现有技术多用户系统具有与WiFi类似的干扰避免协议,即便在UHF频率下也是如此。我们将250mW发射功率下的DIDO UHF结果与WiFi系统的路径损耗进行比较。WiFi的范围仅在60米(室内)与200米(室外)之间扩展。DIDO系统可以实现更广的范围归因于更大的发射功率和更低的载波频率(在UHF频率下经受通常更低的因障碍物造成的衰减)。但是,我们观察到,WiFi系统的功率受到刻意限制,这是因为大发射功率将对使用WiFi系统的其他用户(或在2.4GHz ISM频谱中的其他用户)产生有害干扰(原因在于仅有一个干扰接入点能够立即发射),并且随着范围扩大,越来越多的WiFi接入点将彼此干扰。相反地,在DIDO系统中,用户间干扰受到将预编码数据发射到客户端的多个DIDO分布式天线抑制。
接下来,我们对表征UHF信道中的时间、频率和空间选择性的参数进行总结。
时间选择性由产生所接收波形频域中的移位(称为多普勒效应)的发射器和接收器的相对运动引起。我们根据针对富散射环境(例如,城市地区)的众所周知的Jakes模型来对多普勒频移建模,并且根据[14]由最大多普勒频移计算信道相干时间。根据经验,信道复增益在对应于信道相干时间十分之一的时间周期(Δt=TC/10)内可被视为常数。图67示出了所述周期Δt随针对UHF频带中不同频率的发射器与接收器之间的相对速度的变化关系。
在DIDO系统中,Δt对在对信道状态信息(CSI)进行估计与经由DIDO预编码进行数据发射之间能够容忍的最大延迟提供约束。例如,如果所述约束为Δt=10毫秒,则DIDO系统能够容忍的最大速度为:在700MHz下为4mph,在400MHz下为7mph,且在50MHz下为57mph。如果使用低延迟网络作为BSN并且DIDO BTS 6112在DIDO分布式天线附近(以便使网络传输延迟最小化),则能够实现比10毫秒RTT短得多的Δt。例如,如果在400MHz下Δt=1毫秒,则DIDO能够大致容忍70Mph的高速公路速度。
频率选择性取决于信道延迟扩展。室内环境延迟扩展的典型值低于300纳秒[8-10]。在城市和郊区地区,延迟扩展在介于1微秒与10微秒之间的范围内[11,12]。在农村环境中,该延迟扩展通常为大约10微秒至30微秒[11-13]。
空间选择性取决于在发射/接收侧处的信道角展度和天线间距。在城市环境中,归因于富散射效应,信道角展度通常较大。在富散射环境中,已显示用于保证良好空间选择性的最小天线间距(在发射器处或接收器侧处)为约一个波长[15,16]。
在图68中,我们汇总了在DIDO系统中针对三个不同载波频率的主要传播效应。我们观察到较低的频率以较大的天线尺寸和较大的收发器间距离为代价对移动速度提供更佳的范围和稳健性。良好的权衡由400MHz频带提供。该频带能够支持具有用于将控制信息从集中式处理器经由互联网发射到DIDO分布式天线的约10毫秒限制的步行速度,并且该频带能够支持具有约1毫秒限制的高速公路速度。
c.DIDO系统在UHF频谱中的实际实施
基于上述的信道参数和系统约束,我们提供UHF频谱中的DIDO系统设计的一个实施例,具体如下:
·带宽:5MHz至10MHz,具体取决于UHF频谱可用性。
·载波频率:400MHz,其能在范围/多普勒效应与天线尺寸/间距之间获得最佳权衡。
·调制:使用正交频分多路复用(OFDM)以降低接收器复杂度并如在图11中那样利用信道频率分集(经由交叉存取)。基于UHF信道中预期的最大延迟扩展,与5MHz带宽下的50个信道抽头对应,循环前缀为10微秒。可将OFDM波形设计为具有1024个音调(tone),对应于频谱效率的约5%损失。总OFDM符号长度(包括循环前缀和数据)为215微秒。
·分组大小:其受到DIDO BSN 6111上的延迟和多普勒效应限制。例如,一个实施例的标称RTT为10毫秒。随后,将预编码数据从DIDO BST 6112发送到DIDO分布式天线所需的时间为约5毫秒(半个RTT)。假定如在图68中那样在400MHz下具有7mph的最大用户速度,信道增益可被视为在大约10毫秒内为常数。因此,我们使用剩余的5毫秒来发送数据并且将分组大小定义为(5e-3/215e-6)≈23个OFDM符号。注意,更高的用户速度将产生更大的多普勒效应,这导致每一分组发送的OFDM符号的数量更低,除非DIDO BSN 6111上的延迟能够被缩短。
·CSI估计和预编码:使用上述系统参数,每5毫秒发送一次用于进行CSI估计的训练。用户对CSI进行估计/反馈,并在约5毫秒以后他们接收到5毫秒的用于进行解调的预编码数据。
·DIDO分布式天线在覆盖区域内的布置:虽然可将DIDO分布式天线放置在现有的小区塔上,但实际情况是,考虑到在现有的小区塔处仅有有限的面积可用,故可能仅存在有限数量的可用天线位置。例如,如果将最多四个天线放置在每个塔上,则这可能产生如[4]中所示的数据速率的最多至3倍的增大(归因于缺乏空间分集)。在该配置中,跨越DIDO发射器的延迟可忽略不计,因为这些DIDO发射器全部放置在同一个塔上,然而在不具有额外空间分集的情况下,频谱利用的增益将受到限制。在一个实施例中,将DIDO分布式天线放置在遍及覆盖区域的全部连接到DIDOBSN 6111的随机位置中。与现有技术蜂窝式系统中的给定小区的覆盖区域(其基于来自小区塔的发射范围)不同,DIDO小区的覆盖区域相反基于每个DIDO分布式天线的发射范围,根据一个实施例中的路径损耗模型,该发射范围为大约1Km。因此,在至少一个DIDO分布式天线的1Km内的用户将接收到服务,并且在若干DIDO分布式天线的范围内的用户将从该范围内的DIDO分布式天线获得非干扰服务。
案例研究2:NVIS链路中的DIDO
DIDO技术的另一个应用是在HF频带中。HF系统的核心优势为在1MHz至30MHz频带中归因于电离层的反射而具有扩展覆盖范围。经由电离层传播的一个例子为近垂直入射天波(NVIS),其中朝向天空以相对于地平线的高仰角发送的信号从电离层反弹回来并返回地球。NVIS提供前所未有的优于常规陆地无线系统的覆盖范围:NVIS链路在20英里与300英里之间扩展,而陆地系统的典型范围介于1英里与5英里之间。
在后文中,我们基于由文献和我们的实验数据获得的结果来展示NVIS链路的特性。随后我们展示DIDO系统在相关美国专利No.7,418,053、美国专利No.7,599,420、美国专利申请No.11/894,362、美国专利申请No.11/894,394、美国专利申请No.11/143,503和美国专利申请No.11/894,540中以及图10中描述的NVIS链路中的实际实施。
a.HF频谱分配
将HF频带划分成专用于不同类型服务的若干子频带。例如,将航海频带限定在4MHz与4.438MHz之间。根据联邦通信委员会(FCC)许可数据库(即,通用许可系统,“ULS”),存在1,070个被授权在该航海频带中操作的许可证。存在146个各自为3KHz带宽的信道,从而覆盖0.438MHz带宽。在航海频带中工作的大多数收发器站如图69中所描绘沿着美国领土的海岸定位。因此,在内陆(远离海岸)工作的DIDO-NVIS分布式天线将不会对那些海上站点或海上的船舶产生有害干扰。此外,可沿着海岸应用认知无线电技术来检测使用中的信道,并且避免经由这些信道中的DIDO-NVIS链路进行发射。例如,如果将DIDO-NVIS系统设计来发射宽带OFDM波形(约1MHz带宽),则对应于航海频带中的活动信道的OFDM音调可受到抑制以避免干扰。
HF频谱的其他部分由在[3,3.155]MHz和[3.4,3.5]MHz内的航空频带,以及限定在范围[1.8,2]MHz、[3.5,4]MHz、[5.3305,5.4035]MHz、[7,7.3]MHz、[10.10,10.15]MHz、[14,14.35]MHz、[18.068,18.168]MHz、[21,21.450]MHz、[24.89,24.99]MHz、[28,29.7]MHz中的业余无线电频带占据。我们的实验测量已表明,业余无线电频带大多未被利用(尤其在白天),从而使DIDO-NVIS链路能够不造成有害干扰。此外,与航海频带类似,认知无线电技术可允许实现DIDO-NVIS系统与业余无线电收发器的共存。
b.NVIS传播信道
我们提供对通过电离层的无线电波传播的概述。然后,我们描述典型NVIS信道中的路径损耗、噪声以及时间/频率/空间选择性。
电离层由电离气体或等离子体组成。等离子体表现为针对从地球向上传播的无线电波的电磁屏蔽,所述无线电波如图10中那样被折射并反射回地球。电离的程度越强,等离子体的临界频率越高且电离层中反射的次数越多,导致NVIS链路上的信号质量改善。电离程度取决于冲击电离层以产生等离子体的太阳辐射的强度。太阳活动的一种经验测量为如图70中所示的以11年为周期变化的太阳黑子数(SSN)。因此,预期DIDO-NVIS系统的性能将贯穿每个11年周期而变化,从而在所述周期的峰值处产生最高SNR和最大数量的可用HF频带。
由于在NVIS链路中不存在障碍物,故传播损耗主要归因于自由空间路径损耗(即,福利斯(Friis)公式),且没有如在标准陆地无线系统中那样的附加衰减因子。取决于一天中的时间和针对电离层的入射角,传播波形可遭受归因于来自D层(即,电离层的最低层)的衰减的额外10dB至25dB损耗。图71将使用43dBm发射功率的NVIS链路与宏小区中的新一代无线系统诸如WiMAX和3GPP长期演进(LTE)的路径损耗进行比较。对于WiMAX和LTE,我们分别使用2.5GHz和700MHz的载波频率。NVIS链路针对大于约1英里的距离产生优于标准系统的信号质量(即,覆盖范围更广)。
任何无线系统都受到无线电接收器内部产生的热噪声的影响。与标准无线系统相比,HF链路受到其他外部噪声源的严重影响,这些外部噪声源诸如:大气噪声、人为噪声和银河系噪声。人为噪声归因于诸如电力线、机械设备、点火系统等环境来源,其为HF频带中的噪声的主要来源。取决于环境(即,偏远环境对工业环境),人为噪声的典型值范围在-133dBm/Hz到-110dBm/Hz之间。
根据我们的多普勒测量结果,我们观察到NVIS链路中的典型信道相干时间为大约数秒,其为对DIDO BSN 6111上的DIDO反馈回路的Δt=10m毫秒约束的约100倍大。因此,在DIDO-NVIS系统中,由于信道相干时间非常高,故可以容忍DIDO BSN 6111上的长反馈延迟。注意,我们的测量假定无线链路是固定的。就移动站点而言,在超高速的情形中(即,以200mph移动的车辆或飞机),预计信道相干时间为大约2秒,该值仍比DIDO BSN 6111上的延迟高出多个数量级。
NVIS信道中的延迟扩展的典型值一致地为约2ms,这与地球-电离层(约300Km高)的往返传播延迟对应。该值在电离层中存在多层折射的情况下可能更大(约5毫秒)。
NVIS链路中的角展度通常极小(小于1度,基于我们的测量和模拟)。因此,需要大天线间距来获得空间选择性信道并经由DIDO技术利用空间分集。Strangeways模拟器指向长距离HF天波链路所需的约二十个波长[34,35]。间距为约0.7个波长的HF天波的一些实验结果指示具有高相关性[36,37]。从我们在NVIS链路中的测量获得了类似的结果。
c.DIDO-NVIS实验结果
我们使用由三个用于发射的DIDO分布式天线6113和三个用于接收的DIDO客户端6110组成的实际测试平台测量了DIDO-NVIS系统的性能。发射器位于美国德克萨斯州奥斯汀市(Austin,Texas)的区域中,如图72中所示:TX1位于奥斯汀中心城区,TX2位于普夫卢格维尔(Pflugerville),TX3位于奥斯汀湖(Lake Austin)。将所有三个接收器如在图73中那样以约10个波长的天线间距安装。因为我们的目标是评估在仅有空间分集可用且没有极化分集可用时的DIDO-NVIS性能,所以全部六个发射和接收天线均具有相对于北方的相同取向。
将三个发射分布式天线锁定到提供时间和频率基准的同一GPSDO。三个接收DIDO客户端具有自由运行时钟,并且实施同步算法以对时间/频率偏移进行补偿。载波频率为3.9MHz,带宽为3.125KHz,并且我们使用具有4-QAM的OFDM调制。
在三个DIDO客户端位置处解调的典型4-QAM星座图在图74中示出。我们的DIDO-NVIS 3x3试验平台通过预先消除发射侧处的用户间干扰和允许实现用户侧处的成功解调来在NVIS链路上产生三个同时空间信道。
我们计算如在图75中那样随约1000个信道实现上的每用户SNR(PU-SNR)而变化的符号错误率(SER)性能。点为针对所有三个DIDO客户端6112的单个测量值,并且实线为平均每用户SER(PU-SER)。将跨越所有三个DIDO客户端6112的平均SER表示为A-SER。需要约40dB的接收SNR以对具有A-SER<1%的DIDO-NIVS 3x3链路中的4-QAM星座图进行成功解调。实际上,我们实验中的发射/接收天线配置产生了极低的空间分集(归因于给定波长的接收天线相对极为贴近,并且发射器全部定位在接收器的一侧上而非用户周围)。在更有利的状况下(即,发射器以如图61中所示那样的较大距离放置在用户周围的圆圈中),使用DIDO-NVIS对QAM星座图进行解调仅需要低得多的SNR(约20dB),如经由实际NVIS传播信道中的模拟所导出。
d.DIDO系统在NVIS链路中的实际实施
与案例研究1类似,我们提供DIDO-NVIS系统设计的一个实施例,具体如下:
·带宽:1MHz至3MHz,具体取决于HF频谱可用性。更大带宽的实用性不高,因为它们需要更具挑战的宽带天线设计。例如,4MHz载波频率下的3MHz带宽对应于75%的分数天线带宽。
·载波频率:与电离层的等离子体临界频率对应的HF频率介于1MHz与10MHz之间。更低频率(约1MHz)的无线电波通常由电离层在夜间反射,而更高频率(约10MHz)的无线电波通常由电离层在日间反射。在一天中给定时间的最佳发射频率(FOT)随SSN而变化。在实际的DIDO-NVIS系统中,可在全天内依据由电离层图提供的FOT对载波频率进行调整。
·发射功率:基于图71中的路径损耗结果,在接收器位于偏远地区的情况下(即,人为噪声水平为-133dBm/Hz),1MHz带宽需要的平均发射功率介于10dBm与30dBm之间,具体取决于QAM调制和前向纠错(FEC)编码方案。在工业地区中(即,人为噪声水平为-110dBm/Hz),这些功率电平增加约23dB、最多33-53dBm,具体取决于QAM调制和FEC编码方案。
·调制:我们假定如图11中那样进行OFDM调制。与1MHz带宽下的2000个信道抽头对应,循环前缀为2毫秒(基于NVIS链路中预期的典型延迟扩展)。可将OFDM波形设计为具有214个音调,对应于归因于循环前缀的频谱效率的约10%损失。1MHz带宽下的总OFDM符号持续时间(包括循环前缀和数据)为18.4毫秒。
·分组大小:其受到NVIS链路中预期的最小信道相干时间的限制。最小相干时间为大约1秒,并且在最糟糕的情况下信道增益可被视为在该持续时间的十分之一(约100毫秒)内为常数。那么,分组大小为约五个OFDM符号。因为相干时间随时间推移而变化,所以分组大小能够被动态地调整。
·CSI估计和预编码:使用上述系统参数,每约100毫秒(或当相干时间增大时,每一段更长的时间)发送一次用于进行CSI估计的训练。用户对CSI进行估计/反馈,并在约5毫秒以后(即,BSN反馈回路上的延迟)他们接收到100毫秒的用于进行解调的预编码数据。
·DIDO分布式天线在覆盖区域内的布置:用于实施DIDO-NVIS系统的一个实际解决方案将如在图61中那样沿半径约100英里的圆形区域的周长放置多个DIDO分布式天线。这些站点经由传输控制信息的BSN彼此连接。以光通过光纤的速度,沿半径100英里的周长的传播延迟为约3.4毫秒。该延迟比NVIS信道中的典型信道相干时间短得多,并且由于不会导致DIDO预编码器的任何显著性能退化而能够被容忍。注意,如果所述光纤跨越不同的运营商被共享,则归因于互联网的分组交换性质,该延迟可能更大(即,10毫秒至30毫秒)。可使如图76中那样的多个DIDO-NVIS小区分布为提供对美国的完全覆盖。例如,图76示出需要半径125英里区域内的109个DIDO小区来覆盖美国48个相邻州的全部领土。
参考文献
以下参考文献在上文的具体实施方式中提及,如编号的括号所指示:
[1]3GPP,“Multiple Input Multiple Output in UTRA”,3GPP TR25.876V7.0.0,Mar.2007(3GPP,“UTRA中的多输入多输出”,3GPP TR 25.876V7.0.0,2007年3月)
[2]3GPP,“Base Physical channels and modulation”,TS 36.211,V8.7.0,May 2009(3GPP,“基础物理信道和调制”,TS 36.211,V8.7.0,2009年5月)
[3]3GPP,“Multiplexing and channel coding”,TS 36.212,V8.7.0,May 2009(3GPP,“多路复用和信道编码”,TS 36.212,V8.7.0,2009年5月)
[4]ArrayComm,“Field-proven results”(爱瑞通信,“现场验证结果”),http://www.arraycomm.com/serve.php?page=proof
[6]http://www.jackson-labs.com/docs/HP_GPS_Apps.pdf
[7]Oda,Y.;Tsuchihashi,R.;Tsunekawa,K.;Hata,M.,“Measuredpath loss and multipath propagation characteristics in UHF andmicrowave frequency bands for urban mobile communications”,Vehicular Technology Conference,Vol.1,pp.337-341,2001(Oda,Y.、Tsuchihashi,R.、Tsunekawa,K.、Hata,M.,“用于城市移动通信的UHF和微波频带中的测量路径损耗和多路径传播特性”,国际车载技术会议,第1卷,第337-341页,2001年)
[8]Devasirvatham,D.M.J.;Krain,M.J.;Rappaport,D.A.;Banerjee,C.,“Radio propagation measurements at 850MHz,1.7GHz and 4GHzinside two dissimilar office buildings”,IEEE Electronics Letters,Vol.26,n 7,pp.445-447March 1990(Devasirvatham,D.M.J.、Krain,M.J.、Rappaport,D.A.、Banerjee,C.,“两座相异办公大楼内部在850MHz、1.7GHz和4GHz下的无线电传播测量”,IEEE电子快报,第26卷,第7期,第445-447页,1990年3月)
[9]Devasirvatham,D.,“Time delay spread and signal levelmeasurements of 850MHz radio waves in building environments”,IEEE Trans.on Ant.and Prop.,Vol.34,n.11,pp.1300–1305,Nov1986(Devasirvatham,D.,“在建筑物环境中850MHz无线电波的时间延迟扩展和信号电平测量”,IEEE天线与传播学报,第34卷,第11期,第1300–1305页,1986年11月)
[10]Devasirvatham,D.M.J.;Murray,R.R.;Banerjee,C.,“Time delayspread measurements at 850MHz and 1.7GHz inside a metropolitanoffice building”,IEEE Electronics Letters,Vol.25,n 3,pp.194-196,Feb.1989(Devasirvatham,D.M.J.、Murray,R.R.、Banerjee,C.,“大都市办公大楼内在850MHz和1.7GHz下的时间延迟扩展测量”,IEEE电子快报,第25卷,第3期,第194-196页,1989年2月)
[11]Garcia,C.R.;Lehner,A.;Strang,T.;Frank,K.,“Channel Modelfor Train to Train Communication Using the 400MHz Band”,inProc.of IEEE Vehicular Technology Conference,pp.3082-3086,May 2008(Garcia,C.R.、Lehner,A.、Strang,T.、Frank,K.,IEEE车载技术会议论文集中的“用于使用400MHz频带的列车间通信的信道模型”,第3082-3086页,2008年5月)
[12]John Proakis,“Digital Communications”,Mc Graw Hill,4thEdition,2001(John Proakis,“数字通信”,麦格劳-希尔出版社,2001年第4版)
[13]Zogg,A.,“Multipath delay spread in a hilly region at210MHz”,IEEE Transactions on Vehicular Technology,Vol.36,n 4,Page(s):184–187,Nov 1987(Zogg,A.,“丘陵地区中210MHz下的多路径延迟扩展”,IEEE车辆技术学报,第36卷,第4期,第184–187页,1987年11月)
[14]T.S.Rappaport,Wireless Communications,Prentice Hall,2002(T.S.Rappaport,《无线通信》,普伦蒂斯·霍尔出版社,2002年)
[15]A.Forenza and R.W.Heath,Jr.,“Impact of Antenna Geometry onMIMO Communication in Indoor Clustered Channels,(invited)”Proc.of the IEEE AP-S Intern.Symp.,vol.2,pp.1700-1703,June20-26,2004(A.Forenza和R.W.Heath,Jr.,“天线几何结构对室内群集信道中的MIMO通信的影响”,(特邀)IEEE天线与传播协会国际研讨会论文集,第2卷,第1700-1703页,2004年6月20日至6月26日)
[16]M.L.Morris and M.A.Jensen,“Network Model for MIMOSystems With Coupled Antennas and Noisy Amplifiers”,IEEETRANS.ON ANTENNAS AND PROPAGATION,VOL.53,NO.1,pp.545-552,Jan.2005(M.L.Morris和M.A.Jensen,“用于具有耦合天线和噪声放大器的MIMO系统的网络模型”,IEEE天线和传播学报,第53卷,第1期,第545-552页,2005年1月)
[17]B.G.Montgomery,“Analog RF-over-fiber technology”,Syntonics LLC,Jan.2008(B.G.Montgomery,“模拟射频光纤传输技术”,Syntonics有限责任公司,2008年1月)http://chesapeakebayaoc.org/documents/Syntonics_AOC_RF_over- Fiber_19_Jan_08.pdf
[18]J.Daniel,“Introduction to public safety:RF signal distributionusing fiber optics”,2009,http://www.rfsolutions.com/fiber.pdf(J.Daniel,“公共安全导论:使用光纤进行射频信号分配”,2009年,http://www.rfsolutions.com/fiber.pdf)
[19]Syntonics,“FORAX RF-over-fiber communications systems”,http://www.syntonicscorp.com/products/products-foraxRF.html(Syntonics公司,“FORAX射频光纤传输通信系统”,http://www.syntonicscorp.com/products/products-foraxRF.html)
[20]G.Caire and S.Shamai,“On the achievable throughput of amultiantenna Gaussian broadcast channel,”IEEE Trans.Info.Th.,vol.49,pp.1691–1706,July 2003(G.Caire和S.Shamai,“关于多天线高斯广播信道的可实现吞吐量”,IEEE信息理论学报,第49卷,第1691–1706页,2003年7月)
[21]P.Viswanath and D.Tse,“Sum capacity of the vector Gaussianbroadcast channel and uplink-downlink duality,”IEEE Trans.Info.Th.,vol.49,pp.1912–1921,Aug.2003(P.Viswanath和D.Tse,“向量高斯广播信道的总容量和上下行链路的对偶性”,IEEE信息理论学报,第49卷,第1912–1921页,2003年8月)
[22]S.Vishwanath,N.Jindal,and A.Goldsmith,“Duality,achievablerates,and sum-rate capacity of Gaussian MIMO broadcastchannels,”IEEE Trans.Info.Th.,vol.49,pp.2658–2668,Oct.2003(S.Vishwanath、N.Jindal和A.Goldsmith,“高斯MIMO广播信道的对偶性、可实现速率和总速率容量”,IEEE信息理论学报,第49卷,第2658–2668页,2003年10月)
[23]W.Yu and J.Cioffi,“Sum capacity of Gaussian vector broadcastchannels,”IEEE Trans.Info.Th.,vol.50,pp.1875–1892,Sep.2004(W.Yu和J.Cioffi,“高斯向量广播信道的总容量”,IEEE信息理论学报,第50卷,第1875–1892页,2004年9月)
[24]M.Costa,“Writing on dirty paper,”IEEE Transactions onInformation Theory,vol.29,pp.439–441,May 1983(M.Costa,“在脏纸上书写”,IEEE信息理论学报,第29卷,第439–441页,1983年5月)
[25]M.Bengtsson,“A pragmatic approach to multi-user spatialmultiplexing,”Proc.of Sensor Array and Multichannel Sign.Proc.Workshop,pp.130–134,Aug.2002(M.Bengtsson,“多用户空间多路复用的实用方法”,传感器阵列和多信道信号处理研讨会论文集,第130–134页,2002年8月)
[26]K.-K.Wong,R.D.Murch,and K.B.Letaief,“Performanceenhancement of multiuser MIMO wireless communicationsystems,”IEEE Trans.Comm.,vol.50,pp.1960–1970,Dec.2002(K.-K.Wong、R.D.Murch和K.B.Letaief,“多用户MIMO无线通信系统的性能增强”,IEEE通信学报,第50卷,第1960–1970页,2002年12月)
[27]M.Sharif and B.Hassibi,“On the capacity of MIMO broadcastchannel with partial side information,”IEEE Trans.Info.Th.,vol.51,pp.506–522,Feb.2005(M.Sharif和B.Hassibi,“关于具有部分边信息的MIMO广播信道的容量”,IEEE信息理论学报,第51卷,第506–522页,2005年2月)
[28]T.Yoo,N.Jindal,and A.Goldsmith,“Multi-antenna broadcastchannels with limited feedback and user selection,”IEEE Journalon Sel.Areas in Communications,vol.25,pp.1478–91,July 2007(T.Yoo,N.Jindal和A.Goldsmith,“具有有限反馈和用户选择的多天线广播信道”,IEEE通信精选领域期刊,第25卷,第1478–1491页,2007年7月)
[29]P.Ding,D.J.Love,and M.D.Zoltowski,“On the sum rate ofchannel subspace feedback for multi-antenna broadcast channels,”in Proc.,IEEE Globecom,vol.5,pp.2699–2703,Nov.2005(P.Ding、D.J.Love和M.D.Zoltowski,“关于多天线广播信道的信道子空间反馈的总速率”,IEEE全球通信大会论文集,第5卷,第2699-2703页,2005年11月)
[30]N.Jindal,“MIMO broadcast channels with finite-ratefeedback,”IEEE Trans.on Info.Theory,vol.52,pp.5045–60,Nov.2006(N.Jindal,“具有有限速率反馈的MIMO广播信道”,IEEE信息理论学报,第52卷,第5045–5060页,2006年11月)
[31]T.Strohmer,M.Emami,J.Hansen,G.Papanicolaou,A.J.Paulraj,“Application of Time-Reversal with MMSE Equalizer to UWBCommunications”,Proc.of IEEE Globecom,vol.5,pp.3123-3127,Nov.2004(T.Strohmer、M.Emami、J.Hansen、G.Papanicolaou、A.J.Paulraj,“使用MMSE均衡器将时间反演应用于UWB通信”,IEEE全球通信大会论文集,第5卷,第3123-3127页,2004年11月)
[32]J.Zhang,R.Chen,J.G.Andrews,A.Ghosh,and R.W.Heath,Jr.,“Coordinated Multi-cell MIMO Systems with Cellular BlockDiagonalization,”Proc.of the IEEE Asilomar Conf.on Signals,Systems,and Computers,pp.1669-1673,Pacific Grove,CA,Nov.4-7,2007(J.Zhang、R.Chen、J.G.Andrews、A.Ghosh和R.W.Heath,Jr.,“具有蜂窝式块对角化的协调多小区MIMO系统”,IEEE阿西洛马信号、系统与计算机会议论文集,第1669-1673页,美国加利福尼亚州太平洋丛林市,2007年11月4-7日)
[33]J.Zhang,R.Chen,J.G.Andrews,A.Ghosh,and R.W.Heath,Jr.,“Networked MIMO with Clustered Linear Precoding,”IEEETrans.on Wireless vol.8,no.4,pp.1910-1921,April 2009(J.Zhang、R.Chen、J.G.Andrews、A.Ghosh和R.W.Heath,Jr.,“具有群集线性预编码的联网MIMO”,IEEE无线通信学报,第8卷,第4期,第1910-1921页,2009年4月)
[34]H.J.Strangeways,“Determination of the correlation distance forspaced antennas on multipath HF links and implications for design ofSIMO and MIMO systems,”www.esaspaceweather.net/spweather/workshops/eswwII/proc/Sessio  n3/Strangeways HFMIMOposter.pdf(H.J.Strangeways,“对多路径HF链路上的间隔天线的相关距离的确定和对SIMO和MIMO系统设计的暗示”,www.esaspaceweather.net/spweather/workshops/eswwII/proc/Sessio  n3/Strangeways HFMIMOposter.pdf)
[35]H.J.Strangeways,“Investigation of signal correlation for spacedand co-located antennas on multipath hf links and implications for thedesign of SIMO and MIMO systems”,IEEE First European Conf.on Antennas and Propagation(EuCAP 2006),Vol.,n.6-10,pp.1-6,Nov.2006(H.J.Strangeways,“对多路径HF链路上的间隔和协同定位天线的信号相关性的调查以及对SIMO和MIMO系统设计的暗示”,IEEE第一次欧洲天线和传播会议(EuCAP2006),第卷,第6-10期,第1-6页,2006年11月)
[36]N.Abbasi,S.D.Gunashekar,E.M.Warrington,S.Salous,S.Feeney,L.Bertel,D.Lemur and M.Oger,“Capacity estimation of HF-MIMO systems”,International Conference on Ionospheric Systemsand Techniques,Apr.2009(N.Abbasi、S.D.Gunashekar、E.M.Warrington、S.Salous、S.Feeney、L.Bertel、D.Lemur和M.Oger,“对HF-MIMO系统的容量估计”,国际电离层系统和技术会议,2009年4月)
[37]S.Gunashekar,E.M.Warrington,S.Salous,S.M.Feeney,N.M.Abbasi,L.Bertel,D.Lemur,M.Oger,“Investigations into theFeasibility of MIMO Techniques within the HF Band:PreliminaryResults”,Radio Science(Special Issue),2009,(In Press)(S.Gunashekar、E.M.Warrington、S.Salous、S.M.Feeney、N.M.Abbasi、L.Bertel、D.Lemur,“对MIMO技术在HF频带内的可行性的调查:初步结果”,无线电科学(专刊),2009年,(出版中))
来自相关专利申请的公开内容
图1示出了具有发射天线104和接收天线105的现有技术的MIMO系统。这样的系统可实现可用信道中通常可实现的吞吐量的最多至3倍。存在用于实现这种MIMO系统的细节的许多不同方法,所述方法在有关本主题的已出版文献中有所描述,并且以下说明描述一个这样的方法。
数据在图1的MIMO系统中传输之前,信道被“特征化”。这通过最初将“训练信号”从发射天线104中的每一者传输到接收器105中的每一者来实现。训练信号连续不断地由编码和调制子系统102生成,被D/A转换器(未示出)转换成模拟信号,并随后由每个发射器103从基带信号转换成RF信号。每个耦合到其RF接收器106的接收天线105接收每个训练信号并将该信号转换成基带信号。基带信号由D/A转换器(未示出)转换成数字信号,然后信号处理子系统107特征化该训练信号。每个信号的特征可以包括很多因素,包括例如相对于接收器内部的基准信号的相位和振幅、绝对基准信号、相对基准信号、特征噪声或其他因素。每个信号的特征通常定义为当信号通过信道传输时表征信号几个方面的相位和振幅变化的向量。例如,在正交幅度调制(“QAM”)调制的信号中,所述特征可以是信号的若干多径映像的相位与振幅偏移的向量。又如,在正交频分多路复用(“OFDM”)调制的信号中,它可以是OFDM频谱中几个或所有单个分量信号(sub-signal)的相位与振幅偏移的向量。
信号处理子系统107存储由每个接收天线105和对应接收器106接收的信道特征。在所有三个发射天线104已完成它们的训练信号发射之后,随后信号处理子系统107将已存储用于三个接收天线105中的每一者的三个信道特征,得到3×3矩阵108,称为信道特征矩阵“H”。每个单独的矩阵元素Hi,j为发射天线104i的如被接收天线105j接收到的训练信号发射的信道特征(该信道特征通常为向量,如上所述)。
此时,信号处理子系统107对矩阵H 108求逆,得到H-1,并且等候来自发射天线104的实际数据的发射。注意,可利用可用文献中描述的各种现有技术的MIMO技术以确保可对H矩阵108求逆。
在操作中,将待发射数据的有效载荷提供至数据输入子系统100。该有效载荷随后在被提供至编码和调制子系统102之前被分配器101分割为三个部分。例如,如果有效载荷是“abcdef”的ASCII比特,它就可以被分配器101分割为三个ASCII比特子有效载荷“ad”、“be”和“cf”。随后,将这些子有效载荷中的每一者单独地提供至编码和调制子系统102。
通过使用适用于每个信号的统计独立性和纠错能力两者的编码系统,单独地对子有效载荷中的每一者进行编码。这些编码系统包括但不限于里德-所罗门(Reed-Solomon)编码、维特比(Viterbi)编码和涡轮码(TurboCode)。最后,使用针对信道的适当调制方案来调制三个经编码子有效载荷中的每一者。调制方案的示例为差分相移键控(“DPSK”)调制、64-QAM调制和OFDM。在此应当指出的是,由MIMO提供的分集增益允许另外在利用相同信道的SISO(单输入-单输出)系统中可行的高阶调制星座图。每个经编码和调制的信号在通过D/A转换单元(未示出)进行D/A转换并通过每个发射器103进行RF生成后,通过其自身的天线104发射。
假定发射和接收天线之间存在足够的空间分集,则接收天线105中的每一者将从天线104接收三个发射信号的不同组合。每个信号被每个RF接收器106接收并向下转换成基带,随后被A/D转换器(未示出)数字化。如果yn是由第n个接收天线105接收到的信号,xn是由第n个发射天线104发射的信号,并且N是噪声,则这可通过以下三个公式来描述:
y1=x1H11+x2H12+x3H13+N
y2=x1H21+x2H22+x3H23+N
y3=x1H31+x2H32+x3H33+N
假设这是一个具有三个未知量的三个等式的系统,那么这就是信号处理子系统107推导出x1、x2和x3的线性代数的问题了(假设N在足够低的水平,允许对信号进行解码):
x1=y1H-1 11+y2H-1 12+y3H-1 13
x2=y1H-1 21+y2H-1 22+y3H-1 23
x3=y1H-1 31+y2H-1 32+y3H-1 33
一旦这样推导出三个发射信号xn,它们就被信号处理子系统107解调、解码和纠错,以恢复出原来由分配器101分开的三个比特流。这些比特流在合并器单元108中合并,并从数据输出109中输出为单数据流。假设系统强健性能够克服噪声损伤,那么数据输出109产生的比特流将和引入到数据输入100中的比特流一样。
尽管刚才所述的现有技术系统通常有效最多至4个天线,或许最多至10个之多的天线,但由于在本公开的背景技术部分中描述的原因,具有大量天线(例如,25个、100个或1000个)时其变得很不实际。
通常,这样的现有技术系统是双向的,返回路径以完全相同的方式实现,但是反过来,在通信信道的每一侧都具有发射和接收子系统。
图2示出了本发明的一个实施例,其中基站(BS)200配置有广域网(WAN)接口(例如,用于通过T1或其他高速连接接入互联网)201并且提供有一定数量的(N个)天线202。我们暂且使用术语“基站”来指代与固定位置的一组客户端进行无线通信的任何无线站点。基站的示例为无线局域网(WLAN)中的接入点,或WAN天线塔或天线阵列。有一些客户端设备203-207,每个具有单天线,基站200通过无线方式对它们进行服务。虽然出于该示例的目的最容易认为这种基站位于该基站正在为客户端设备203-207提供服务的办公环境中,其中客户端设备203-207是配备无线网络的个人计算机,但是该架构将适用于其中基站正在为无线客户端提供服务的位于室内外的大量应用。例如,基站能够设在蜂窝式电话塔处,或以广播电视塔为基础。在一个实施例中,基站200定位在地面上并且被配置为以HF频率(例如,高达24MHz的频率)向上发射以使信号从电离层反弹回来,如在2004年4月2日提交的名称为“SYSTEM AND METHOD FORENHANCING NEAR VERTICAL INCIDENCE SKYWAVE(“NVIS”)COMMUNICATION USING SPACE-TIME CODING”(使用空时编码来增强近垂直入射天波(“NVIS”)通信的系统和方法)且序列号为10/817,731的共同待审专利申请中所述,所述共同待审专利申请转让给本专利申请的受让人并且以引用方式并入本文。
上文示出的与基站200和客户端设备203-207相关联的某些细节仅出于示例性目的并且不需要遵守本发明的基本原理。例如,基站可经由WAN接口201连接至多种不同类型的广域网,包括专用广域网,诸如用于数字视频分发的那些。相似地,客户端设备可以是任何种类的无线数据处理和/或通信设备,包括但不限于蜂窝式电话、个人数字助理(“PDA”)、接收器和无线摄像机。
在一个实施例中,基站的n个天线202在空间上是分开的,使得所述天线各自发射和接收非空间相关的信号,就好像基站是现有技术的MIMO收发器一样。如在背景技术中所述,天线以不到λ/6(即,1/6波长)间隔放置的实验已经做出,其成功地实现了从MIMO的吞吐量提升,但一般来说,这些基站天线越进一步分开放置,系统的性能就越好,λ/2是令人满意的最小距离。当然,本发明的基本原理不限于天线间任何特定的分离。
注意,单个基站200可以很好地使其天线相隔很远定位。例如,在HF频谱中,天线可以相隔10米或更远(例如,在上文提及的NVIS具体实施中)。如果使用100个这种天线,则基站的天线阵列可以充分地占据若干平方公里。
除了空间分集技术之外,为了提高系统的有效吞吐量,本发明的一个实施例将信号极化。通过极化来提高信道容量是一种公知的技术,其已经被卫星电视供应商使用了很多年。使用极化技术,可以使多个(例如,三个)基站或用户天线彼此非常接近,并且仍然是非空间相关的。尽管常规的RF系统通常将仅受益于极化的二维(例如,x和y)分集,但是本文描述的架构可进一步受益于极化的三维(x、y和z)分集。
除了空间和极化分集之外,本发明的一个实施例采用具有近乎正交的辐射方向图(pattern)的天线,以经由方向图分集来改善链路性能。方向图分集可改善MMO系统的容量和错误率性能,且其相比于其他天线分集技术的优点已在以下论文中表明:
[13]L.Dong,H.Ling,and R.W.Heath Jr.,“Multiple-input multiple-output wireless communication systems using antenna patterndiversity,”Proc.IEEE Glob.Telecom.Conf.,vol.1,pp.997–1001,Nov.2002(L.Dong、H.Ling和R.W.Heath Jr.,“使用天线方向图分集的多输入多输出无线通信系统”,IEEE全球电信会议论文集,第1卷,第997–1001页,2002年11月)
[14]R.Vaughan,“Switched parasitic elements for antennadiversity,”IEEE Trans.Antennas Propagat.,vol.47,pp.399–405,Feb.1999(R.Vaughan,“用于天线分集的切换式寄生元件”,IEEE天线与传播学报,第47卷,第399–405页,1999年2月)
[15]P.Mattheijssen,M.H.A.J.Herben,G.Dolmans,and L.Leyten,“Antenna-pattern diversity versus space diversity for use athandhelds,”IEEE Trans.on Veh.Technol.,vol.53,pp.1035–1042,July 2004(P.Mattheijssen、M.H.A.J.Herben、G.Dolmans和L.Leyten,“在手持设备处使用的天线方向图分集对空间分集”,IEEE车辆技术学报,第53卷,第1035–1042页,2004年7月)
[16]C.B.Dietrich Jr,K.Dietze,J.R.Nealy,and W.L.Stutzman,“Spatial,polarization,and pattern diversity for wireless handheldterminals,”Proc.IEEE Antennas and Prop.Symp.,vol.49,pp.1271–1281,Sep.2001(C.B.Dietrich Jr、K.Dietze、J.R.Nealy和W.L.Stutzman,“用于无线手持式终端的空间、极化和方向图分集”,IEEE天线和传播研讨会论文集,第49卷,第1271–1281页,2001年9月)
[17]A.Forenza and R.W.Heath,Jr.,“Benefit of Pattern Diversity Via2-element Array of Circular Patch Antennas in Indoor ClusteredMIMO Channels”,IEEE Trans.on Communications,vol.54,no.5,pp.943-954,May 2006(A.Forenza和R.W.Heath,Jr.,“在室内群集MIMO信道中经由圆形贴片天线二元阵列的方向图分集的优点”,IEEE通信学报,第54卷,第5期,第943-954页,2006年5月)
使用方向图分集,可以使多个基站或用户天线彼此非常接近,并且仍然是非空间相关的。
图3提供了图2中所示的基站200和客户端设备203-207的一个实施例的额外细节。出于简化的目的,将基站300显示为具有仅三个天线305和仅三个客户端设备306-308。然而,需要注意的是,本文所描述的本发明的实施例可以用几乎无限数量的天线305(即,仅由可用的空间和噪声来限制)和客户端设备306-308来实现。
图3与图1所示的现有技术MIMO架构类似,其中,两者在通信信道的每一侧具有三个天线。显著的区别在于,在现有技术的MIMO系统中,图1右侧的三个天线105彼此之间全部是固定距离(例如,集成在单个设备上),并且从天线105中的每一者接收到的信号一起在信号处理子系统107中得到处理。相比之下,在图3中,图右侧的三个天线309各自耦合到不同的客户端设备306-308,所述客户端设备中的每一者可分布在基站305的范围内的任何地方。鉴于此,每个客户端设备接收到的信号在其编码、调制、信号处理子系统311中独立于其他两个接收到的信号而得到处理。因此,与多输入(即,天线105)多输出(即,天线104)“MIMO”系统相比,图3示出了多输入(即,天线309)分布式输出(即,天线305)系统,在下文中称为“MIDO”系统。
注意,本专利申请使用与之前的专利申请不同的术语用法,以更好地符合学术界及行业惯例。在之前所引用的于2004年4月2日提交的名称为“SYSTEM AND METHOD FOR ENHANCING NEAR VERTICALINCIDENCE SKYWAVE(“NVIS”)COMMUNICATION USING SPACE-TIME CODING”(用于使用空时编码来增强近垂直入射天波(“NVIS”)通信的系统和方法)的共同待审专利申请序列号10/817,731以及于2004年7月30日提交的专利申请No.10/902,978(本专利申请是该专利申请的部分继续申请)中,“输入”和“输出”(在SIMO、MISO、DIMO和MIDO的语境中)的含义与所述术语在本专利申请中的表意是相反的。在之前的专利申请中,“输入”是指输入至接收天线(例如,图3中的天线309)的无线信号,而“输出”是指发射天线(例如,天线305)输出的无线信号。在学术界和无线行业中,通常使用“输入”和“输出”的相反含义,其中“输入”是指输入至信道的无线信号(即,从天线305发射的无线信号),而“输出”是指从信道输出的无线信号(即,天线309所接收的无线信号)。本专利申请采用此术语用法,该用法与本段之前所引用的专利申请中的用法相反。因此,以下绘示了几个专利申请之间的术语用法等价形式:
图3中示出的MIDO架构对于给定数量的发射天线实现了类似于MIMO在SISO系统上实现的容量提升。然而,MIMO与图3中所示的特定MIDO实施例之间的一个区别是,为实现由多个基站天线提供的容量提升,每个MIDO客户端设备306-308仅需要单个接收天线,而对于MIMO,每个客户端设备至少需要与希望实现的容量倍数一样多的接收天线。假设通常有一实际限制,其限制能够在客户端设备上放置多少天线(如在背景技术中解释的),这通常将MIMO系统限制在4个至10个天线之间(4倍至10倍的容量)。因为基站300通常从固定和配备电力的位置对许多客户端设备提供服务,所以将该基站扩展为远超过10个天线,并且用合适的距离分开天线以实现空间分集是很实际的。如图所示,每个天线配备有收发器304以及编码、调制和信号处理部件303的处理能力的一部分。值得注意的是,在该实施例中,无论基站300扩展多少,每个客户端设备306-308将仅需要一个天线309,因此对于单个用户客户端设备306-308的成本将很低,并且基站300的成本可以在大基数的用户中分担。
在图4至图6中示出了可如何实现从基站300到客户端设备306-308的MIDO传输的例子。
在本发明的一个实施例中,在MIDO传输开始之前,信道被特征化。与MIMO系统一样,训练信号通过天线405中的每一者一个接一个进行传输(在本文所述的实施例中)。图4仅示出了第一个训练信号的传输,但对于三个天线405来说,共有三个分开的传输。每个训练信号由编码、调制和信号处理子系统403生成,通过D/Α转换器转换成模拟信号,并作为RF信号通过每个RF收发器404发射出去。可利用各种不同的编码、调制和信号处理技术,包括但不限于以上描述的那些(例如,里德所罗门编码、维特比编码;QAM、DPSK、QPSK调制、…等等)。
每个客户端设备406-408通过其天线409接收训练信号,并通过收发器410将该训练信号转换成基带信号。A/D转换器(未示出)在该信号被每个编码、调制和信号处理子系统411处理的地方将其转换成数字信号。然后信号特征逻辑单元320表征所得信号(例如,识别如上所述的相位和振幅失真)并将该特征存储在存储器中。这个特征处理过程类似于现有技术的MIMO系统的处理过程,一个显著的区别是,每个客户端设备仅仅计算其一个天线,而不是n个天线的特征向量。例如,使用已知模式的所述训练信号将客户端设备406的编码、调制和信号处理子系统420初始化(在制备时通过在发射的消息中接收它,或通过另一种初始化处理)。当天线405以该已知模式发射训练信号的时候,编码、调制和信号处理子系统420使用相关法来找到最强的训练信号接收模式,其将相位和振幅偏移保存起来,然后其将该模式从接收到的信号中减掉。接下来,其找到与所述训练信号相关的第二强接收模式,将相位和振幅偏移保存起来,然后其将该第二强模式从所述接收到的信号中减掉。该处理一直进行,直到存储了某固定数量的相位和振幅偏移(例如,8个),或可检测的训练信号模式下降到给定的本底噪声之下。该相位/振幅偏移的向量成为向量413的元素H11。与此同时,客户端设备407和408的编码、调制和信号处理子系统执行同样的处理,产生它们的向量元素H21和H31
所述特征存储其中的存储器可以是非易失性存储器,诸如闪存存储器或硬盘驱动器,和/或易失性存储器,诸如随机存取存储器(例如,SDRAM、RDAM)。此外,不同的客户端设备可以同时采用不同类型的存储器来存储特征信息(例如,PDA可使用闪存存储器,而笔记本计算机可使用硬盘驱动器)。在各种客户端设备或基站上,本发明的基本原理不限于任何特定类型的存储机构。
如上所述,根据所采用的方案,由于每个客户端设备406-408仅具有一个天线,故每个仅存储H矩阵的1×3行413-415。图4示出了第一训练信号传输后的阶段,这里,1×3行413-415的第一列已存储了三个基站天线405的第一个天线的信道特征信息。其余两列存储了来自其余两个基站天线的接下来的两个训练信号传输的以下信道特征。注意,出于说明目的,所述三个训练信号在分开的时间传输。如果选择了三个训练信号模式诸如互不相关,那么它们可以同时传输,从而减少训练时间。
如图5中所示,在所有三个导频传输完成之后,每个客户端设备506-508将已存储起来的矩阵H的1×3行513-515传送回基站500。为了简单起见,在图5中仅显示有一个客户端设备506传送其特征信息。结合适当的纠错编码(例如,里德所罗门编码、维特比编码、和/或涡轮码),可以使用合适的信道调制方案(例如DPSK、64QAM、OFDM)来确保基站500准确地接收行513-515中的数据。
虽然在图5中示出所有三个天线505均在接收信号,但是对于接收每1×3行513-515的传输,基站500的单天线和单收发器已经足够了。然而,在一定条件下,使用很多或所有天线505和收发器504来接收每个传输(即,在编码、调制和信号处理子系统503中使用现有技术的单输入多输出(“SIMO”)处理技术)可以产生比利用单天线505和单收发器504更佳的信噪比(“SNR”)。
当基站500的编码、调制和信号处理子系统503从每个客户端设备507-508接收所述1×3行513-515的时候,其将所述1×3行513-515存入3×3的H矩阵516中。与客户端设备一样,基站可以使用各种不同的存储技术来存储矩阵516,所述存储技术包括但不限于非易失性海量存储器(例如,硬盘)和/或易失性存储器(例如,SDRAM)。图5示出了基站500已经接收和存储了来自客户端设备509的1×3行513的阶段。当从其余客户端设备接收到1×3行514和515的时候,所述1×3行514和515可以被传输并存储在H矩阵516中,直到整个H矩阵516被存储起来。
现在将参考图6描述从基站600到客户端设备606-608的MIDO传输的一个实施例。因为每个客户端设备606-608是独立的设备,所以通常每个设备接收不同的数据传输。鉴于此,基站600的一个实施例包括可通信地定位于WAN接口601与编码、调制和信号处理子系统603之间的路由器602,该路由器602从WAN接口601获得多个数据流(格式为比特流),随后分别对应于每个客户端设备606-608将所述数据流按分开的比特流u1-u3路由发送。为此目的,该路由器602可以使用各种众所周知的路由技术。
如图6所示,随后将所述三个比特流u1-u3路由进所述编码、调制和信号处理子系统603中,将它们编码为统计独立的纠错流(例如,使用里德所罗门、维特比、或涡轮码),并使用对信道合适的调制方案(诸如DPSK、64QAM或OFDM)将它们调制。此外,图6中所示的实施例包括信号预编码逻辑单元630,基于信号特征矩阵616,该信号预编码逻辑单元630用于对从每个天线605发射来的信号进行唯一编码。更具体地讲,在一个实施例中,预编码逻辑单元630将图6中的三个比特流u1-u3与H矩阵616的逆矩阵相乘,得到三个新的比特流u’1-u’3,而不是将三个经编码和调制的比特流中的每一者路由到分开的天线(如图1中进行的)。然后,D/A转换器(未示出)将所述三个预编码比特流转换为模拟信号,收发器604和天线605将其作为RF信号发射出去。
在解释客户端设备606-608如何接收所述比特流之前,将描述预编码模块630执行的操作。类似于上面图1中的MIMO例子,三个源比特流中每一个比特流的经编码和调制的信号将表示为un。在图6所示的实施例中,每个ui包含来自路由器602所路由的三个比特流之一的数据,每个这样的比特流旨在用于三个客户端设备606-608中的一个。
然而,不同于图1的MIMO例子,那里,每个xi由每个天线104发射,在图6所示的本发明的实施例中,在每个客户端设备天线609处接收每个ui(加上信道中存在的任何噪声N)。为了实现该结果,三个天线605中的每一者的输出(我们将其中的每一者表示为vi)是ui和特征化每个客户端设备的信道的H矩阵的函数。在一个实施例中,编码、调制和信号处理子系统603内的预编码逻辑单元630通过执行下列公式来计算每个vi
v1=u1H-1 11+u2H-1 12+u3H-1 13
v2=u1H-1 21+u2H-1 22+u3H-1 23
v3=u1H-1 31+u2H-1 32+u3H-1 33
因此,不同于MIMO,其中,在信道已将信号变换之后在接收器处计算每个xi,而本文所述的本发明的实施例在信道已将信号变换之前在发射器处求解每个vi。每个天线609接收已经从其他旨在用于其他天线609的un-1比特流中分离出来的ui。每个收发器610将各自接收到的信号转换成基带信号,其中Α/D转换器(未示出)对其进行数字化,并且每个编码、调制和信号处理子系统611对其xi比特流进行解调和解码,并将其比特流发送到客户端设备将使用的数据接口612(例如,通过客户端设备上的应用程序)。
本文所述的本发明的实施例可以使用多种不同的编码和调制方案来实现。例如,在OFDM具体实施中,其中频谱被分为多个子频带,在此描述的技术可用于特征化每个单独的子频带。然而,如上所述,本发明的基本原理不限于任何特定的调制方案。
如果客户端设备606-608是便携式数据处理设备,诸如PDA、笔记本电脑和/或无线电话,那么由于客户端设备可能会从一个位置移动到另外一个位置,则信道特征可能频繁发生改变。鉴于此,在本发明的一个实施例中,基站处的信道特征矩阵616不断地得到更新。在一个实施例中,基站600周期性地(例如,每250毫秒)发出新的训练信号到每个客户端设备,随后每个客户端设备将其信道特征向量不断地传送回基站600以确保信道特征保持准确(例如,如果环境改变或客户端设备移动从而影响到信道)。在一个实施例中,在发送到每个客户端设备的实际数据信号中对训练信号进行交织。典型地,所述训练信号的吞吐量远低于所述数据信号的吞吐量,因此这对系统总的吞吐量将几乎没有影响。相应地,在该实施例中,信道特征矩阵616在基站主动与每个客户端设备进行通信时可以不断得到更新,从而当客户端设备从一个位置移动到下一个位置,或环境发生改变从而影响到信道的时候保持准确的信道特征。
图7中所示的本发明的一个实施例使用MIMO技术来改善上游通信信道(即,从客户端设备706-708到基站700的信道)。在该实施例中,基站内的上游信道特征逻辑单元741不断地对来自客户端设备中每一者的信道进行分析和特征化。更具体地讲,客户端设备706-708中的每一者将训练信号发射到基站700,信道特征逻辑单元741分析该信号(例如,就像在典型的MIMO系统中那样)以产生N×M的信道特征矩阵741,其中N是客户端设备的数量,M是基站所使用的天线的数量。图7中所示的实施例在基站处使用三个天线705和三个客户端设备706-708,这导致了存储在基站700处的3×3信道特征矩阵741。客户端设备可以将图7中所示的MIMO上行传输用于将数据传送回基站700和将信道特征向量传送回基站700两者,如图5中所示。但是和图5中所示的实施例不同的是,在图5中,每个客户端设备的信道特征向量以分开的时间进行传输,而图7中所示的方法允许从多个客户端设备同时将信道特征向量传输回基站700,从而大大降低信道特征向量对回程信道吞吐量的影响。
如上所述,每个信号的特征可以包括很多因素,包括例如相对于接收器内部的基准信号的相位和振幅、绝对基准信号、相对基准信号、特征噪声或其他因素。例如,在正交幅度调制(“QAM”)调制的信号中,所述特征可以是信号的若干多径映像的相位与振幅偏移的向量。又如,在正交频分多路复用(“OFDM”)调制的信号中,它可以是OFDM频谱中几个或所有单个分量信号(sub-signal)的相位与振幅偏移的向量。训练信号可由每个客户端设备的编码和调制子系统711生成,被D/A转换器(未示出)转换成模拟信号,并随后由每个客户端设备的发射器709从基带信号转换成RF信号。在一个实施例中,为了确保使训练信号同步,客户端设备仅在基站请求时传送训练信号(例如,以循环(round robin)的方式)。此外,可以在从每个客户端设备发送来的实际数据信号中对训练信号进行交织,或者训练信号可以和所述实际数据信号同时传输。因此,即使客户端设备706-708是移动的,上游信道特征逻辑单元741也可以连续地传输和分析该训练信号,从而确保信道特征矩阵741保持最新。
可将本发明的前述实施例所支持的总信道容量定义为min(N,M),其中M是客户端设备的数量,N是基站天线的数量。也就是说,容量由基站侧或客户端侧的天线数量所限定。鉴于此,本发明的一个实施例使用同步技术来确保在给定时间内不超过min(N,M)个天线在发射/接收。
在典型的情形下,基站700上的天线705的数量将少于客户端设备706-708的数量。图8示出了示例性的情形,其允许五个客户端设备804-808与具有三个天线802的基站进行通信。在该实施例中,在确定客户端设备804-808的总数量并且收集必要的信道特征信息(例如,如上所述)之后,基站800选择第一组与其进行通信的三个客户端810(因为min(N,M)=3,所以在该例子中是三个客户端)。在与第一组客户端810通信了指定的一段时间之后,基站就选择另一组与其通信的三个客户端811。为了均匀分配通信信道,基站800选择没有包含在第一组中的两个客户端设备807、808。此外,由于额外的天线是可用的,基站800就选择包含在第一组中的额外的客户端设备806。在一个实施例中,基站800以该方式在多组客户端之间循环,使得随时间推移为每个客户端有效分配相同量的吞吐量。例如,为了均匀地分配吞吐量,基站可以接着选择除客户端设备806之外的三个客户端设备的任何组合(即,由于客户端设备806在开始的两个循环中参与了与基站的通信)。
在一个实施例中,除了标准数据通信之外,基站还可以使用前述技术来将训练信号传送到客户端设备中的每一者,并且从客户端设备中的每一者接收训练信号和信号特征数据。
在一个实施例中,某些客户端设备或客户端设备组可以分配到不同水平的吞吐量。例如,可以把客户端设备区分优先次序,使得可以确保相对较高优先级的客户端设备比相对较低优先级的客户端设备有更多的通信周期(即,更多的吞吐量)。基于多个变量,可以对客户端设备的“优先级”进行选择,所述变量包括(例如)用户的对无线服务的预订费(例如,用户可能愿意为额外的吞吐量付出更多),和/或正通信至/自客户端设备的数据类型(例如,实时通信诸如电话语音和视频可能获得高于非实时通信诸如电子邮件的优先级)。
在一个实施例中,其中基于每个客户端设备要求的当前负载,基站动态地分配吞吐量。例如,如果客户端设备804正在直播视频流,而其他设备805-808正在执行诸如电子邮件的非实时功能,那么基站800可以给该客户端804分配相对较多的吞吐量。然而,应当注意的是,本发明的基本原理不限于任何特定的吞吐量分配技术。
如图9中所示,两个客户端设备907、908可以非常接近,使得所述客户端的信道特征实际上是相同的。结果是,基站将接收和存储两个客户端设备907、908的实际上相等的信道特征向量,因此这将不能创建对于每个客户端设备唯一的、空间分布的信号。因此,在一个实施例中,基站将确保相互距离非常接近的任何两个或更多个客户端设备被分配给不同的组。例如,在图9中,基站900首先与客户端设备904、905和908的第一组910通信;随后与客户端设备905、906、907的第二组911通信,从而确保客户端设备907和908在不同的组中。
作为另外一种选择,在一个实施例中,基站900同时与客户端设备907和908两者通信,但是使用已知的信道多路复用技术来对通信信道进行多路复用。例如,基站可以使用时分多路复用(“TDM”)、频分多路复用(“FDM”)或码分多址(“CDMA”)技术来分开客户端设备907和908之间单个的、空间相关的信号。
尽管上述每个客户端设备配备有单个天线,但可以通过使用具有多个天线的客户端设备来实现本发明的基本原理以提高吞吐量。例如,当用在上述的无线系统上时,具有2个天线的客户端将实现2倍的吞吐量提升,具有3个天线的客户端将实现3倍的吞吐量提升,等等(即,假设天线之间的空间和角度分离是足够的)。当通过具有多个天线的客户端设备循环的时候,基站可以应用同样的一般规则。例如,其可以将每个天线看作分开的客户端,并将吞吐量分配给该“客户端”,就如同它是任何其他客户端一样(例如,确保每个客户端提供有足够或相当的通信周期)。
如上所述,本发明的一个实施例利用上述的MIDO和/或MIMO信号传输技术来增加近垂直入射天波(“NVIS”)系统内的信噪比和吞吐量。参见图10,在本发明的一个实施例中,配备有N个天线1002的矩阵的第一NVIS站1001被配置为与M个客户端设备1004进行通信。所述NVIS天线1002和各种客户端设备1004的天线以和垂直方向约成15度以内的角度将信号上行传送以实现想要的NVIS并且将地面波干扰效应降到最低。在一个实施例中,天线1002和客户端设备1004使用上述各种MIDO和MIMO技术在NVIS频谱内的指定频率下(例如,在等于或低于23MHz,但通常低于10MHz的载波频率下)支持多个独立的数据流1006,从而显著提高了在指定频率下的吞吐量(即,以和统计独立的数据流的数量成正比)。
服务于给定站点的所述NVIS天线相互之间可以有很远的物理距离。考虑到低于10MHz的长波长和信号行进的长距离(多达300英里的往返距离),几百码、甚至是几英里的天线物理间隔能够在分集上提供益处。在此类条件下,单独的天线信号可以被收回到集中位置,以便用常规的有线或无线通信系统对其进行处理。作为另外一种选择,每个天线可以具有本地设施来处理其信号,然后使用常规的有线或无线通信系统来将该数据传输回集中位置。在本发明的一个实施例中,NVIS基站1001具有到互联网1010(或其他广域网)的宽带链路1015,从而为客户端设备1003提供远程、高速的无线网络访问。
在一个实施例中,基站和/或用户可以利用上述的极化/方向图分集技术,以在提供分集与提升吞吐量的同时,减小阵列大小和/或用户距离。例如,在具有HF传输的MIDO系统中,由于极化/方向图分集,用户们可位于同一位置且他们的信号不会相关联。特别地,通过使用方向图分集,一个用户可经由地波与基站通信,而另一个用户可经由NVIS与基站通信。
本发明的附加实施例
利用I/Q不平衡来进行DIDO-OFDM预编码
本发明的一个实施例采用了用于对具有正交频分多路复用(OFDM)的分布式输入分布式输出(DIDO)系统中的同相和正交(I/Q)不平衡进行补偿的系统和方法。简而言之,根据该实施例,用户设备对信道进行估计,并将该信息反馈至基站;基站计算出预编码矩阵,以消除I/Q不平衡所导致的载波间和用户间的干扰;并行数据流经由DIDO预编码被发送至多个用户设备;用户设备经由迫零(ZF)、最小均方误差(MMSE)或最大似然(ML)接收器来对数据进行解调,以抑制剩余干扰。
如下所详述的,本发明的该实施例的一些显著特征包括但不限于:
预编码以用于消除OFDM系统中来自镜像音调的载波间干扰(ICI)(归因于I/Q失配);
预编码以用于消除DIDO-OFDM系统中的用户间干扰和ICI(归因于I/Q失配);
用于经由采用块对角化(BD)预编码器的DIDO-OFDM系统中的ZF接收器来消除ICI(归因于I/Q失配)的技术;
用于经由DIDO-OFDM系统中的预编码(在发射器处)和ZF或MMSE滤波器(在接收器处)来消除用户间干扰和ICI(归因于I/Q失配)的技术;
用于经由DIDO-OFDM系统中的预编码(在发射器处)和类似于最大似然(ML)检测器的非线性检测器(在接收器处)来消除用户间干扰和ICI(归因于I/Q失配)的技术;
使用基于信道状态信息的预编码以用于消除OFDM系统中来自镜像音调的载波间干扰(ICI)(归因于I/Q失配);
使用基于信道状态信息的预编码以用于消除DIDO-OFDM系统中来自镜像音调的载波间干扰(ICI)(归因于I/Q失配);
在站点处使用I/Q失配感知DIDO预编码器(I/Q mismatch aware DIDOprecoder)以及在用户终端处使用I/Q感知DIDO接收器;
在站点处使用I/Q失配感知DIDO预编码器、在用户终端处使用I/Q感知DIDO接收器,以及使用I/Q感知信道估计器;
在站点处使用I/Q失配感知DIDO预编码器、在用户终端处使用I/Q感知DIDO接收器,以及使用I/Q感知信道估计器和I/Q感知DIDO反馈生成器(该生成器将信道状态信息从用户终端发送至站点);
在站点处使用I/Q失配感知DIDO预编码器,以及使用I/Q感知DIDO配置器(该配置器使用I/Q信道信息来执行各种功能,包括用户选择、自适应编码和调制、空时频映射或预编码器选择);
使用I/Q感知DIDO接收器,该接收器经由采用块对角化(BD)预编码器的DIDO-OFDM系统中的ZF接收器来消除ICI(归因于I/Q失配);
使用I/Q感知DIDO接收器,该接收器经由DIDO-OFDM系统中的预编码(在发射器处)和类似于最大似然检测器的非线性检测器(在接收器处)来消除ICI(归因于I/Q失配);以及
使用I/Q感知DIDO接收器,该接收器经由DIDO-OFDM系统中的ZF或MMSE滤波器来消除ICI(归因于I/Q失配)。
a.背景技术
典型无线通信系统的发射和接收信号包含同相和正交(I/Q)分量。在实际的系统中,所述同相和正交分量可能会由于混频和基带操作中的缺陷而失真。这些失真表现为I/Q相位、增益和延迟失配。相位不平衡是由调制器/解调器中的正弦和余弦并未完全正交而导致的。增益不平衡是由同相和正交分量之间的不同增幅而导致的。由于模拟电路中的I和Q轨道之间的延迟不同,还可能存在附加失真,该失真称为延迟不平衡。
在正交频分多路复用(OFDM)系统中,I/Q不平衡会导致来自镜像音调的载波间干扰(ICI)。该影响已在一些文献中得到了研究,并且在以下资料中,已提出了用于对单输入单输出SISO-OFDM系统中的I/Q失配进行补偿的方法:M.D.Benedetto and P.Mandarini,“Analysis of the effect of the I/Qbasebandfilter mismatch in an OFDM modem,”Wireless personalcommunications,pp.175–186,2000(M.D.Benedetto和P.Mandarini,“对OFDM调制解调器中I/Q基带滤波器失配的影响的分析”,《无线个人通信》,第175–186页,2000年);S.Schuchert and R.Hasholzner,“Anovel I/Q imbalance compensation scheme for the reception of OFDMsignals,”IEEE Transaction on Consumer Electronics,Aug.2001(S.Schuchert和R.Hasholzner,“用于OFDM信号接收的新型I/Q不平衡补偿方案”,IEEE消费电子产品学报,2001年8月);M.Valkama,M.Renfors,and V.Koivunen,“Advanced methods for I/Q imbalance compensation incommunication receivers,”IEEE Trans.Sig.Proc.,Oct.2001(M.Valkama、M.Renfors和V.Koivunen,“用于通信接收器中的I/Q不平衡补偿的先进方法”,IEEE信号处理学报,2001年10月);R.Rao and B.Daneshrad,“Analysis of I/Q mismatch and a cancellation scheme for OFDM systems,”IST Mobile Communication Summit,June 2004(R.Rao和B.Daneshrad,“对OFDM系统I/Q失配的分析以及消除方案”,IST移动通信峰会,2004年6月);A.Tarighat,R.Bagheri,and A.H.Sayed,“Compensationschemes and performance analysis of IQ imbalances in OFDM receivers,”Signal Processing,IEEE Transactions on[see also Acoustics,Speech,and SignalProcessing,IEEE Transactions on],vol.53,pp.3257–3268,Aug.2005(A.Tarighat、R.Bagheri和A.H.Sayed,“OFDM接收器中IQ不平衡的补偿方案及性能分析”,IEEE信号处理学报,[还可参见IEEE声学、语音及信号处理学报],第53卷,第3257–3268页,2005年8月)。
以下资料中示出了该工作向多输入多输出MIMO-OFDM系统的扩展:R.Rao and B.Daneshrad,“I/Q mismatch cancellation for MIMO OFDMsystems,”in Personal,Indoor and Mobile Radio Communications,2004;PIMRC 2004.15th IEEE International Symposium on,vol.4,2004,pp.2710–2714(R.Rao和B.Daneshrad,“MIMO-OFDM系统中的I/Q失配消除”,2004年个人、室内、移动无线通信会议;2004年IEEE第15届个人无线移动通信国际会议(PIMRC),第4卷,2004年,第2710–2714页)。对于空间多路复用(SM),请参见R.M.Rao,W.Zhu,S.Lang,C.Oberli,D.Browne,J.Bhatia,J.F.Frigon,J.Wang,P;Gupta,H.Lee,D.N.Liu,S.G.Wong,M.Fitz,B.Daneshrad,and O.Takeshita,“Multiantenna testbeds for research andeducation in wireless communications,”IEEE Communications Magazine,vol.42,no.12,pp.72–81,Dec.2004(R.M.Rao、W.Zhu、S.Lang、C.Oberli、D.Browne、J.Bhatia、J.F.Frigon、J.Wang、P;Gupta、H.Lee、D.N.Liu、S.G.Wong、M.Fitz、B.Daneshrad和O.Takeshita,“用于无线通信的研究和教育的多天线试验台”,IEEE通信杂志,第42卷,第12期,第72–81页,2004年12月);S.Lang,M.R.Rao,and B.Daneshrad,“Designand development of a 5.25GHz software defined wireless OFDM communicationplatform,”IEEE Communications Magazine,vol.42,no.6,pp.6–12,June2004(S.Lang、M.R.Rao和B.Daneshrad,“5.25GHz软件定义的无线OFDM通信平台的设计与开发”,IEEE通信杂志,第42卷,第6期,第6–12页,2004年6月);对于正交空时分组码(OSTBC),请参见A.Tarighat and A.H.Sayed,“MIMO OFDM receivers for systems with IQimbalances,”IEEE Trans.Sig.Proc.,vol.53,pp.3583–3596,Sep.2005(A.Tarighat和A.H.Sayed,“用于具有IQ不平衡的系统的MIMO OFDM接收器”,IEEE信号处理学报,第53卷,第3583–3596页,2005年9月)。
遗憾的是,目前并不存在介绍如何对分布式输入分布式输出(DIDO)通信系统中的I/Q增益和相位不平衡误差进行校正的文献。以下所述的本发明的实施例提供了一种针对这些问题的解决方案。
DIDO系统包括一个具有分布式天线的基站,该基站在利用相同于常规SISO系统的无线资源(即,相同的时隙持续时间和频带)时,发送并行数据流(经由预编码)至多个用户,以增强下行链路吞吐量。S.G.Perlman和T.Cotter于2004年7月30日提交的名称为“System and Method forDistributed Input-Distributed Output Wireless Communications”(用于分布式输入分布式输出无线通信的系统和方法)的专利申请序列号10/902,978(“在先专利申请”)给出了对DIDO系统的详细说明,该专利申请被转让至本专利申请的受让人且以引用方式并入本文。
存在多种方式实现DIDO预编码器。一种解决方案是以下资料中所描述的块对角化(BD):Q.H.Spencer,A.L.Swindlehurst,and M.Haardt,“Zero forcing methods for downlink spatial multiplexing in multiuser MIMOchannels,”IEEE Trans.Sig.Proc.,vol.52,pp.461–471,Feb.2004(Q.H.Spencer、A.L.Swindlehurst和M.Haardt,“用于多用户MIMO信道中下行链路空间多路复用的迫零方法”,IEEE信号处理学报,第52卷,第461–471页,2004年2月);K.K.Wong,R.D.Murch,and K.B.Letaief,“Ajoint channel diagonalization for multiuser MIMO antenna systems,”IEEETrans.Wireless Comm.,vol.2,pp.773–786,Jul 2003(K.K.Wong、R.D.Murch和K.B.Letaief,“用于多用户MIMO天线系统的联合信道对角化”,IEEE无线通信学报,第2卷,第773–786页,2003年7月);L.U.Choi and R.D.Murch,“A transmit preprocessing technique for multiuserMIMO systems using a decomposition approach,”IEEE Trans.WirelessComm.,vol.3,pp.20–24,Jan 2004(L.U.Choi和R.D.Murch,“使用分解法的针对多用户MIMO系统的发射预处理技术”,IEEE无线通信学报,第3卷,第20–24页,2004年1月);被接受发表在IEEE Trans.Sig.Proc.,Sep.2005(IEEE信号处理学报,2005年9月)中的Z.Shen,J.G.Andrews,R.W.Heath,and B.L.Evans,“Low complexity user selection algorithms formultiuser MIMO systems with block diagonalization”(Z.Shen、J.G.Andrews、R.W.Heath和B.L.Evans,“用于具有块对角化的多用户MIMO系统的低复杂度用户选择算法”);被提交至IEEE Trans.WirelessComm.,Oct.2005(IEEE无线通信学报,2005年10月)的Z.Shen,R.Chen,J.G.Andrews,R.W.Heath,and B.L.Evans,“Sum capacity of multiuserMIMO broadcast channels with block diagonalization”(Z.Shen、R.Chen、J.G.Andrews、R.W.Heath和B.L.Evans,“具有块对角化的多用户MIMO广播信道的总容量”);以及被接受至IEEE Trans.on Signal Processing,2005(IEEE信号处理学报,2005年)的R.Chen,R.W.Heath,and J.G.Andrews,“Transmit selection diversity for unitary precoded multiuser spatialmultiplexing systems with linear receivers”(R.Chen、R.W.Heath和J.G.Andrews,“具有线性接收器的一体化预编码多用户空间多路复用系统的发射选择分集”)。本文档中给出的用于I/Q补偿的方法设想了BD预编码器,但该预编码器可被扩展至DIDO预编码器的任何类型。
在DIDO-OFDM系统中,I/Q失配会导致两种影响:ICI和用户间干扰。就像在SISO-OFDM系统中那样,前者是来自镜像音调的干扰所造成的。后者是由于以下事实引起的,即I/Q失配会破坏DIDO预编码器的正交性,从而跨越用户产生干扰。可通过在此所述的方法,在发射器和接收器处消除这两种类型的干扰。描述了三种用于DIDO-OFDM系统中的I/Q补偿的方法,且针对具有和不具有I/Q失配的系统,比较了它们的性能。基于利用DIDO-OFDM原型所执行的模拟和实际测量两者,展示了结果。
本发明的实施例是在先专利申请的扩展。特别地,这些实施例与在先专利申请的以下特征有关:
如在先专利申请中所描述的系统,其中I/Q轨道会受到增益和相位不平衡的影响;
在发射器处,使用针对信道估计所采用的训练信号来计算具有I/Q补偿的DIDO预编码器;并且
信号特征数据考虑到了由于I/Q不平衡所导致的失真,且在发射器处,根据本文档中所提出的方法,使用该信号特征数据来计算DIDO预编码器。
b.本发明的实施例
首先,将描述本发明的数学模型和框架。
在展示解决方案之前,解释核心数学概念是有用的。我们通过假设I/Q增益和相位不平衡(本描述中并未包含相位延迟,但该相位延迟将在DIDO-OFDM形式的算法中被自动处理)来对其进行解释。为解释基本理念,假设我们想将两个复数s=sI+jsQ和h=hI+jhQ相乘,且使得x=hs。我们使用下标来代表同相和正交分量。调用
xI=sIhI-sQhQ
xQ=sIhQ+sQhI
其矩阵形式可重写为
x I x Q = h I - h Q h Q h I s I s Q .
通过信道矩阵(H)来标记幺正变换。现在假设s为所发送的符号,且h为信道。可通过创建以下非幺正变换来对I/Q增益和相位不平衡的存在进行建模
x I x Q = h 11 - h 12 h 21 h 22 s I s Q . - - - ( A )
该技巧的作用是确认可写为
h 11 h 12 h 21 h 22 = 1 2 h 11 + h 22 h 12 - h 21 - ( h 12 - h 21 ) h 11 + h 22 + 1 2 h 11 - h 22 h 12 + h 21 h 12 + h 21 h 22 - h 11 = 1 2 h 11 + h 22 h 12 - h 21 - ( h 12 - h 21 ) h 11 + h 22 + 1 2 h 11 - h 22 - ( h 12 + h 21 ) h 12 + h 21 h 11 - h 22 1 0 0 - 1 .
现对(A)进行重写
x I x Q = h 11 + h 22 h 12 - h 21 - ( h 12 - h 21 ) h 11 + h 22 s I s Q + 1 2 h 11 - h 22 - ( h 12 + h 21 ) h 12 + h 21 h 11 - h 22 1 0 0 - 1 s I s Q = 1 2 h 11 + h 22 h 12 - h 21 - ( h 12 - h 21 ) h 11 + h 22 s I s Q + 1 2 h 11 - h 22 - ( h 12 + h 21 ) h 12 + h 21 h 11 - h 22 s I - s Q - - - ( 5 )
我们进行以下定义
这两个矩阵具有幺正结构,因此可被等价地表示为复数标量
he=h11+h22+j(h21-h12)
hc=h11-h22+j(h21+h12).
使用所有这些观察结果,我们可将有效等式推导回具有两个信道:等效信道he和共轭信道hc的标量形式。那么,(5)中的有效变换变为
x=hes+hcs*.
我们将第一信道称为等效信道,并且将第二信道称为共轭信道。如果不存在I/Q增益和相位不平衡,则该等价信道即为我们所要观察的信道。
使用类似的论证,具有I/Q增益和相位不平衡的离散时间MIMO NxM系统的输入-输出关系可示为(通过使用标量等价形式来构建它们的矩阵对应形式)
x [ t ] = &Sigma; l = 0 L h e [ l ] s [ t - l ] + h c [ l ] s * [ t - l ]
其中t为离散时间指数,he,hc∈CMxN,s=[s1,...,sN,],x=[x1,...,xM]且L为信道抽头的数量。
在DIDO-OFDM系统中,表示了频域中所接收的信号。如果满足以下等式,则从信号和系统重新调用:
FFTK{s[t]}=S[k],则FFTK{s*[t]}=S*[(-k)]=S*[K-k]for k=0,1,...,K-1.
利用OFDM,对于子载波k,MIMO-OFDM系统的等价输入-输出关系为
x &OverBar; [ k ] = H e [ k ] s &OverBar; [ k ] + H c [ k ] s &OverBar; * [ K - k ] - - - ( 1 )
其中k=0、1...,K-1为OFDM子载波索引,He和Hc分别代表等价和共轭信道矩阵,定义如下
H e [ k ] = &Sigma; l = 0 L h e [ l ] e - j 2 &Pi;k K l
H c [ k ] = &Sigma; l = 0 L h c [ l ] e - j 2 &Pi;k K l .
(1)中的第二基值为来自镜像音调的干扰。可通过构建以下迭式矩阵系统(请仔细注意共轭值)来对其进行处理
x &OverBar; [ k ] x &OverBar; * [ K - k ] = H e [ k ] H c [ k ] H c * [ K - k ] H e * [ K - k ] s &OverBar; [ k ] s &OverBar; * [ K - k ]
其中分别为发射和接收符号在频域中的向量。
通过使用该方法,构建了有效矩阵,以用于DIDO操作。例如,利用DIDO 2×2输入-输出关系(假设每个用户具有单个接收天线),第一用户设备考虑以下等式(在不存在噪声时)
x &OverBar; 1 [ k ] x &OverBar; 1 * [ K - k ] = H e ( 1 ) [ k ] H c ( 1 ) [ k ] H c ( 1 ) * [ K - k ] H e ( 1 ) * [ K - k ] W s &OverBar; 1 [ k ] s &OverBar; 1 * [ K - k ] s &OverBar; 2 [ k ] s &OverBar; 2 * [ K - k ] - - - ( 2 )
而第二用户注意以下等式
x &OverBar; 2 [ k ] x &OverBar; 2 * [ K - k ] = H e ( 2 ) [ k ] H c ( 2 ) [ k ] H c ( 2 ) * [ K - k ] H e ( 2 ) * [ K - k ] W s &OverBar; 1 [ k ] s &OverBar; 1 * [ K - k ] s &OverBar; 2 [ k ] s &OverBar; 2 * [ K - k ] - - - ( 3 )
其中分别代表矩阵He和Hc的第m行,且W∈C4x4为DIDO预编码矩阵。根据(2)和(3),观察到用户m所接收的符号受I/Q不平衡所导致的两个干扰源(即,来自镜像音调的载波间干扰(即,)以及用户间干扰(即,和p≠m,))的影响。(3)中的DIDO预编码矩阵W被设计成用于消除这两个干扰项。
可用于此处的DIDO预编码器存在多个不同的实施例,这取决于接收器处所应用的联合检测。在一个实施例中,采用了根据合成信道(而不是)所计算的块对角化(BD)(参见例如,Q.H.Spencer,A.L.Swindlehurst,and M.Haardt,“Zeroforcing methods for downlink spatialmultiplexing in multiuser MIMO channels,”IEEE Trans.Sig.Proc.,vol.52,pp.461–471,Feb.2004(Q.H.Spencer、A.L.Swindlehurst和M.Haardt,“用于多用户MIMO信道中下行链路空间多路复用的迫零方法”,IEEE信号处理学报,第52卷,第461–471页,2004年2月);K.K.Wong,R.D.Murch,and K.B.Letaief,“A joint channel diagonalization for multiuserMIMO antenna systems,”IEEE Trans.Wireless Comm.,vol.2,pp.773–786,Jul 2003(K.K.Wong、R.D.Murch和K.B.Letaief,“用于多用户MIMO天线系统的联合信道对角化”,IEEE无线通信学报,第2卷,第773–786页,2003年7月);L.U.Choi and R.D.Murch,“A transmit preprocessingtechnique for multiuser MIMO systems using a decomposition approach,”IEEE Trans.Wireless Comm.,vol.3,pp.20–24,Jan 2004(L.U.Choi和R.D.Murch,“使用分解法的针对多用户MIMO系统的发射预处理技术”,IEEE无线通信学报,第3卷,第20–24页,2004年1月);被接受发表在IEEE Trans.Sig.Proc.,Sep.2005(IEEE信号处理学报,2005年9月)的Z.Shen,J.G.Andrews,R.W.Heath,and B.L.Evans,“Low complexity userselection algorithms for multiuser MIMO systems with block diagonalization”(Z.Shen、J.G.Andrews、R.W.Heath和B.L.Evans,“用于具有块对角化的多用户MIMO系统的低复杂度用户选择算法);被提交至IEEE Trans.Wireless Comm.,Oct.2005(IEEE无线通信学报,2005年10月)的Z.Shen,R.Chen,J.G.Andrews,R.W.Heath,and B.L.Evans,“Sum capacity ofmultiuser MIMO broadcast channels with block diagonalization”(Z.Shen、R.Chen、J.G.Andrews、R.W.Heath和B.L.Evans,“具有块对角化的多用户MIMO广播信道的总容量”)。因此,目前DIDO系统选择预编码器,以使得
H w &Delta; = H e ( 1 ) [ k ] H c ( 1 ) [ k ] H c ( 1 ) * [ K - k ] H e ( 1 ) * [ K - k ] H e ( 2 ) [ k ] H c ( 2 ) [ k ] H c ( 2 ) * [ K - k ] H e ( 2 ) * [ K - k ] W = &alpha; 1,1 0 0 0 0 &alpha; 1,2 0 0 0 0 &alpha; 2,1 0 0 0 0 &alpha; 2,2 &Delta; = H w ( 1,1 ) H w ( 1,2 ) H w ( 2,1 ) H w ( 2,2 ) - - - ( 4 )
其中αi,j为常数,且该方法是有益的,因为通过使用该预编码器,由于在发射器处完全消除了I/Q增益和相位不平衡的影响,可使DIDO预编码器的其他方面保持原样。
还可将DIDO预编码器设计为预先消除用户间干扰,而不预先消除归因于IQ不平衡的ICI。利用该方法,接收器(而非发射器)可通过采用以下所述的接收滤波器之一来对IQ不平衡进行补偿。那么,(4)中的预编码设计标准可被修改为
H w &Delta; = H e ( 1 ) [ k ] H c ( 1 ) [ k ] H c ( 1 ) * [ K - k ] H e ( 1 ) * [ K - k ] H e ( 2 ) [ k ] H c ( 2 ) [ k ] H c ( 2 ) * [ K - k ] H e ( 2 ) * [ K - k ] W = &alpha; 1,1 &alpha; 1,2 0 0 &alpha; 2,1 &alpha; 2,2 0 0 0 0 &alpha; 3,3 &alpha; 3,4 0 0 &alpha; 4,3 &alpha; 4,4 &Delta; = H w ( 1,1 ) H w ( 1,2 ) H w ( 2,1 ) H w ( 2,2 ) - - - ( 5 )
x &OverBar; 1 [ k ] = H w ( 1,1 ) H w ( 1,2 ) s &OverBar; 1 [ k ] s &OverBar; 2 [ k ] &OverBar; - - - ( 6 )
x &OverBar; 2 [ k ] = H w ( 2,1 ) H w ( 2,2 ) s &OverBar; 1 [ k ] s &OverBar; 2 [ k ] &OverBar; - - - ( 7 )
其中对于第m个发射符号而言,为用户m所接收的符号向量。
在接收侧,为了对发射符号向量进行估计,用户m采用ZF滤波器,且所估计的符号向量被给定为
虽然ZF滤波器最易于理解,但接收器还可应用任意数量的本领域技术人员所知的其他滤波器。一个普遍的选择是MMSE滤波器,其中
并且ρ为信噪比。作为另外一种选择,接收器可执行最大似然符号检测(或者球解码器、迭代变化)。例如,第一用户可使用ML接收器,并求解以下最优化
s ^ m ( ML ) [ k ] = arg min s 1 , s 2 &Element; S y &OverBar; 1 [ k ] - H w ( 1,1 ) H w ( 1,2 ) s 1 [ k ] s 2 [ k ] - - - ( 1 )
其中S为所有可能的向量s的集合,且取决于星座图大小。该ML接收器提供较佳的性能,但在接收器处要求更高的复杂度。类似的一组等式应用于第二用户。
注意,(6)和(7)中的被假设为具有零项。该假设仅在发射预编码器能够完全消除针对(4)中的标准的用户间干扰的情况下有效。类似地,仅在发射预编码器能够完全消除载波间干扰(即,来自镜像音调)的情况下为对角矩阵。
图13显示了具有I/Q补偿的DIDO-OFDM系统的框架的一个实施例,所述DIDO-OFDM系统包括位于基站(BS)内的IQ-DIDO预编码器1302、传送信道1304、位于用户设备内的信道估计逻辑单元1306,以及ZF、MMSE或ML接收器1308。所述信道估计逻辑单元1306经由训练符号对信道进行估计,并将这些估计反馈至AP内的预编码器1302。BS计算DIDO预编码器权重(矩阵W),以预先消除因I/Q增益和相位不平衡所致的干扰以及用户间干扰,并将数据通过无线信道1304传送至用户。用户设备m采用ZF、MMSE或ML接收器1308,通过利用单元1304所提供的信道估计来消除剩余干扰,并对数据进行解调。
可使用以下三个实施例来实现该I/Q补偿算法:
方法1—TX补偿:在该实施例中,发射器根据(4)中的标准来计算预编码矩阵。在接收器处,用户设备采用“简化的”ZF接收器,其中被假设为对角矩阵。因此,等式(8)简化为
s ^ m [ k ] 1 / &alpha; m , 1 0 0 1 / &alpha; m , 2 x &OverBar; m [ k ] . - - - ( 11 )
方法2-RX补偿:在该实施例中,发射器基于被接受至IEEE Trans.onSignal Processing,2005(IEEE信号处理学报,2005年)的R.Chen,R.W.Heath,and J.G.Andrews,“Transmit selection diversity for unitary precodedmultiuser spatial multiplexing systems with linear receivers”(R.Chen、R.W.Heath和J.G.Andrews,“具有线性接收器的一体化预编码多用户空间多路复用系统的发射选择分集”)中描述的常规BD方法,计算预编码矩阵,且不针对(4)中的标准来消除载波间和用户间干扰。利用该方法,(2)和(3)中的预编码矩阵简化为
W = w 1,1 [ k ] 0 w 1,2 [ k ] 0 0 w 1,1 * [ K - k ] 0 w 1,2 * [ K - k ] w 2,1 [ k ] 0 w 2,2 [ k ] 0 0 w 2,1 * [ K - k ] 0 w 2,2 * [ K - k ] . - - - ( 12 )
在接收器处,用户设备如(8)中那样采用ZF滤波器。注意,该方法并不如上述方法1中那样,在发射器处预先消除干扰。因此,其在接收器处消除载波间干扰,但并不能消除用户间干扰。此外,相比于方法1要求反馈两者,在方法2中,用户仅需要反馈针对发射器的向量以计算DIDO预编码器。因此,方法2特别适用于具有低速率反馈信道的DIDO系统。另一方面,方法2需要用户设备处具有稍微较高的计算复杂度,以在(8)而非(11)中计算ZF接收器。
方法3-TX-RX补偿:在一个实施例中,将上述两种方法合并。发射器如(4)中那样计算预编码矩阵,而接收器根据(8)对发射符号进行估计。
I/Q不平衡(无论是相位不平衡、增益不平衡、还是延迟不平衡)会对无线通信系统中的信号质量造成有害的降级。针对此原因,以往的电路硬件被设计成具有极低的不平衡。然而,如上所述,可通过使用发射预编码形式的数字信号处理和/或特定接收器,来修正该问题。本发明的一个实施例包括具有若干新功能单元的系统,每个单元对于实现OFDM通信系统或DIDO-OFDM通信系统中的I/Q校正均是重要的。
本发明的一个实施例使用基于信道状态信息的预编码,以消除OFDM系统中来自镜像音调的载波间干扰(ICI)(归因于I/Q失配)。如图11所示,根据该实施例的DIDO发射器包括用户选择器单元1102、多个编码调制单元1104、对应的多个映射单元1106、DIDO IQ感知预编码单元1108、多个RF发射器单元1114、用户反馈单元1112以及DIDO配置器单元1110。
用户选择器单元1102基于反馈单元1112所获取的反馈信息,选择与多个用户U1-UM相关联的数据,并将该信息提供给所述多个编码调制单元1104中的每一者。每个编码调制单元1104对每个用户的信息比特进行编码和调制,并将它们发送至映射单元1106。映射单元1106将输入比特映射至复数符号,并将结果发送至DIDO IQ感知预编码单元1108。DIDO IQ感知预编码单元1108利用反馈单元1112从用户获取的信道状态信息,计算DIDO IQ感知预编码权重,并对从映射单元1106获取的输入符号进行预编码。每一个预编码数据流均由DIDO IQ感知预编码单元1108发送至OFDM单元1115,该OFDM单元1115计算IFFT,并添加循环前缀。该信息被发送至D/A单元1116,该D/A单元1116进行数模转换,并将其发送至RF单元1114。该RF单元1114将基带信号升频至中频/射频,并将其发送至发射天线。
预编码器对常规音调和镜像音调一起执行操作,以补偿I/Q不平衡。可使用任意数量的预编码器设计标准,包括ZF、MMSE或加权MMSE设计。在优选的实施例中,预编码器完全移除归因于I/Q失配的ICI,从而使得接收器不需要执行任何附加补偿。
在一个实施例中,所述预编码器使用块对角化标准,以在不完全消除每一用户的I/Q影响(这需要额外的接收器处理)的情况下,完全消除用户间干扰。在另一个实施例中,所述预编码器使用迫零标准来完全消除因I/Q不平衡所致的用户间干扰以及ICI干扰。该实施例可在接收器处使用常规的DIDO-OFDM处理器。
本发明的一个实施例使用基于信道状态信息的预编码,以消除DIDO-OFDM系统中来自镜像音调的载波间干扰(ICI)(归因于I/Q失配),并且每个用户均使用IQ感知DIDO接收器。如图12中所示,在本发明的一个实施例中,包括接收器1202的系统包括多个RF单元1208、对应的多个A/D单元1210、IQ感知信道估计器单元1204以及DIDO反馈生成器单元1206。
所述RF单元1208接收从DIDO发射器单元1114发射的信号,将该信号降频至基带,并将该降频后的信号提供给Α/D单元1210。之后,Α/D单元1210对该信号进行模数转换,并将其发送至OFDM单元1213。OFDM单元1213移除循环前缀,并进行FFT,以将信号报告至频域。在训练周期期间,OFDM单元1213将输出发送至IQ感知信道估计单元1204,该IQ感知信道估计单元1204在频域中计算信道估计。作为另外一种选择,可在时域中计算所述信道估计。在数据周期期间,OFDM单元1213将输出发送至IQ感知接收器单元1202。该IQ感知接收器单元1202计算IQ接收器,并对所述信号进行解调/解码,以获得数据1214。IQ感知信道估计单元1204将信道估计发送至DIDO反馈生成器单元1206,该反馈生成器单元1206可对所述信道估计进行量化,并经由反馈控制信道1112而将其发送回发射器。
图12中所示的接收器1202可在任意数量的本领域技术人员已知的标准(包括ZF、MMSE、最大似然或MAP接收器)下工作。在一个优选的实施例中,接收器使用MMSE滤波器来消除因镜像音调上的IQ不平衡所致的ICI。在另一个优选的实施例中,接收器使用类似于最大似然搜索的非线性检测器来联合检测镜像音调上的符号。该方法具有改善的性能,但具有更高的复杂度。
在一个实施例中,使用IQ感知信道估计器1204来确定接收器系数,以移除ICI。因此,我们要求了这样的DIDO-OFDM系统的权益,该系统使用基于信道状态信息的预编码来消除来自镜像音调的载波间干扰(ICI)(归因于I/Q失配)、IQ感知DIDO接收器以及IQ感知信道估计器。所述信道估计器可使用常规的训练信号,或可使用在同相和正交信号上发送的专门构建的训练信号。可实施任意数量的估计算法,包括最小二乘法、MMSE或最大似然。所述IQ感知信道估计器为IQ感知接收器提供输入。
信道状态信息可通过信道互易性或通过反馈信道而被提供至站点。本发明的一个实施例包括DIDO-OFDM系统,该DIDO-OFDM系统具有I/Q-感知预编码器,以及用于将来自用户终端的信道状态信息输送至站点的I/Q感知反馈信道。反馈信道可为物理或逻辑控制信道。其可像在随机访问信道中那样被专用或共享。可通过使用用户终端(我们也要求了该用户终端的权益)处的DIDO反馈生成器来生成反馈信息。所述DIDO反馈生成器将所述I/Q感知信道估计器的输出用作输入。其可量化信道系数,或可使用任意数量的本领域已知的有限反馈算法。
用户的分配、调制及编码率、至空时频编码时隙的映射可根据所述DIDO反馈生成器的结果而变化。因此,一个实施例包括IQ感知DIDO配置器,该IQ感知DIDO配置器使用来自一个或多个用户的IQ感知信道估计来配置DIDO IQ感知预编码器,挑选调制率、编码率、允许发射的用户的子集、以及它们的至空时频编码时隙的映射。
为了评价所提出的补偿方法的性能,将比较三个DIDO 2×2系统:
1.具有I/Q失配:通过所有音调(除了DC音调和边缘音调)进行发射,且不对I/Q失配进行补偿;
2.具有I/Q补偿:通过所有音调进行发射,且通过使用上述“方法1”来对I/Q失配进行补偿;
3.理想的:仅通过奇数个音调对数据进行发射,以避免用户间干扰以及归因于I/Q失配的载波间(即,来自镜像音调的)干扰。
在下文中,展示了真实传播情形中利用DIDO-OFDM原型进行测量所获得的结果。图14示出了从上述三个系统获得的64-QAM星座图。这些星座图是在相同的用户位置以及固定平均信噪比(约45dB)的情况下获得的。第一星座图1401是非常嘈杂的(由于I/Q不平衡所致的来自镜像音调的干扰)。第二星座图1402示出了归因于I/Q补偿的一些改进。注意,第二星座图1402并没有星座图1403所示的理想情况那样干净(由于可能存在产生载波间干扰(ICI)的相位噪声)。
图15示出了在具有和不具有I/Q失配的情况下,具有64-QAM和3/4编码率的DIDO 2×2系统的平均SER(符号错误率)1501和每用户实际吞吐量(goodput)1502性能。OFDM带宽为250KHz,具有64个音调和循环前缀长度Lcp=4。由于在理想的情况下,我们仅通过音调的子集来发射数据,因此根据平均每音调的发射功率(而非总的发射功率)来评价SER和实际吞吐量性能,以保证跨越不同情况的公平比较。此外,在以下结果中,我们使用发射功率的归一化值(以分贝表示),因为我们此处的目标是比较不同方案的相对(而非绝对)性能。图15示出了在存在I/Q不平衡的情况下,SER饱和且未达到目标SER(约10-2),这与A.Tarighat and A.H.Sayed,“MIMO OFDM receivers for systems with IQ imbalances,”IEEETrans.Sig.Proc.,vol.53,pp.3583–3596,Sep.2005(A.Tarighat和A.H.Sayed,“用于具有IQ不平衡的系统的MIMO OFDM接收器”,IEEE信号处理学报,第53卷,第3583–3596页,2005年9月)中报告的结果相一致。该饱和效应是由于以下事实导致的,即信号功率和干扰功率(来自镜像音调)两者随着TX功率的增大而增大。然而,通过所提出的I/Q补偿方法,可消除干扰,并获得较好的SER性能。注意,由于64-QAM调制需要较大的发射功率,因此,由于DAC中的振幅饱和效应而导致SER在高SNR处具有细微的增大。
此外,观察到在存在I/Q补偿的情况下,SER性能非常接近理想情况。这两种情况之间,TX功率的2dB间隙是由于可能的相位噪声(该相位噪声会在相邻OFDM音调之间产生附加干扰)造成的。最后,实际吞吐量曲线1502显示了当应用I/Q方法时,其相比于理想情况可发射两倍的数据,因为我们使用了所有的数据音调而非仅奇数音调(如针对理想情况那样)。
图16绘示了在具有I/Q补偿和不具有I/Q补偿的情况下,不同QAM星座图的SER性能。我们观察到,在该实施例中,所提出的方法对于64-QAM星座图而言是特别有利的。对于4-QAM和16-QAM而言,I/Q补偿方法产生了比具有I/Q失配的情况更差的性能,这可能是因为所提出的方法要求更大的功率来允许实现数据发射和来自镜像音调的干扰消除两者。此外,由于星座点之间的较大的最小距离,4-QAM和16-QAM并不像64-QAM那样受到I/Q失配的影响。参见A.Tarighat,R.Bagheri,and A.H.Sayed,“Compensation schemes and performance analysis of IQ imbalances inOFDM receivers,”IEEE Transactions on Signal Processing,vol.53,pp.3257–3268,Aug.2005(A.Tarighat、R.Bagheri和A.H.Sayed,“OFDM接收器中IQ不平衡的补偿方案及性能分析”,IEEE信号处理学报,第53卷,第3257–3268页,2005年8月)。还可通过将I/Q失配与针对4-QAM和16-QAM的理想情况进行比较而在图16中观察到这一点。因此,对于4-QAM和16-QAM的情况而言,具有干扰消除(来自镜像音调)的DIDO预编码器所需要的附加功率并不能为I/Q补偿的小有益效果而证为合理。注意,可通过采用上述I/Q补偿方法2和3来解决该问题。
最后,在不同的传播情况下,测量了上述三个方法的相对SER性能。还描述了在存在I/Q失配的情况下的SER性能,以供参考。图17示出了针对载波频率为450.5MHz且带宽为250KHz的具有64-QAM的DIDO 2×2系统,在两个不同的用户位置处所测得的SER。在位置1,用户与处于不同房间且处于NLOS(无视距)状态的BS相距约6λ。在位置2,用户与处于LOS(视距)状态的BS相距约1λ。
图17示出了所有三种补偿方法均比不进行补偿的情况表现突出。此外,应当注意的是,在任何信道情形下,方法3均胜过其他两种补偿方法。方法1和方法2的相对性能取决于传播情况。通过实际测量活动,观察到方法1大体上胜过方法2,因为其预先消除了(在发射器处)I/Q不平衡所导致的用户间干扰。当该用户间干扰极小时,如图17的曲线图1702中所示,方法2可胜过方法1,因为其不会遭受因I/Q补偿预编码器所导致的功率损耗。
到目前为止,已通过仅考虑有限组传播情形(如图17中所示)而对不同方法进行了比较。在下文中,在理想i.i.d.(独立且恒等分布的)信道中测量这些方法的相对性能。利用发射和接收侧的I/Q相位和增益不平衡来模拟DIDO-OFDM系统。图18示出了在仅发射侧具有增益不平衡的情况下(即,在第一发射链路的I轨上具有增益0.8,在其他轨上具有增益1),所提出的方法的性能。观察到方法3胜过了所有其他方法。此外,与图17的曲线图1702中位置2处获得的结果相比,在i.i.d.信道中,方法1比方法2执行得更好。
因此,给出了三种新型方法来补偿上述DIDO-OFDM系统中的I/Q不平衡,方法3胜过所提出的其他补偿方法。在具有低速率反馈信道的系统中,可使用方法2来减小DIDO预编码器所需的反馈量,但会导致较差的SER性能。
II.自适应DIDO发射方案
现在将描述用于增强分布式输入分布式输出(DIDO)系统的性能的系统和方法的另一个实施例。该方法通过跟踪变化的信道条件,动态地将无线资源分配给不同的用户设备,以在满足某个目标错误率的同时增大吞吐量。所述用户设备对信道质量进行估计,并将其反馈至基站(BS);该基站对获取自用户设备的信道质量进行处理,以选择用于下一次发射的最佳用户设备集合、DIDO方案、调制/编码方案(MCS)以及阵列配置;所述基站经由预编码而将并行数据发射至多个用户设备,且信号在接收器处被解调。
还描述了为DIDO无线链路有效地分配资源的系统。该系统包括:具有DIDO配置器的DIDO基站,该基站对接收自用户的反馈进行处理,以选择用于下一次发射的最佳用户集合、DIDO方案、调制/编码方案(MCS)以及阵列配置;DIDO系统中的接收器,该接收器对信道和其他相关参数进行测量,以生成DIDO反馈信号;以及DIDO反馈控制信道,用于将来自用户的反馈信息输送给基站。
如下所详述的,本发明的该实施例的一些显著特征包括但不限于:
用于基于信道质量信息,自适应地选择用户数量、DIDO发射方案(即,天线选择或多路复用)、调制/编码方案(MCS)以及阵列配置,以最小化SER或最大化每用户的频谱效率或下行链路频谱效率的技术;
用于定义多组DIDO发射模式以作为DIDO方案和MCS的组合的技术;
用于根据信道条件将不同DIDO模式分配给不同的时隙、OFDM音调和DIDO子流的技术;
用于基于不同用户的信道质量将不同DIDO模式动态地分配给不同用户的技术;
用于基于在时域、频域和空间域中所计算的链路质量量度允许实现自适应DIDO切换的标准;
用于基于查找表允许实现自适应DIDO切换的标准。
如图19中所示的在基站处具有DIDO配置器的DIDO系统,该系统可基于信道质量信息,自适应地选择用户数量、DIDO发射方案(即,天线选择或多路复用)、调制/编码方案(MCS)以及阵列配置,以最小化SER或最大化每用户的频谱效率或下行链路频谱效率;
如图20中所示的在基站处具有DIDO配置器且在每个用户设备处具有DIDO反馈生成器的DIDO系统,该系统使用所估计的信道状态和/或接收器处的其他参数(类似于所估计的SNR),以生成输入到DIDO配置器中的反馈消息。
DIDO系统,该系统具有DIDO配置器(在基站处)、DIDO反馈生成器以及DIDO反馈控制信道(该DIDO反馈控制信道用于将DIDO特定配置信息从用户输送至基站)。
a.背景技术
在多输入多输出(MIMO)系统中,构想了分集方案(诸如正交空时分组码(OSTBC))(参见V.Tarokh,H.Jafarkhani,and A.R.Calderbank,“Spacetime block codes from orthogonal designs,”IEEE Trans.Info.Th.,vol.45,pp.1456–467,Jul.1999(V.Tarokh,H.Jafarkhani和A.R.Calderbank,“来自正交设计的空时分组码”,IEEE信息理论学报,第45卷,第1456–1467页,1999年7月))或天线选择(参见R.W.Heath Jr.,S.Sandhu,andA.J.Paulraj,“Antenna selection for spatial multiplexing systems with linearreceivers,”IEEE Trans.Comm.,vol.5,pp.142–144,Apr.2001(R.W.HeathJr.、S.Sandhu和A.J.Paulraj,“针对具有线性接收器的空间多路复用系统的天线选择”,IEEE通信学报,第5卷,第142–144页,2001年4月)),以防止信道衰减,从而提高链路稳健性(该稳健性可转换为更佳的覆盖率)。另一方面,空间多路复用(SM)能够以多个并行数据流发射作为手段来增强系统吞吐量。参见G.J.Foschini,G.D.Golden,R.A.Valenzuela,and P.W.Wolniansky,“Simplified processing for high spectralefficiency wireless communication employing multielement arrays,”IEEEJour.Select.Areas in Comm.,vol.17,no.11,pp.1841–1852,Nov.1999(G.J.Foschini、G.D.Golden、R.A.Valenzuela和P.W.Wolniansky,“针对采用多元件阵列的高频谱效率无线通信的简化处理”,IEEE通信领域精选期刊,第17卷,第11期,第1841–1852页,1999年11月)。根据来源于L.Zheng and D.N.C.Tse,“Diversity and multiplexing:a fundamentaltradeoff in multiple antenna channels,”IEEE Trans.Info.Th.,vol.49,no.5,pp.1073–1096,May 2003(L.Zheng和D.N.C.Tse,“分集和多路复用:多天线信道中的基本权衡”,IEEE信息理论学报,第49卷,第5期,第1073–1096页,2003年5月)的理论分集/多路复用折中,这些益处可在MIMO系统中同时实现。一种实际实施为通过跟踪变化的信道条件,在分集和多路复用发射方案之间进行自适应切换。
迄今为止已提出了大量自适应MIMO发射技术。R.W.Heath and A.J.Paulraj,“Switching between diversity and multiplexing in MIMO systems,”IEEE Trans.Comm.,vol.53,no.6,pp.962–968,Jun.2005(R.W.Heath和A.J.Paulraj,“MIMO系统中的分集与多路复用之间的切换”,IEEE通信学报,第53卷,第6期,第962–968页,2005年6月)中的分集/多路复用切换方法被设计成基于瞬时信道质量信息,改进针对固定速率发射的BER(误码率)。作为另外一种选择,可如S.Catreux,V.Erceg,D.Gesbert,andR.W.Heath.Jr.,“Adaptive modulation and MIMO coding for broadbandwireless data networks,”IEEE Comm.Mag.,vol.2,pp.108–115,June 2002(S.Catreux、V.Erceg、D.Gesbert和R.W.Heath.Jr.,“用于宽带无线数据网络的自适应调制和MIMO编码”,IEEE通信杂志,第2卷,第108–115页,2002年6月)(“Catreux”)中那样,釆用统计信道信息来对自适应进行允许实现,从而减小反馈开销以及控制消息的数量。Catreux中的自适应发射算法被设计成基于信道时/频选择指标,针对正交频分多路复用(OFDM)系统中的预定义目标错误率,增强频谱效率。还针对窄带系统,提出了类似的低反馈自适应方法,该方法利用信道空间选择性来在分集方案与空间多路复用之间进行切换。参见例如被接受至IEEE Trans.on Veh.Tech.,Mar.2007(IEEE车辆技术学报,2007年3月)的A.Forenza,M.R.McKay,A.Pandharipande,R.W.Heath.Jr.,and I.B.Collings,“AdaptiveMIMO transmission for exploiting the capacity of spatially correlated channels”(A.Forenza、M.R.McKay、A.Pandharipande、R.W.Heath.Jr.和I.B.Collings,“用于利用空间相关信道的容量的自适应MIMO发射”);被接受至IEEE Trans.on Veh.Tech.,Dec.2007(IEEE汽车技术学报,2007年12月)的M.R.McKay,I.B.Collings,A.Forenza,and R.W.Heath.Jr.,“Multiplexing/beamforming switching for coded MIMO in spatially correlatedRayleigh channels”(M.R.McKay、I.B.Collings、A.Forenza和R.W.Heath.Jr.,“针对空间相关瑞利信道中的已编码MIMO进行多路复用/波束成形切换”);A.Forenza,M.R.McKay,R.W.Heath.Jr.,and I.B.Collings,“Switching between OSTBC and spatial multiplexing with linearreceivers in spatially correlated MIMO channels,”Proc.IEEE Veh.Technol.Conf.,vol.3,pp.1387–1391,May 2006(A.Forenza、M.R.McKay、R.W.Heath.Jr.和I.B.Collings,“使用空间相关MIMO信道中的线性接收器在OSTBC与空间多路复用之间进行切换”,IEEE汽车技术会议论文集,第3卷,第1387–1391页,2006年5月);出现在Proc.IEEE ICC,June 2006(IEEE ICC论文集,2006年6月)中的M.R.McKay,I.B.Collings,A.Forenza,and R.W.Heath Jr.,“A throughput-based adaptive MIMO BICMapproach for spatially correlated channels”(M.R.McKay、I.B.Collings、A.Forenza和R.W.Heath Jr.,“针对空间相关信道的基于吞吐量的自适应MIMO-BICM方法”)。
在本文档中,我们将各种先前公开中所展现的工作范围扩展至DIDO-OFDM系统。参见例如R.W.Heath and A.J.Paulraj,“Switching betweendiversity and multiplexing in MIMO systems,”IEEE Trans.Comm.,vol.53,no.6,pp.962–968,Jun.2005(R.W.Heath和A.J.Paulraj,“在MIMO系统中进行分集与多路复用之间的切换”,IEEE通信学报,第53卷,第6期,第962–968页,2005年6月);S.Catreux,V.Erceg,D.Gesbert,and R.W.Heath Jr.,“Adaptive modulation and MIMO coding for broadband wirelessdata networks,”IEEE Comm.Mag.,vol.2,pp.108–115,June 2002(S.Catreux、V.Erceg、D.Gesbert和R.W.Heath Jr.,“用于宽带无线数据网络的自适应调制和MIMO编码”,IEEE通信杂志,第2卷,第108–115页,2002年6月);A.Forenza,M.R.McKay,A.Pandharipande,R.W.Heath Jr.,and I.B.Collings,“Adaptive MIMO transmission for exploiting the capacityof spatially correlated channels,”IEEE Trans.on Veh.Tech.,vol.56,n.2,pp.619-630,Mar.2007(A.Forenza、M.R.McKay、A.Pandharipande、R.W.Heath Jr.和I.B.Collings,“用于利用空间相关信道的容量的自适应MIMO发射”,IEEE汽车技术学报,第56卷,第2期,第619-630页,2007年3月);被接受至IEEE Trans.on Veh.Tech.,Dec.2007(IEEE汽车技术学报,2007年12月)的M.R.McKay,I.B.Collings,A.Forenza,and R.W.Heath Jr.,“Multiplexing/beamforming switching for coded MIMO in spatiallycorrelated Rayleigh channels”(M.R.McKay、I.B.Collings、A.Forenza和R.W.Heath Jr.,“针对空间相关瑞利信道中的已编码MIMO进行多路复用/波束成形切换”);A.Forenza,M.R.McKay,R.W.Heath Jr.,and I.B.Collings,“Switching between OSTBC and spatial multiplexing with linearreceivers in spatially correlated MIMO channels,”Proc.IEEE Veh.Technol.Conf.,vol.3,pp.1387–1391,May 2006(A.Forenza、M.R.McKay、R.W.Heath Jr.和I.B.Collings,“使用空间相关MIMO信道中的线性接收器在OSTBC与空间多路复用之间进行切换”,IEEE车载技术会议论文集,第3卷,第1387–1391页,2006年5月);出现在Proc.IEEE ICC,June 2006(IEEE ICC论文集,2006年6月)中的M.R.McKay,I.B.Collings,A.Forenza,and R.W.Heath Jr.,“A throughput-based adaptive MIMO BICMapproach for spatially correlated channels”(M.R.McKay、I.B.Collings、A.Forenza和R.W.Heath Jr.,“针对空间相关信道的基于吞吐量的自适应MIMO-BICM方法”)。
在此描述了新型自适应DIDO发射策略,该策略以基于信道质量信息在不同数量的用户、不同数量的发射天线以及发射方案之间进行切换作为一种手段来改进系统性能。注意,M.Sharif and B.Hassibi,“On thecapacity of MIMO broadcast channel with partial side information,”IEEETrans.Info.Th.,vol.51,p.506522,Feb.2005(M.Sharif和B.Hassibi,“关于具有部分边信息的MIMO广播信道的容量”,IEEE信息理论学报,第51卷,第506–522页,2005年2月);以及出现在IEEE Trans.onCommunications(IEEE通信学报)中的W.Choi,A.Forenza,J.G.Andrews,and R.W.Heath Jr.,“Opportunistic space division multiple access with beamselection”(W.Choi、A.Forenza、J.G.Andrews和R.W.Heath Jr.,“使用波束选择进行的机会式空分多址”)中已提出了在多用户MIMO系统中自适应地选择用户的方案。然而,这些出版物中的机会式空分多址(OSDMA)方案被设计成通过利用多用户分集来最大化总的容量,且它们仅实现了脏纸码的部分理论容量,因为并未在发射器处完全预先消除干扰。在于此所述的DIDO发射算法中,采用块对角化来预先消除用户间干扰。然而,所提出的自适应发射策略可以应用于任何DIDO系统,无需考虑预编码技术的类型。
本专利申请描述了上述本发明以及在先专利申请的实施例的扩展,包括但不限于以下附加特征:
1.可由无线客户端装置采用在先专利申请中用于信道估计的训练符号来对自适应DIDO方案中的链路质量量度进行评价;
2.如在先专利申请中所述那样,基站接收来自客户端设备的信号特征数据。在当前实施例中,信号特征数据被定义为用于允许实现自适应的链路质量量度;
3.在先专利申请描述了用于选择发射天线和用户的数量的机制,并定义了吞吐量分配。此外,如在先专利申请中那样,可将不同级别的吞吐量动态地分配给不同客户端。本发明的当前实施例定义了与该选择和吞吐量分配相关的新型标准。
b.本发明的实施例
所提出的自适应DIDO技术的目标为通过将时间、频率以及空间中的无线资源动态地分配给系统中的不同用户来增强每用户的频谱效率或下行链路频谱效率。该一般自适应标准用于在满足目标错误率的同时,提高吞吐量。根据传播状态,还可使用该自适应算法经由分集方案来改进用户的链路质量(或覆盖率)。图21中示出的流程图描述了自适应DIDO方案的步骤。
在2102中,基站(BS)收集来自所有用户的信道状态信息(CSI)。在2104中,根据所接收的CSI,基站在时域/频域/空间域中计算链路质量量度。在2106中,使用这些链路质量量度来选择将在下一传输中被服务的用户,以及针对每一用户的发射模式。注意,发射模式包括调制/编码以及DIDO方案的不同组合。最后,如在2108中,基站经由DIDO预编码将数据发送至用户。
在2102处,基站收集来自所有用户设备的信道状态信息(CSI)。在2104处,基站使用该CSI来确定所有用户设备的瞬时或统计信道质量。在DIDO-OFDM系统中,可在时域、频域和空间域中对信道质量(或链路质量量度)进行估计。之后,在2106处,基站使用链路质量量度来确定最佳用户子集以及用于当前传播状态的发射模式。DIDO发射模式的集合被限定为DIDO方案(即,天线选择或多路复用)、调制/编码方案(MCS)以及阵列配置的组合。在2108处,通过使用所选择的用户数量以及发射模式,将数据发射至用户设备。
在一个实施例中,可通过查找表(LUT)(该查找表是基于DIDO系统在不同传播环境中的错误率性能而被预先计算的)来进行模式选择。这些LUT将信道质量信息映射至错误率性能中。为了构建LUT,可根据SNR评价DIDO系统在不同传播情形中的错误率性能。从错误率曲线可看出,可以计算实现某一预定目标错误率所需的最小SNR。我们将该SNR需求定义为SNR阈值。之后,在不同的传播情形以及针对不同的DIDO发射模式来评价SNR阈值,并将其存储在LUT中。例如,可使用图24和图26中的SER结果来构建LUT。之后,根据所述LUT,基站选择针对活动用户的发射模式,该模式可在满足预定目标错误率的同时提高吞吐量。最后,基站经由DIDO预编码将数据发射至所选择的用户。注意,可将不同DIDO模式分配给不同的时隙、OFDM音调以及DIDO子流,以使得可在时域、频域和空间域中进行自适应。
在图19-图20中示出了采用DIDO自适应的系统的一个实施例。引入了若干新的功能单元来启用对所提出的DIDO自适应算法的实施。具体地讲,在一个实施例中,DIDO配置器1910基于用户设备所提供的信道质量信息1912,执行多种功能,包括选择用户数量、DIDO发射方案(即,天线选择或多路复用)、调制/编码方案(MCS)以及阵列配置。
用户选择器单元1902基于由DIDO配置器1910所获取的反馈信息,选择与多个用户U1-UM相关联的数据,并将该信息提供给多个编码调制单元1904中的每一者。每个编码调制单元1904对每个用户的信息比特进行编码和调制,并将它们发送至映射单元1906。映射单元1906将输入比特映射至复数符号,并将其发送至预编码单元1908。编码调制单元1904和映射单元1906均利用获取自DIDO配置器单元1910的信息,以为每一用户选择所采用的调制/编码方案的类型。该信息由DIDO配置器单元1910通过利用如反馈单元1912所提供的每一用户的信道质量信息来计算。DIDO预编码单元1908利用由DIDO配置器单元1910所获取的信息来计算DIDO预编码权重,并对获取自映射单元1906的输入符号进行预编码。由DIDO预编码单元1908将每个经预编码的数据流发送至OFDM单元1915,该OFDM单元1915计算IFFT并添加循环前缀。将该信息发送至D/A单元1916,该D/A单元1916进行数模转换,并将所得的模拟信号发送至RF单元1914。该RF单元1914将基带信号升频至中频/射频,并将其发送至发射天线。
每个客户端设备的RF单元2008接收从DIDO发射器单元1914发射的信号,将该信号降频至基带,并将降频之后的信号提供给A/D单元2010。之后,该A/D单元2010将该信号从模拟转换为数字,并将其发送至OFDM单元2013。该OFDM单元2013移除循环前缀,并执行FFT,以将信号报告至频域。在训练周期期间,OFDM单元2013将输出发送至信道估计单元2004,该信道估计单元2004在频域中计算信道估计。作为另外一种选择,可在时域中计算信道估计。在数据周期期间,OFDM单元2013将输出发送至接收器单元2002,该接收器单元2002对信号进行解调/解码,以获取数据2014。所述信道估计单元2004将信道估计发送至DIDO反馈生成器单元2006,该DIDO反馈生成器单元2006可对信道估计进行量化,并经由反馈控制信道1912而将其发送回发射器。
DIDO配置器1910可使用在基站处得到的信息,或在优选的实施例中,额外使用在每个用户设备处工作的DIDO反馈生成器2006(参见图20)的输出。该DIDO反馈生成器2006使用所估计的信道状态2004和/或接收器处的类似于所估计的SNR的其他参数来生成将被输入进DIDO配置器1910的反馈消息。所述DIDO反馈生成器2006可在接收器处对信息进行压缩,可对信息进行量化和/或使用本领域中已知的一些有限反馈策略。
DIDO配置器1910可使用从DIDO反馈控制信道1912恢复的信息。DIDO反馈控制信道1912为逻辑或物理控制信道,该信道用于将DIDO反馈生成器2006的输出从用户发送至基站。控制信道1912可以采用任意数量的本领域已知的方式实施,并且可以是逻辑或物理控制信道。作为物理信道,其可以包括分配给用户的专用时隙/频隙。其还可以是由所有用户共享的随机访问信道。所述控制信道可被预先分配,或其可由现有控制信道中预定义方式的侵占比特(stealing bit)来创建。
在以下论述中,将在真实传播环境中描述通过利用DIDO-OFDM原型进行测量所获得的结果。这些结果表明了自适应DIDO系统中潜在增益的可实现性。首先展现不同级别DIDO系统的性能,表明可增大天线/用户的数量,以实现更大的下行链路吞吐量。之后,描述与用户设备的位置有关的DIDO性能,表明需要跟踪变化的信道条件。最后,对采用分集技术的DIDO系统的性能进行描述。
i.不同级别DIDO系统的性能
利用越来越多的发射天线(N=M,其中M为用户数量)来评价不同DIDO系统的性能。将以下系统的性能进行比对:SISO、DIDO 2×2、DIDO 4×4、DIDO 6×6以及DIDO 8×8。DIDO N×M是指在BS处具有N个发射天线以及M个用户的DIDO。
图22示出了示例性住宅楼层平面图中的发射/接收天线布局。以方形阵列配置来布置发射天线2201,且用户位于发射阵列周围。在图22中,T指示“发射”天线,U指“用户设备”2202。
8元发射阵列中的不同天线子集处于活动状态,这取决于针对不同测量所选取的N值。对于每个DIDO级别(N),选择可对8元阵列的固定大小约束所针对的最大占地面积进行覆盖的天线子集。该标准被期望以增强任何给定N值的空间分集。
图23示出了针对适合可用占地面积(即,虚线和外墙)的不同DIDO级别的阵列配置。方形虚框具有24”×24”的尺寸,对应于450MHz载波频率处的约λ×λ。
基于与图23有关的注释并且参考图22,现在将定义并比较以下系统中每一者的性能:
具有T1和U1的SISO(2301)
具有T1,2和U1,2的DIDO 2×2(2302)
具有T1,2,3,4和U1,2,3,4的DIDO 4×4(2303)
具有T1,2,3,4,5,6和U1,2,3,4,5,6的DIDO 6×6(2304)
具有T1,2,3,4,5,6,7,8和U1,2,3,4,5,6,7,8的DIDO 8×8(2305)
图24示出了在4-QAM和1/2FEC(前向纠错)率的情况下,上述DIDO系统中SER、BER、SE(频谱效率)和实际吞吐量性能随发射(TX)功率的变化关系。观察得出,SER和BER性能因N值增大而下降。该效应是由以下两个现象造成的:对于固定的TX功率,DIDO阵列的输入功率在越来越多的用户(或数据流)之间被分割;空间分集随着实际(空间相关的)DIDO信道中的用户数量增大而减小。
如图24中所示,为了比较不同级别DIDO系统的相对性能,将目标BER固定为10-4(该值可根据系统而变化),该值大致对应于SER=10-2。我们将对应于该目标的TX功率值称之为TX功率阈值(TPT)。对于任何N,如果TX功率低于TPT,我们假设不可能以DIDO级别N进行发射,且我们需要切换至更低级别的DIDO。另外,在图24中,观察到当TX功率超过针对任意N值的TPT时,SE和实际吞吐量性能会达到饱和。根据这些结果,可将自适应发射策略设计成在不同级别DIDO之间进行切换,以增强针对固定预定目标错误率的SE或实际吞吐量。
ii.可变用户位置情况下的性能
该实验的目标在于,经由在空间相关信道中进行模拟,评价不同用户位置的DIDO性能。DIDO 2×2系统被视为具有4-QAM和1/2FEC率。如图25中所示,用户1位于发射阵列的垂射(broadside)方向,而用户2的位置从垂射方向变为端射(endfire)方向。发射天线间隔约λ/2,且与用户相隔约2.5λ。
图26示出了针对用户设备2的不同位置,SER和每用户的SE结果。从发射阵列的垂射方向测量,用户设备的到达角度(AOA)在0°至90°的范围内。观察得出,随着用户设备的角距增大,DIDO性能提升,因为在DIDO信道内有更大的分集可用。另外,在目标SER=10-2处,AOA2=0°与AOA2=90°这两种情况之间存在10dB的间隙。该结果与图35中针对角度扩展10°所获得的模拟结果一致。此外,注意,对于AOA1=AOA2=0°的情况而言,两个用户之间可能存在耦合效应(归因于他们的天线相邻),这可能使得他们的性能与图35中的模拟结果不同。
iii.针对DIDO 8×8的优选情形
图24示出了DIDO 8×8产生比更低级DIDO更大的SE,但具有更高的TX功率需求。该分析的目标在于示出存在这样的情况,即DIDO 8×8不仅在峰值频谱效率(SE)方面,而且还在TX功率需求(或TPT)方面,胜过DIDO 2×2,以实现所述峰值SE。
注意,在i.i.d.(理想)信道中,TX功率在DIDO 8×8与DIDO 2×2的SE之间存在约6dB的间隙。该间隙是因该事实导致的,即DIDO 2×2将TX功率在8个数据流之间进行了分割,而DIDO 2×2仅在两个流之间进行分割。该结果经由图32中的模拟而被示出。
然而,在空间相关信道中,TPT是传播环境特性(例如,阵列取向、用户位置、角度扩展)的函数。例如,图35示出了针对两个不同用户设备位置之间的低角度扩展的约15dB间隙。在本专利申请的图26中展示了类似的结果。
类似于MIMO系统,当用户位于TX阵列的端射方向时,DIDO系统的性能下降(归因于缺少分集)。该效应已通过利用当前DIDO原型进行测量而观察到。因此,一种示出DIDO 8×8胜过DIDO 2×2的方式为将用户置于相对于DIDO 2×2阵列的端射方向。在这种情形中,DIDO 8×8胜过了DIDO 2×2,因为8-天线阵列提供了更高的分集。
在该分析中,考虑了以下系统:
系统1:具有4-QAM的DIDO 8×8(每时隙发射8个并行数据流);
系统2:具有64-QAM的DIDO 2×2(每4个时隙,对用户X和Y进行一次发射)。对于该系统,我们考虑TX和RX天线位置的四种组合:a)T1,T2U1,2(端射方向);b)T3,T4U3,4(端射方向);c)T5,T6U5,6(与端射方向相隔约30°);d)T7,T8U7,8(NLOS(无视距));
系统3:具有64-QAM的DIDO 8×8;以及
系统4:具有64-QAM的MISO 8×1(每8个时隙,对用户X进行一次发射)。
对于所有这些情况,使用3/4的FEC率。
图27示出了用户的位置。
在图28中,SER结果示出了归因于不同的阵列取向和用户位置,在系统2a和2c之间的约15dB的间隙(与在图35中的模拟结果相似)。在第二行中的第一子图示出了SE曲线饱和的TX功率的值(即,对应于BER1e-4)。我们观察到系统1比系统2对于较低的TX功率需求(小于约5dB)产生了更大的每用户SE。另外,由于DIDO 8×8在DIDO 2×2上的复用增益,DIDO 8×8相比于DIDO 2×2的益处对于DL(下行链路)SE和DL实际吞吐量来说更加明显。由于波束成形的阵列增益(即,具有MISO 8×1的MRC),系统4比系统1具有更低的TX功率需求(小于8dB)。但是系统4相比于系统1仅产生了每用户SE的1/3。系统2比系统1的性能差(即,对于较大的TX功率需求产生了较低的SE)。最后,系统3比系统1对于较大的TX功率需求(约15dB)产生了大得多的SE(由于较大的阶数调制)。
根据这些结果,可以推断出以下结论:
一种信道情形被确认为DIDO 8×8胜过DIDO 2×2(即,对于较低的TX功率需求产生了较大的SE);
在该信道情形中,DIDO 8×8比DIDO 2×2和MISO 8×1产生了更大的每用户SE和DL SE;以及
可以通过以较大的TX功率需求(大于约15dB)为代价使用高阶调制(即,64-QAM,而不是4-QAM)来进一步增加DIDO 8×8的性能。
iv.具有天线选择的DIDO
在下文中,我们评估在被接受至IEEE Trans.on Signal Processing,2005(IEEE信号处理学报,2005年)的R.Chen,R.W.Heath,and J.G.Andrews,“Transmit selection diversity for unitary precoded multiuser spatialmultiplexing systems with linear receivers”(R.Chen、R.W.Heath和J.G.Andrews,“具有线性接收器的一体化预编码多用户空间多路复用系统的发射选择分集”)中描述的天线选择算法的益处。我们用两个用户、4-QAM和1/2的FEC率来呈现一个特定DIDO系统的结果。在图27中比较了以下系统:
具有T1,2和U1,2的DIDO 2×2;以及
具有T1,2,3和U1,2的使用天线选择的DIDO 3×2。
发射天线的位置和用户设备位置与图27中相同。
图29显示,与DIDO 2×2系统(不具有选择)相比,采用天线选择的DIDO 3×2可提供约5dB增益。注意,信道几乎是静态的(即没有多普勒效应),因此选择算法适用于路径损耗和信道空间相关性,而不是快速衰落。在具有高多普勒效应的情形中,我们应该看到不同的增益。另外,在这个具体实验中观察到天线选择算法选择天线2和3进行发射。
iv.LUT的SNR阈值
在节中我们讲到,模式选择由LUT允许实现。可通过评估SNR阈值来预计算LUT,以实现DIDO发射模式在不同传播环境中的某种预定义目标错误率性能。在下文中,我们提供具有及不具有天线选择和可变数量用户的DIDO系统的性能,该性能可用作构造LUT的准则。虽然图24、图26、图28、图29是从利用DIDO原型进行的实际测量得出,但以下图片是通过模拟获得。以下BER结果假定无FEC。
图30示出了不同DIDO预编码方案在i.i.d.信道中的平均BER性能。标记为“无选择”的曲线是指当使用BD时的情况。在同一张图中,针对不同数量的额外天线(相对于用户的数量)示出了天线选择(ASel)的性能。可以看出,随着额外天线数量的增加,ASel提供更好的分集增益(由高SNR体系中的BER曲线的斜率表征),从而得到更好的覆盖率。例如,如果我们将目标BER固定为10-2(未编码系统的实际值),则由ASel提供的SNR增益随天线数量的增加而增大。
图31示出了针对不同目标BER,ASel的SNR增益随i.i.d.信道中额外发射天线的数量的变化关系。可以看出,仅通过增加1个或2个天线,ASel较之于BD产生显著的SNR增益。在以下章节中,我们将仅针对1个或2个额外天线的情况并通过将目标BER固定为10-2(针对未编码系统)来评估ASel的性能。
图32示出了在i.i.d.信道中具有1个和2个额外天线的情况下SNR阈值随用于BD和ASel的用户数量(M)的变化关系。我们观察到,由于更大数量用户会有更高的接收SNR要求,SNR阈值会随M的增大而增大。注意,我们对任意数量的用户假定固定的总发射功率(具有可变数量的发射天线)。此外,图32显示,对于i.i.d.信道中任意数量的用户,天线选择产生的增益是恒定的。
在下文中,我们示出了DIDO系统在空间相关信道中的性能。我们通过COST-259空间信道模型来模拟每个用户的信道,该模型在X.Zhuang,F.W.Vook,K.L.Baum,T.A.Thomas,and M.Cudak,“Channel models forlink and system level simulations,”IEEE 802.16Broadband Wireless AccessWorking Group,Sep.2004(2004年9月IEEE 802.16宽带无线接入工作组,X.Zhuang、F.W.Vook、K.L.Baum、T.A.Thomas和M.Cudak的“用于链路和系统级模拟的信道模型”)中有所描述。我们为每个用户生成单群集。作为一个案例研究,我们假定NLOS信道,发射器处为均匀线性阵列(ULA),元件间距为0.5λ。针对2用户系统的情况,我们用第一用户和第二用户的平均到达角度AOA1和AOA2来分别模拟群集。相对于ULA的垂射方向来测量AOA。当系统中有不止两个用户时,我们生成在范围[-φmm]中的具有均匀间隔的平均AOA的用户集群,其中我们定义
&Phi; M = &Delta;&phi; ( M - 1 ) 2 - - - ( 13 )
其中K是用户的数量,Δφ是用户平均AOA之间的角距。注意,角度范围[-φmm]的中心处于0°角,对应于ULA的垂射方向。在下文中,我们利用BD和ASel发射方案以及不同用户数量来研究DIDO系统的BER性能随信道角度扩展(AS)以及用户间角距的变化关系。
图33示出了针对位于相同角方向(即,AOA1=AOA2=0°,相对于ULA的垂射方向)上、具有不同AS值的两个用户的BER与每用户平均SNR之间的关系。可以看出,随着AS增加,BER性能提升并接近i.i.d.情况。实际上,更高的AS在统计学上产生两个用户的本征模式之间的更少重叠以及BD预编码器的更好性能。
图34示出了与图33类似的结果,但用户之间的角距更大。我们考虑AOA1=0°并且AOA2=90°(即90°角距)。现在于低AS情况中实现了最佳性能。实际上,针对高角距的情况,当角度扩展低时,用户的本征模式之间存在更少重叠。有趣的是,我们观察到,出于刚才所提及的相同原因,低AS下的BER性能优于i.i.d.信道。
接着,我们针对不同相关情形中10-2的目标BER来计算SNR阈值。图35绘制了针对用户的平均AOA的不同值,SNR阈值随AS的变化关系。针对低用户角距,只有特征为高AS的信道才可能有具有合理SNR要求(即,18dB)的可靠发射。另一方面,当用户在空间上分离时,需要更低的SNR才能满足相同的目标BER。
图36示出了针对五个用户的情况的SNR阈值。根据(13)中的定义,利用不同角距值Δφ生成了用户的平均AOA。我们观察到,对于Δφ=0°以及AS<15°,用户之间的小角距导致BD性能不佳,并且不满足目标BER。对于增大的AS,为达到固定目标BER的SNR要求降低。在另一端,对于Δφ=30°,在低AS下获得了最小SNR要求,这与图35中的结果一致。随着AS的增大,SNR阈值饱和达到i.i.d.信道的SNR阈值。注意,5个用户的Δφ=30°对应于[-60°,60°]的AOA范围,这是在具有120°扇区小区的蜂窝式系统中的基站的典型情况。
接着,我们研究Asel发射方案在空间相关信道中的性能。图37比较了针对两用户情况、具有1个和2个额外天线的BD和ASel的SNR阈值。我们考虑了用户间角距的两种不同情况:{AOA1=0°,AOA2=0°}和{AOA1=0°,AOA2=90°}。BD方案(即,无天线选择)的曲线与图35中相同。我们观察到,对于高AS,ASel用1个和2个额外天线分别产生8dB和10dBSNR增益。随着AS降低,由于MIMO广播信道中自由度的减少,因ASel优于BD而产生的增益变小。有趣的是,对于AS=0°(即,靠近LOS信道)以及{AOA1=0°,AOA2=90°}的情况,由于空域缺乏分集,Asel未提供任何增益。图38示出了与图37类似的结果,但是是针对五个用户的情况。
我们计算了BD和ASel发射方案两者的SNR阈值(假定10-2的常用目标BER)随系统中用户的数量(M)之间的变化关系。SNR阈值对应于平均SNR,使得对于任何M而言总发射功率都是恒定的。我们假定方位角范围[-φmm]=[-60°,60°]内每个用户群集的平均AOA之间的最大距离。于是,用户之间的角距为Δφ=120°/(M-1)。
图39示出了具有不同AS值的BD方案的SNR阈值。我们观察到,由于用户之间的大角距,在相对较少数量的用户(即,K≤20)的情况下针对AS=0.1°(即,低角度扩展)获得了最低SNR要求。然而,对于M>50,SNR要求远高于40dB,因为Δφ非常小并且BD不实际。此外,对于AS>10°,SNR阈值对于任何M几乎都保持恒定,并且空间相关信道中的DIDO系统接近i.i.d.信道的性能。
为降低SNR阈值的值并提升DIDO系统的性能,我们采用Asel发射方案。图40示出了对于具有1个和2个额外天线的BD和ASel,在AS=0.1°的空间相关信道中的SNR阈值。作为参考,我们还报告了图32中所示的i.i.d.情况的曲线。可以看出,对于低用户数量(即M≤10),由于DIDO广播信道中缺乏分集,天线选择并未帮助降低SNR要求。随着用户数量的增加,Asel受益于多用户分集从而产生SNR增益(即,对于M=20,为4dB)。此外,对于M≤20,具有1个或2个额外天线的Asel在高空间相关信道中的性能是相同的。
我们随后计算了另外两种信道情形的SNR阈值:图41中的AS=5°以及图42中的AS=10°。图41显示,与图40相反,由于更大的角度扩展,Asel还为相对较小的用户数量(即,M≤10)产生了SNR增益。对于AS=10°,SNR阈值进一步降低,并且Asel产生的增益变大,如图42中所报告。
最后,我们总结了到目前为止对相关信道所展示的结果。图43和图44分别示出了在具有1个和2个额外天线的情况下,SNR阈值随BD和Asel方案的用户数量(M)和角度扩展(AS)的变化关系。注意,AS=30°的情况实际上对应于i.i.d.信道,并且我们在曲线中仅将该AS值用于图形表示。我们观察到,虽然BD受到信道空间相关性的影响,但Asel对于任何AS均提供几乎相同的性能。此外,对于AS=0.1°,由于多用户分集,Asel为低M提供与BD相似的性能,但为大M(即,M≥20)提供优于BD的性能。
图49依据SNR阈值将不同DIDO方案的性能进行了比较。所考虑的DIDO方案是:BD、ASel、具有本征模式选择的BD(BD-ESel)以及最大比合并(MRC)。注意,MRC不预先消除发射器处的干扰(不像其他方法),但在用户在空间上分离的情况下确实提供了更大的增益。在图49中,我们绘制了当两个用户分别位于相对于发射阵列垂射方向-30°和30°时,DIDON×2系统在目标BER=10-2下的SNR阈值。我们观察到,对于低AS,MRC方案较其他方案提供3dB增益,因为用户的空间信道良好分离并且用户间干扰的影响小。注意,MRC相对于DIDO N×2的增益是阵列增益所致。对于大于20°的AS,QR-ASel方案优于其他方案,并且较不具有选择的BD 2×2产生约10dB增益。对于任何AS值,QR-ASel和BD-ESel提供大致相同的性能。
以上内容描述了一种用于DIDO系统的新型自适应发射技术。该方法针对不同用户在DIDO发射模式之间动态切换,以增强针对固定目标错误率的吞吐量。在不同传播条件下测量了不同阶次DIDO系统的性能。据观察,可通过根据传播条件动态地选择DIDO模式及用户数量,来实现吞吐量的显著增益。
频率偏移和相位偏移的预补偿
a.背景技术
如前所述,无线通信系统使用载波来输送信息。这些载波通常是正弦波,其响应于将要发送的信息而被振幅调制和/或相位调制。正弦波的标称频率称为载波频率。为了创建这种波形,发射器合成一个或多个正弦波,并使用升频来生成具有规定载波频率的正弦波基础上的调制信号。这可通过直接转换来完成,其中在载波上或通过多个升频阶段直接调制信号。为处理这种波形,接收器必须将接收到的RF信号解调并有效地移除调制载波。这需要接收器合成一个或多个正弦波以反转发射器处的调制过程,称为降频。遗憾的是,在发射器和接收器处生成的正弦波信号源自不同的基准振荡器。没有基准振荡器能够创建完美的频率基准;实际上,始终与真实频率存在一定偏差。
在无线通信系统中,发射器和接收器处基准振荡器的输出差异会在接收器处引起被称为载波频率偏移或简称为频率偏移的现象。在接收到的信号中基本上会存在一定残余调制(对应于发射载波和接收载波的差异),这种残余调制在降频之后发生。这会使接收到的信号失真,从而导致更高误码率和更低吞吐量。
有不同方法可用于处理载波频率偏移。大多数方法会先估计接收器处的载波频率偏移,然后应用载波频率偏移校正算法。通过使用偏移QAM(T.Fusco and M.Tanda,“Blind Frequency-offset Estimation forOFDM/OQAM Systems,”IEEE Transactions on Signal Processing,vol.55,pp.1828–1838,2007(T.Fusco和M.Tanda,“用于OFDM/OQAM系统的频率偏移盲估计”,IEEE信号处理学报,第55卷,第1828-1838页,2007年));周期特性(E.Serpedin,A.Chevreuil,G.B.Giannakis,and P.Loubaton,“Blind channel and carrier frequency offset estimation usingperiodic modulation precoders,”IEEE Transactions on Signal Processing,vol.48,no.8,pp.2389–2405,Aug.2000(E.Serpedin、A.Chevreuil、G.B.Giannakis和P.Loubaton,“使用周期调制预编码器的信道和载波频率偏移盲估计”,IEEE信号处理学报,第48卷,第8期,第2389-2405页,2000年8月));或正交频分多路复用(OFDM)结构方法中的循环前缀(J.J.vande Beek,M.Sandell,and P.O.Borjesson,“ML estimation of time andfrequency offset in OFDM systems,”IEEE Transactions on Signal Processing,vol.45,no.7,pp.1800–1805,July 1997(J.J.van de Beek、M.Sandell和P.O.Borjesson,“OFDM系统中时间和频率偏移的ML估计”,IEEE信号处理学报,第45卷,第7期,第1800-1805页,1997年7月);U.Tureli,H.Liu,and M.D.Zoltowski,“OFDM blind carrier offset estimation:ESPRIT,”IEEE Trans.Commun.,vol.48,no.9,pp.1459–1461,Sept.2000(U.Tureli、H.Liu和M.D.Zoltowski,“OFDM载波偏移盲估计:ESPRIT”,IEEE通信学报,第48卷,第9期,第1459-1461页,2000年9月);M.Luise,M.Marselli,and R.Reggiannini,“Low-complexity blindcarrier frequency recovery for OFDM signals over frequency-selective radiochannels,”IEEE Trans.Commun.,vol.50,no.7,pp.1182–1188,July 2002(M.Luise、M.Marselli和R.Reggiannini,“频率选择无线电信道上OFDM信号的低复杂度载波频率盲恢复”,IEEE通信学报,第50卷,第7期,第1182-1188页,2002年7月)),载波频率偏移估计算法可以是盲估计。
作为另外一种选择,可利用特殊训练信号,包括重复数据符号(P.H.Moose,“A technique for orthogonal frequency division multiplexingfrequency offset correction,”IEEE Trans.Commun.,vol.42,no.10,pp.2908–2914,Oct.1994(P.H.Moose,“一种用于正交频分多路复用频率偏移校正的技术”,IEEE通信学报,第42卷,第10期,第2908-2914页,1994年10月));两种不同符号(T.M.Schmidl and D.C.Cox,“Robustfrequency and timing synchronization for OFDM,”IEEE Trans.Commun.,vol.45,no.12,pp.1613–1621,Dec.1997(T.M.Schmidl和D.C.Cox,“用于OFDM的稳健频率及定时同步”,IEEE通信学报,第45卷,第12期,第1613-1621页,1997年12月));或周期性插入的已知符号序列(M.Luiseand R.Reggiannini,“Carrier frequency acquisition and tracking for OFDMsystems,”IEEE Trans.Commun.,vol.44,no.11,pp.1590–1598,Nov.1996(M.Luise和R.Reggiannini,“用于OFDM系统的载波频率采集和跟踪”,IEEE通信学报,第44卷,第11期,第1590-1598页,1996年11月))。校正可采用模拟或数字方式发生。接收器还可使用载波频率偏移估计来预校正所发射的信号以消除偏移。多载波和OFDM系统因其对频率偏移十分敏感而被广泛地研究了其载波频率偏移校正(J.J.van de Beek,M.Sandell,and P.O.Borjesson,“ML estimation of time and frequency offset inOFDM systems,”Signal Processing,IEEE Transactions on[see also Acoustics,Speech,and Signal Processing,IEEE Transactions on],vol.45,no.7,pp.1800–1805,July 1997(J.J.van de Beek、M.Sandell和P.O.Borjesson,“OFDM系统中时间和频率偏移的ML估计”,IEEE信号处理学报,[还可参见IEEE声学、语音及信号处理学报],第45卷,第7期,第1800-1805页,1997年7月);U.Tureli,H.Liu,and M.D.Zoltowski,“OFDM blindcarrier offset estimation:ESPRIT,”IEEE Trans.Commun.,vol.48,no.9,pp.1459–1461,Sept.2000(U.Tureli、H.Liu和M.D.Zoltowski,“OFDM载波偏移盲估计:ESPRIT”,IEEE通信学报,第48卷,第9期,第1459-1461页,2000年9月);T.M.Schmidl and D.C.Cox,“Robust frequency andtiming synchronization for OFDM,”IEEE Trans.Commun.,vol.45,no.12,pp.1613–1621,Dec.1997(T.M.Schmidl和D.C.Cox,“用于OFDM的稳健频率及定时同步”,IEEE通信学报,第45卷,第12期,第1613-1621页,1997年12月);M.Luise,M.Marselli,and R.Reggiannini,“Low-complexity blind carrier frequency recovery for OFDM signals over frequency-selective radio channels,”IEEE Trans.Commun.,vol.50,no.7,pp.1182–1188,July 2002(M.Luise、M.Marselli和R.Reggiannini,“频率选择无线电信道上OFDM信号的低复杂度载波频率盲恢复”,IEEE通信学报,第50卷,第7期,第1182-1188页,2002年7月))。
频率偏移估计和校正是多天线通信系统,或更一般地MIMO(多输入多输出)系统的重要问题。在发射天线锁定至一个频率基准并且接收器锁定至另一个频率基准的MIMO系统中,发射器与接收器之间存在单个偏移。已提议了若干算法,其使用训练信号(K.Lee and J.Chun,“Frequency-offset estimation for MIMO and OFDM systems using orthogonaltraining sequences,”IEEE Trans.Veh.Technol.,vol.56,no.1,pp.146–156,Jan.2007(K.Lee和J.Chun,“使用正交训练序列对MIMO和OFDM系统进行频率偏移估计”,IEEE汽车技术学报,第56卷,第1期,第146-156页,2007年1月);M.Ghogho and A.Swami,“Training design formultipath channel and frequency offset estimation in MIMO systems,”IEEETransactions on Signal Processing,vol.54,no.10,pp.3957–3965,Oct.2006(M.Ghogho和A.Swami,“MIMO系统中多路径信道和频率偏移估计的训练设计”,IEEE信号处理学报,第54卷,第10期,第3957-3965页,2006年10月))以及自适应跟踪(C.Oberli and B.Daneshrad,“Maximum likelihood tracking algorithms for MIMOOFDM,”inCommunications,2004 IEEE International Conference on,vol.4,June 20–24,2004,pp.2468–2472(C.Oberli和B.Daneshrad,“用于MIMOOFDM的最大似然跟踪算法”,2004年IEEE国际通信会议,第4卷,第2468-2472页,2004年6月20至24日))来解决这个问题。在发射天线未锁定至相同频率基准但接收天线锁定在一起的MIMO系统中,遇到了更严重的问题。这实际上发生在空分多址(SDMA)系统的上行链路中,该SDMA系统可被视为MIMO系统,其中不同用户对应于不同发射天线。在这种情况下,频率偏移的补偿要复杂得多。具体来说,频率偏移引起不同的发射MIMO流之间发生干扰。可使用复杂的联合估计和均衡算法(A.Kannan,T.P.Krauss,and M.D.Zoltowski,“Separation of cochannel signals underimperfect timing and carrier synchronization,”IEEE Trans.Veh.Technol.,vol.50,no.1,pp.79–96,Jan.2001(A.Kannan/T.P.Krauss和M.D.Zoltowski,“不完全定时和载波同步下的同信道信号分离”,IEEE汽车技术学报,第50卷,第1期,第79-96页,2001年1月))以及先均衡然后进行频率偏移估计(T.Tang and R.W.Heath,“Joint frequency offset estimation andinterference cancellation for MIMO-OFDM systems[mobile radio],”2004(VTC2004-Fall.2004 IEEE 60th Vehicular Technology Conference,vol.3,pp.1553–1557,Sept.26–29,2004(T.Tang和R.W.Heath,“用于MIMO-OFDM系统的频率偏移联合估计和干扰消除[移动无线电]”,2004 IEEE第60届车载技术会议暨2004 VTC2004秋季会议,第3卷,第1553-1557页,2004年9月26-29日);X.Dai,“Carrier frequency offset estimation forOFDM/SDMA systems using consecutive pilots,”IEEE Proceedings-Communications,vol.152,pp.624–632,Oct.7,2005(X.Dai,“使用连续导频对OFDM/SDMA系统进行载波频率偏移估计”,IEEE通信论文集,第152卷,第624-632页,2005年10月7日))校正此干扰。某个著作已解决了残余相位偏移和跟踪错误的相关问题,其中先进行频率偏移估计,然后估计并补偿残余相位偏移,但这个著作仅考虑了SDMA OFDMA系统的上行链路(L.Haring,S.Bieder,and A.Czylwik,“Residual carrier andsampling frequency synchronization in multiuser OFDM systems,”2006.VTC2006-Spring.IEEE 63rd Vehicular Technology Conference,vol.4,pp.1937–1941,2006(L.Haring、S.Bieder和A.Czylwik,“多用户OFDM系统中的残余载波及采样频率同步”,2006 IEEE第63届车载技术会议暨VTC 2006春季会议,第4卷,第1937–1941页,2006年))。当所有发射天线和接收天线均具有不同频率基准时,发生MIMO系统中最严重的情况。有关这个主题的唯一可获得的著作仅解决了平坦衰落信道中估计误差的渐近分析(O.Besson and P.Stoica,“On parameter estimation of MIMO flat-fadingchannels with frequency offsets,”Signal Processing,IEEE Transactions on[see also Acoustics,Speech,and Signal Processing,IEEE Transactions on],vol.51,no.3,pp.602–613,Mar.2003(O.Besson和P.Stoica,“关于具有频率偏移的MIMO平坦衰落信道的参数估计”,IEEE信号处理学报,[还可参见IEEE声学、语音及信号处理学报],第51卷,第3期,第602-613页,2003年3月))。
当MIMO系统的不同发射天线不具有相同频率基准,并且接收天线独立处理信号时,出现了一种尚未充分研究的情况。这种情况发生在被称为分布式输入分布式输出(DIDO)通信系统中,在参考文献中该通信系统也称为MIMO广播信道。DIDO系统包括一个具有分布式天线的接入点,该接入点在利用相同于常规SISO系统的无线资源(即,相同的时隙持续时间和频带)时,发送并行数据流(经由预编码)至多个用户,以增强下行链路吞吐量。2004年7月,S.G.Perlman和T.Cotter的美国专利申请20060023803“System and method for distributed input-distributed outputwireless communications”(用于分布式输入分布式输出无线通信的系统和方法)提供了DIDO系统的详细描述。有许多方法用来实施DIDO预编码器。一种解决方案是例如以下资料中所描述的块对角化(BD):Q.H.Spencer,A.L.Swindlehurst,and M.Haardt,“Zero-forcing methods for downlinkspatial multiplexing in multiuser MIMO channels,”IEEE Trans.Sig.Proc.,vol.52,pp.461–471,Feb.2004(Q.H.Spencer、A.L.Swindlehurst和M.Haardt,“用于多用户MIMO信道中下行链路空间多路复用的迫零方法”,IEEE信号处理学报,第52卷,第461-471页,2004年2月);K.K.Wong,R.D.Murch,and K.B.Letaief,“A joint-channel diagonalization formultiuser MIMO antenna systems,”IEEE Trans.Wireless Comm.,vol.2,pp.773–786,Jul 2003(K.K.Wong、R.D.Murch和K.B.Letaief,“用于多用户MIMO天线系统的联合信道对角化”,IEEE无线通信学报,第2卷,第773–786页,2003年7月);L.U.Choi and R.D.Murch,“A transmitpreprocessing technique for multiuser MIMO systems using a decompositionapproach,”IEEE Trans.Wireless Comm.,vol.3,pp.20–24,Jan 2004(L.U.Choi和R.D.Murch,“使用分解法的针对多用户MIMO系统的发射预处理技术”,IEEE无线通信学报,第3卷,第20–24页,2004年1月);被接受发表在IEEE Trans.Sig.Proc.,Sep.2005(IEEE信号处理学报,2005年9月)中的Z.Shen,J.G.Andrews,R.W.Heath,and B.L.Evans,“Lowcomplexity user selection algorithms for multiuser MIMO systems with blockdiagonalization”(Z.Shen、J.G.Andrews、R.W.Heath和B.L.Evans,“用于具有块对角化的多用户MIMO系统的低复杂度用户选择算法”);被提交至IEEE Trans.Wireless Comm.,Oct.2005(IEEE无线通信学报,2005年10月)的Z.Shen,R.Chen,J.G.Andrews,R.W.Heath,and B.L.Evans,“Sum capacity of multiuser MIMO broadcast channels with blockdiagonalization”(Z.Shen、R.Chen、J.G.Andrews、R.W.Heath和B.L.Evans,“具有块对角化的多用户MIMO广播信道的总容量”);以及被接受至IEEE Trans.on Signal Processing,2005(IEEE信号处理学报,2005年)的R.Chen,R.W.Heath,and J.G.Andrews,“Transmit selectiondiversity for unitary precoded multiuser spatial multiplexing systems with linearreceivers”(R.Chen、R.W.Heath和J.G.Andrews,“具有线性接收器的一体化预编码多用户空间多路复用系统的发射选择分集”)。
在DIDO系统中,发射预编码用于分离预期用于不同用户的数据流。当发射天线射频链不共享相同频率基准时,载波频率偏移会导致与系统实施有关的若干问题。发生这种情况时,每个天线在稍微不同的载波频率上有效地发射。这破坏了DIDO预编码器的完整性,使得每个用户遭受额外干扰。下面提议了针对该问题的若干解决方案。在解决方案的一个实施例中,DIDO发射天线通过有线、光学或无线网络共享频率基准。在解决方案的另一个实施例中,一个或多个用户估计频率偏移差(天线对之间的偏移的相对差)并将该信息发送回发射器。发射器随后对频率偏移进行预校正,并使用DIDO的训练和预编码器估计相位来继续进行。当反馈信道中存在延迟时,该实施例存在问题。原因在于,可能存在由校正过程引起的残余相位误差,该误差在后续信道估计中未被考虑。为解决这个问题,一个另外的实施例使用了可通过估计延迟来校正该问题的新型频率偏移和相位估计器。基于利用DIDO-OFDM原型所执行的模拟和实际测量两者,展示了结果。
本文档中提议的频率和相位偏移补偿方法可因接收器处的噪声而对估计误差敏感。因此,一个另外的实施例提议了在低SNR条件下同样稳健的时间和频率偏移估计方法。
有不同方法可用来执行时间和频率偏移估计。由于OFDM波形对同步误差敏感,许多这些方法专门针对这种波形而提议。
这些算法通常不利用OFDM波形的结构,因此它们对于单载波和多载波波形而言均是足够通用的。以下所述的算法属于使用已知参考符号例如训练数据来辅助同步的技术类别。这些方法大多数是Moose频率偏移估计器的延伸(参见P.H.Moose,“A technique for orthogonal frequencydivision multiplexing frequency offset correction,”IEEE Trans.Commun.,vol.42,no.10,pp.2908–2914,Oct.1994(P.H.Moose,“一种用于正交频分多路复用频率偏移校正的技术”,IEEE通信学报,第42卷,第10期,第2908-2914页,1994年10月))。Moose提议使用两个重复的训练信号,并且使用两个接收信号之间的相位差导出了频率偏移。Moose的方法仅可对分数频率偏移进行校正。Schmidl和Cox提议了Moose方法的一种延伸(T.M.Schmidl and D.C.Cox,“Robust frequency and timingsynchronization for OFDM,”IEEE Trans.Commun.,vol.45,no.12,pp.1613–1621,Dec.1997(T.M.Schmidl和D.C.Cox,“用于OFDM的稳健频率及定时同步”,IEEE通信学报,第45卷,第12期,第1613-1621页,1997年12月))。他们的关键创新在于使用一个周期性OFDM符号连同一个附加的经差分编码的训练符号。第二符号的差分编码实现了整数偏移校正。Coulson考虑了与如在T.M.Schmidl and D.C.Cox,“Robustfrequency and timing synchronization for OFDM,”IEEE Trans.Commun.,vol.45,no.12,pp.1613–1621,Dec.1997(T.M.Schmidl和D.C.Cox,“用于OFDM的稳健频率及定时同步”,IEEE通信学报,第45卷,第12期,第1613-1621页,1997年12月)中所述类似的设置,并提供了算法和分析的详细讨论,如在以下参考文献中所述:A.J.Coulson,“Maximumlikelihood synchronization for OFDM using a pilot symbol:analysis,”IEEE J.Select.Areas Commun.,vol.19,no.12,pp.2495–2503,Dec.2001(A.J.Coulson,“使用导频符号的OFDM最大似然同步:分析”,IEEE通信领域精选期刊,第19卷,第12期,第2495-2503页,2001年12月);A.J.Coulson,“Maximum likelihood synchronization for OFDM using a pilotsymbol:algorithms,”IEEE J.Select.Areas Commun.,vol.19,no.12,pp.2486–2494,Dec.2001(A.J.Coulson,“使用导频符号的OFDM最大似然同步:算法”,IEEE通信领域精选期刊,第19卷,第12期,第2495-2503页,2001年12月)。一个主要区别在于Coulson使用重复的最大长度序列来提供良好的相关特性。他还建议使用线性调频信号,因为线性调频信号在时域和频域中具有恒定包络特性。Coulson考虑了若干实际细节,但不包括整数估计。Minn等人在H.Minn,V.K.Bhargava,and K.B.Letaief,“A robust timing and frequency synchronization for OFDM systems,”IEEETrans.Wireless Commun.,vol.2,no.4,pp.822–839,July 2003(H.Minn、V.K.Bhargava和K.B.Letaief,“用于OFDM系统的稳健定时及频率同步”,IEEE无线通信学报,第2卷,第4期,第822-839页,2003年7月)中考虑了多种重复训练信号,但训练的结构并未优化。Shi和Serpedin表示,从帧同步的角度上讲,该训练结构具有一定的最优性(K.Shi and E.Serpedin,“Coarse frame and carrier synchronization of OFDM systems:a newmetric and comparison,”IEEE Trans.Wireless Commun.,vol.3,no.4,pp.1271–1284,July 2004(K.Shi和E.Serpedin,“OFDM系统的粗略帧和载波同步:一种新量度和比较”,IEEE无线通信学报,第3卷,第4期,第1271-1284页,2004年7月))。本发明的一个实施例使用Shi和Serpedin的方法来执行帧同步和分数频率偏移估计。
参考文献中的许多方法注重于帧同步和分数频率偏移校正。使用附加的训练符号来解决整数偏移校正,如T.M.Schmidl and D.C.Cox,“Robust frequency and timing synchronization for OFDM,”IEEE Trans.Commun.,vol.45,no.12,pp.1613–1621,Dec.1997(T.M.Schmidl和D.C.Cox,“用于OFDM的稳健频率及定时同步”,IEEE通信学报,第45卷,第12期,第1613-1621页,1997年12月))中所述。例如,Morrelli等人在M.Morelli,A.N.D’Andrea,and U.Mengali,“Frequency ambiguityresolution in OFDM systems,”IEEE Commun.Lett.,vol.4,no.4,pp.134–136,Apr.2000(M.Morelli、A.N.D’Andrea和U.Mengali,“OFDM系统中的频率模糊度解算”,IEEE通信快报第4卷,第4期,第134-136页,2000年4月)中推导出了T.M.Schmidl and D.C.Cox,“Robust frequencyand timing synchronization for OFDM,”IEEE Trans.Commun.,vol.45,no.12,pp.1613–1621,Dec.1997(T.M.Schmidl和D.C.Cox,“用于OFDM的稳健频率及定时同步”,IEEE通信学报,第45卷,第12期,第1613-1621页,1997年12月)的改进版本。Morelli和Mengali建议了一种使用不同前导结构的替代方法(M.Morelli and U.Mengali,“An improvedfrequency offset estimator for OFDM applications,”IEEE Commun.Lett.,vol.3,no.3,pp.75–77,Mar.1999(M.Morelli和U.Mengali,“针对OFDM应用的改进的频率偏移估计器”,IEEE通信快报,第3卷,第3期,第75-77页,1999年3月))。该方法使用M个重复的相同训练符号之间的相关性来使分数频率偏移估计器的范围增加M倍。这是最佳线性无偏估计器并且接受大偏移(采用适当设计),但不提供良好的定时同步。
系统描述
本发明的一个实施例使用基于信道状态信息的预编码来消除DIDO系统中的频率和相位偏移。有关该实施例的描述,请参见图11以及以上相关描述。
在本发明的一个实施例中,每个用户采用配备有频率偏移估计器/补偿器的接收器。如图45中所示,在本发明的一个实施例中,包括接收器的系统包括多个RF单元4508、对应的多个A/D单元4510、配备有频率偏移估计器/补偿器4512的接收器以及DIDO反馈生成器单元4506。
RF单元4508接收从DIDO发射器单元发射的信号,将该信号降频至基带,并将降频后的信号提供给A/D单元4510。之后,A/D单元4510对该信号进行模数转换,并将其发送至频率偏移估计器/补偿器单元4512。频率偏移估计器/补偿器单元4512估计频率偏移并补偿频率偏移,如本文所述,随后将已补偿的信号发送至OFDM单元4513。OFDM单元4513移除循环前缀,并进行快速傅立叶变换(FFT)以将信号报告至频域。在训练周期期间,OFDM单元4513将输出发送至信道估计单元4504,该信道估计单元4504在频域中计算信道估计。作为另外一种选择,可在时域中计算所述信道估计。在数据周期期间,OFDM单元4513将输出发送至DIDO接收器单元4502,该DIDO接收器单元4502将信号解调/解码以获得数据。信道估计单元4504将信道估计发送至DIDO反馈生成器单元4506,该DIDO反馈生成器单元4506可对所述信道估计进行量化,并将其经由反馈控制信道发送回发射器,如图所示。
DIDO 2×2情形下算法的一个实施例的描述
以下描述了DIDO系统中的频率/相位偏移补偿算法的实施例。首先描述了具有及不具有频率/相位偏移的DIDO系统模型。为简单起见,提供了DIDO 2×2系统的特定实施。然而,也可在更高阶次DIDO系统中实施本发明的基本原理。
不具有频率及相位偏移的DIDO系统模型
对于第一用户,DIDO 2×2的接收信号可写为
r1[t]=h11(w11x1[t]+w21x2[t])+h12(w12x1[t]+w22x2[t])   (1)
并且对于第二用户,可写为
r2[t]=h21(w11x1[t]+w21x2[t])+h22(w12x1[t]+w22x2[t])   (2)
其中t为离散时间索引,hmn和wmn分别为第m个用户与第n个发射天线之间的信道及DIDO预编码权重,并且xm为到用户m的发射信号。注意,hmn和wmn不是t的函数,因为我们假定在训练发射和数据发射之间的周期上信道是恒定的。
在存在频率和相位偏移时,接收信号表达为
r 1 [ t ] = e j ( &omega; U 1 - &omega; T 1 ) T s ( t - t 11 ) h 11 ( w 11 x 1 [ t ] + w 21 x 2 [ t ] ) + e j ( &omega; U 1 - &omega; T 2 ) T s ( t - t 12 ) h 12 ( w 12 x 1 [ t ] + w 22 x 2 [ t ] ) - - - ( 3 )
以及
r 2 [ t ] = e j ( &omega; U 2 - &omega; T 1 ) T s ( t - t 21 ) h 21 ( w 11 x 1 [ t ] + w 21 x 2 [ t ] ) + e j ( &omega; U 2 - &omega; T 2 ) T s ( t - t 22 ) h 22 ( w 12 x 1 [ t ] + w 22 x 2 [ t ] ) - - - ( 4 )
其中Ts为符号周期,对于第n个发射天线有ωTn=2ΠfTn,对于第m个用户有ωUm=2ΠfUm,并且fTn和fUm分别为第n个发射天线和第m个用户的实际载波频率(受偏移影响)。值tmn表示导致信道hmn上的相位偏移的随机延迟。图46示出了DIDO 2×2系统模型。
我们暂时使用以下定义:
Δωmn=ωUmTn   (5)
来表示第m个用户与第n个发射天线之间的频率偏移。
图47中示出了根据本发明的一个实施例的方法。该方法包括以下一般步骤(包括子步骤,如图所示):频率偏移估计的训练周期4701;信道估计的训练周期4702;经由利用补偿的DIDO预编码进行数据发射4703。下面详细描述了这些步骤。
(a)频率偏移估计的训练周期(4701)
在第一训练周期期间,基站将一个或多个训练序列从每个发射天线发送至用户中的一者(4701a)。如本文所述,“用户”为无线客户端设备。对于DIDO 2×2的情况,第m个用户接收的信号由下式给出
r m [ t ] = e j&Delta; &omega; m 1 T s ( t - t m 1 ) h m 1 p 1 [ t ] + e j &Delta;&omega; m 2 T s ( t - t m 2 ) h m 2 p 2 [ t ] - - - ( 6 )
其中p1和p2分别为从第一天线和第二天线发射的训练序列。
第m个用户可采用任何类型的频率偏移估计器(即,训练序列执行的卷积)并估计偏移Δωm1和Δωm2。之后,用户按照下式根据这些值计算两个发射天线之间的频率偏移
ΔωT=Δωm2-Δωm1=ωT1T2   (7)
最后,将(7)中的值反馈至基站(4701b)。
注意,(6)中的p1和p2设计为正交,使得用户可估计Δωm1和Δωm2。作为另外一种选择,在一个实施例中,在两个连续时隙上使用相同的训练序列,并且用户从该处估计偏移。此外,为改进对(7)中偏移的估计,可为DIDO系统中的所有用户(而不是仅为第m-个用户)完成以上所述的相同计算,并且最终估计可为从所有用户获得的值的(加权)平均值。然而,这个解决方案需要更长计算时间及更多反馈量。最后,只有在频率偏移随时间推移发生变化的情况下才需要更新频率偏移估计。因此,取决于发射器处时钟的稳定性,可基于长期(即不是针对每次数据发射)来执行算法的该步骤4701,从而降低反馈开销量。
(b)信道估计的训练周期(4702)
(c)在第二训练周期期间,基站首先使用(7)中的值从第m个用户或所述多个用户获得频率偏移反馈。(7)中的值用于预补偿发射端的频率偏移。之后,基站将训练数据发送至所有用户以进行信道估计(4702a)。
对于DIDO 2×2系统,在第一用户处接收的信号由下式给出
r 1 [ t ] = e j &Delta;&omega; 11 T s ( t - t ~ 11 ) h 11 p 1 [ t ] + e j&Delta; &omega; 12 T s ( t - t ~ 12 ) h 12 e - j&Delta; &omega; T T s t p 2 [ t ] - - - ( 8 )
并且在第二用户处接收的信号由下式给出
r 2 [ t ] = e j &Delta;&omega; 21 T s ( t - t ~ 21 ) h 21 p 1 [ t ] + e j&Delta; &omega; 22 T s ( t - t ~ 22 ) h 22 e - j&Delta; &omega; T T s t p 2 [ t ] - - - ( 9 )
其中和Δt为基站的第一发射与第二发射之间的随机或已知延迟。此外,p1和p2分别为从第一天线和第二天线发射以用于频率偏移和信道估计的训练序列。
注意,在,预补偿仅应用于该实施例中的第二天线。
展开(8),我们得到
r 1 [ t ] = e j&Delta; &omega; 11 T s t e j&theta; 11 [ h 11 p 1 [ t ] + e j ( &theta; 12 - &theta; 11 ) h 12 p 2 [ t ] ] - - - ( 10 )
并且类似地,对于第二用户有
r 2 [ t ] = e j&Delta; &omega; 21 T s t e j&theta; 21 [ h 21 p 1 [ t ] + e j ( &theta; 22 - &theta; 21 ) h 22 p 2 [ t ] ] - - - ( 11 )
其中 &theta; mn = - &Delta; &omega; mn T s t ~ mn .
在接收端,用户通过使用训练序列p1和p2来补偿残余频率偏移。之后,用户经由训练向量信道来进行估计(4702b)
h 1 = h 11 e j ( &theta; 12 - &theta; 11 ) h 12 h 2 = h 21 e j ( &theta; 22 - &theta; 21 ) h 22 - - - ( 12 )
将(12)中的这些信道或信道状态信息(CSI)反馈至基站(4702b),基站如以下小节所述计算DIDO预编码器。
(d)利用预补偿进行DIDO预编码(4703)
基站从用户接收(12)中的信道状态信息(CSI),并经由块对角化(BD)计算预编码权重(4703a),使得
w 1 T h 2 = 0 , w 2 T h 1 = 0 - - - ( 13 )
其中向量h1在(12)中定义并且wm=[wm1,wm2]。注意,本公开中展示的本发明可应用于除了BD以外的其他任何DIDO预编码方法。基站还通过采用(7)中的估计来预补偿频率偏移,以及通过估计第二训练发射与当前发射之间的延迟(Δto)来预补偿相位偏移(4703a)。最后,基站经由DIDO预编码器将数据发送至用户(4703b)。
在该发射处理之后,在用户1处接收的信号由下式给出
其中使用性质(13),我们得到
r 1 [ t ] = &gamma; 1 [ t ] w 1 T h 1 x 1 [ t ] . - - - ( 15 )
类似地,对于用户2,我们得到
r 2 [ t ] = e j&Delta; &omega; 21 T s ( t - t ~ 21 - &Delta; t o ) h 21 [ w 11 x 1 [ t ] + w 21 x 2 [ t ] ] + e j&Delta; &omega; 22 T s ( t - t ~ 22 - &Delta; t o ) h 22 e - j&Delta; &omega; T T s ( t - &Delta; t o ) [ w 12 x 1 [ t ] + w 22 x 2 [ t ] ] - - - ( 16 )
然后展开(16)
r 2 [ t ] = &gamma; 2 [ t ] w 2 T h 2 x 2 [ t ] - - - ( 17 )
其中 &gamma; 2 [ t ] = e j&Delta; &omega; 21 T s ( t - t ~ 21 - &Delta; t o ) .
最后,用户计算残余频率偏移和信道估计以将数据流x1[t]和x2[t]解调(4703c)。
推广至N×M
在该章节中,将先前所述的技术推广至具有N个发射天线和M个用户的DIDO系统。
i.频率偏移估计的训练周期
在第一训练周期期间,由于从第N个天线发送的训练序列而被第m个用户接收的信号由下式给出
r m [ t ] = &Sigma; n = 1 N e j&Delta; &omega; mn T s ( t - t mn ) h mn p n [ t ] - - - ( 18 )
其中pn为从第n个天线发射的训练序列。
在估计偏移Δωmn之后,第m个用户将第一发射天线与第n个发射天线之间的频率偏移计算为
ΔωT,1n=Δωmn-Δωm1=ωT1Tn.   (19)
最后,将(19)中的值反馈至基站。
ii.信道估计的训练周期
在第二训练周期期间,基站首先使用(19)中的值从第m个用户或所述多个用户获得频率偏移反馈。(19)中的值用于预补偿发射端的频率偏移。之后,基站将训练数据发送至所有用户以进行信道估计。
对于DIDO N×M系统,在第m个用户处接收的信号由下式给出
r m [ t ] = e j&Delta; &omega; m 1 T S ( t - t ~ m 1 ) h m 1 p 1 [ t ] + &Sigma; n = 2 N e j&Delta; &omega; mn T s ( t - t ~ mn ) h mn e - j&Delta; &omega; T , 1 n T s t p n [ t ] = e j&Delta; &omega; m 1 T s ( t - t ~ m 1 ) [ h m 1 p 1 [ t ] + &Sigma; n = 2 N e j ( &theta; mn - &theta; m 1 ) h mn p n [ t ] ] = e j&Delta; &omega; m 1 T s ( t - t ~ m 1 ) &Sigma; n = 1 N e j ( &theta; mn - &theta; m 1 ) h mn p n [ t ] - - - ( 20 )
其中和Δt为基站的第一发射与第二发射之间的随机或已知延迟。此外,pn为从第n个天线发射以用于频率偏移和信道估计的训练序列。
在接收端,用户通过使用训练序列pn来补偿残余频率偏移。之后,每个用户m经由训练向量信道来进行估计
h m = h m 1 e j ( &theta; m 2 - &theta; m 1 ) h m 2 . . . e j ( &theta; mN - &theta; m 1 ) h mN - - - ( 21 )
并反馈至基站,基站如以下小节所述计算DIDO预编码器。
iii.利用预补偿进行DIDO预编码
基站从用户接收(12)中的信道状态信息(CSI),并经由块对角化(BD)计算预编码权重,使得
w m T h l = 0 , &ForAll; m &NotEqual; l , m = 1 , . . . , M - - - ( 22 )
其中向量hm在(21)中定义,并且wm=[wm1,wm2,K,wmN]。基站还通过采用(19)中的估计来预补偿频率偏移,以及通过估计第二训练发射与当前发射之间的延迟(Δto)来预补偿相位偏移。最后,基站经由DIDO预编码器将数据发送至用户。
在该发射处理之后,在用户i处接收的信号由下式给出
r i [ t ] = e j&Delta; &omega; i 1 T s ( t - t ~ i 1 - &Delta; t o ) h i 1 &Sigma; m = 1 M w m 1 x m [ t ] + + &Sigma; n = 2 N e j &Delta;&omega; in T s ( t - t ~ in - &Delta; t o ) h in e - j&Delta; &omega; T , 1 n T s ( t - &Delta; t o ) &Sigma; m = 1 M w mn x m [ t ] = e j &Delta; i 1 T s ( t - &Delta; t o ) e - j&Delta; &omega; i 1 T s t ~ i 1 h i 1 &Sigma; m = 1 M w m 1 x m [ t ] + &Sigma; n = 2 N e j &Delta;&omega; i 1 T s ( t - &Delta; t o ) e - j&Delta; &omega; in T s t ~ in h in &Sigma; m = 1 M w mn x m [ t ] = &gamma; i [ t ] [ h i 1 &Sigma; m = 1 M w m 1 x m [ t ] + &Sigma; n = 2 N e j ( &theta; in - &theta; i 1 ) h in &Sigma; m = 1 M w m 1 x m [ t ] ] = &gamma; i [ t ] [ &Sigma; n = 1 N e j ( &theta; in - &theta; i 1 ) h in &Sigma; m = 1 M w mn x m [ t ] ] = &gamma; i [ t ] &Sigma; m = 1 M [ &Sigma; n = 1 N e j ( &theta; in - &theta; i 1 ) h in w mn ] x m [ t ] = &gamma; i [ t ] &Sigma; m = 1 M w m T h i x m [ t ] - - - ( 23 )
其中使用性质(22),我们得到
r i [ t ] = &gamma; i [ t ] w i T h i x i [ t ] - - - ( 24 )
最后,用户计算残余频率偏移和信道估计以将数据流xi[t]解调。
结果
图48示出了具有及不具有频率偏移的DIDO 2×2系统的SER结果。可以看出,所提议的方法完全消除了频率/相位偏移,从而产生与不具有偏移的系统相同的SER。
接下来,我们评估了所提议的补偿方法对频率偏移估计误差和/或实时偏移的波动的灵敏性。因此,我们将(14)重写为
r 1 [ t ] = e j&Delta; &omega; 11 T s ( t - t ~ 11 - &Delta; t o ) h 11 [ w 11 x 1 [ t ] + w 21 x 2 [ t ] ] + e j&Delta; &omega; 12 T s ( t - t ~ 12 - &Delta; t o ) h 12 e - j ( &Delta; &omega; T + 2 &Pi; &Element; ) T s ( t - &Delta; t o ) [ w 12 x 1 [ t ] + w 22 x 2 [ t ] ] - - - ( 25 )
其中∈指示训练发射与数据发射之间的频率偏移的估计误差和/或变化。注意,∈的作用是破坏(13)中的正交性质,使得(14)和(16)中的干扰项在发射器处没有完全被预先消除。由此,SER性能因∈值的增大而下降。
图48示出了对于不同∈值,频率偏移补偿方法的SER性能。这些结果假定Ts=0.3 ms(即,信号具有3KHz带宽)。我们观察到,对于∈=0.001Hz(或更小),SER性能类似于无偏移情况。
f.时间和频率偏移估计算法的一个实施例的描述
在下文中,我们描述了用于执行时间和频率偏移估计的另外的实施例(图47中的4701b)。所考虑的发射信号结构在以下参考文献中示出:H.Minn,V.K.Bhargava,and K.B.Letaief,“A robust timing and frequencysynchronization for OFDM systems,”IEEE Trans.Wireless Commun.,vol.2,no.4,pp.822–839,July 2003(H.Minn、V.K.Bhargava和K.B.Letaief,“用于OFDM系统的稳健定时及频率同步”,IEEE无线通信学报,第2卷,第4期,第822-839页,2003年7月),并且在以下参考文献中被更详细地研究:K.Shi and E.Serpedin,“Coarse frame and carriersynchronization of OFDM systems:a new metric and comparison,”IEEETrans.Wireless Commun.,vol.3,no.4,pp.1271–1284,July 2004(K.Shi和E.Serpedin,“OFDM系统的粗略帧和载波同步:一种新量度和比较”,IEEE无线通信学报,第3卷,第4期,第1271-1284页,2004年7月)。一般来说,将具有良好相关特性的序列用于训练。例如,对于我们的系统,使用了如以下参考文献所述推导的Chu序列:D.Chu,“Polyphase codes withgood periodic correlation properties(corresp.),”IEEE Trans.Inform.Theory,vol.18,no.4,pp.531–532,July 1972(D.Chu,“具有良好周期性相关特性的多相码(通讯短文)”,IEEE信息理论学报,第18卷,第4期,第531-532页,1972年7月)。这些序列具有一种有趣的特性,即它们具有完美的循环相关性。让Lcp表示循环前缀的长度,并且让Nt表示分量训练序列的长度。令Nt=Mt,其中Mt为训练序列的长度。在这些假设下,可将前导的发射符号序列写为
s[n]=t[n-Nt] for n=-1,...,-Lcp
s[n]=t[n] for n=0,...,Nt-1
s[n]=t[n-Nt] for n=Nt,...,2Nt-1
s[n]=-t[n-2Nt] for n=2Nt,...,3Nt-1
s[n]=t[n-3Nt] for n=3Nt,...,4Nt-1
注意,可通过重复块结构将该训练信号的结构扩展至其他长度。例如,为使用16个训练信号,我们考虑了-种结构,诸如:
[CP, B,B,-B,B,B,B,-B,B,-B,-B,B,-B,B,B,-B,B,].
通过使用该结构并且令Nt=4 Mt,无需修改即可采用将要描述的所有算法。实际上,我们正在重复训练序列。这在合适的训练信号可能不可用的情况下尤其有用。
在匹配过滤并下采样至符号率之后,考虑以下接收信号:
r [ n ] = e 2 &pi; &Element; n &Sigma; l = 0 L h [ l ] s [ n - l - &Delta; ] + &upsi; [ n ]
其中ε为未知的离散时间频率偏移,Δ为未知的帧偏移,h[l]为未知的离散时间信道系数,并且v[n]为加性噪声。为说明关键理念,在以下章节中,忽略加性噪声的存在。
i.粗略帧同步
粗略帧同步的目的在于解决未知的帧偏移Δ。让我们进行以下定义
r1[n]:=[r[n],r[n+1],...,r[n+Nt-1]]T
r &OverBar; 1 [ n ] : = [ r [ n + L cp ] , r [ n + 1 ] , . . . , r [ n + N t - 1 ] ] T ,
r2[n]:=[r[n+Nt],r[n+1+Nt],...,r[n+2Nt-1]]T
r &OverBar; 2 [ n ] : = [ r [ n + L cp + N t ] , r [ n + 1 + L cp + N t ] , . . . , r [ n + L cp + 2 N t - 1 ] ] T ,
r3[n]:=[r[n+2Nt],r[n+1+2Nt],...,r[n+3Nt-1]]T
r &OverBar; 3 [ n ] : = [ r [ n + L cp + 2 N t ] , r [ n + L cp + 1 + 2 N t ] , . . . , r [ n + L cp + 3 N t - 1 ] ] T ,
r4[n]:=[r[n+3Nt],r[n+1+3Nt],...,r[n+4Nt-1]]T
r &OverBar; 4 [ n ] : = [ r [ n + L cp + 3 N t ] , r [ n + L cp + 1 + 3 N t ] , . . . , r [ n + L cp + 4 N t - 1 ] ] T .
所提议的粗略帧同步算法的灵感来自以下参考文献中的算法:K.Shiand E.Serpedin,“Coarse frame and carrier synchronization of OFDM systems:a new metric and comparison,”IEEE Trans.Wireless Commun.,vol.3,no.4,pp.1271–1284,July 2004(K.Shi和E.Serpedin,“OFDM系统的粗略帧和载波同步:一种新量度和比较”,IEEE无线通信学报,第3卷,第4期,第1271-1284页,2004年7月),该算法从最大似然准则导出。
方法1–改进的粗略帧同步:粗略帧同步估计器求解以下最优化
&Delta; ^ = arg max k &Element; Z | P 1 ( k ) | + | P 2 ( k ) | + | P 3 ( k ) | | | r 1 | | 2 + | | r 2 | | 2 + | | r 3 | | 2 + | | r 4 | | 2 + 1 2 ( | | r &OverBar; 1 | | 2 + | | r &OverBar; 2 | | 2 + | | r &OverBar; 3 | | 2 + | | r &OverBar; 4 | | 2 )
where
P 1 [ k ] = r 1 * [ k ] r 2 [ k ] - r 3 * [ k ] r 4 [ k ] - r &OverBar; 2 * [ k ] r &OverBar; 3 [ k ]
P 2 [ k ] = r 2 * [ k ] r 4 [ k ] - r 1 * [ k ] r 3 [ k ]
P 3 [ k ] = r &OverBar; 1 * [ k ] r &OverBar; 4 [ k ] .
将经校正的信号定义为
附加校正项用于补偿信道中的小型初始抽头,并且可根据应用而被调节。此后,信道中将包括这一额外的延迟。
ii.分数频率偏移校正
分数频率偏移校正在粗略帧同步块之后发生。
方法2–改进的分数频率偏移校正:分数频率偏移是下式的解
&Element; ^ f = phase P 1 [ &Delta; ^ ] 2 &pi; N t .
其被称为分数频率偏移,因为该算法可仅校正偏移
| &Element; ^ f | < 1 2 N t .
这个问题将在下一节中解决。将经过精细频率偏移校正的信号定义为
r f [ n ] = e - j 2 &pi; &Element; ^ f r c [ n ] .
注意,方法1和方法2是以下参考文献的改进:K.Shi and E.Serpedin,“Coarse frame and carrier synchronization of OFDM systems:a newmetric and comparison,”IEEE Trans.Wireless Commun.,vol.3,no.4,pp.1271–1284,July 2004(K.Shi和E.Serpedin,“OFDM系统的粗略帧和载波同步:一种新量度和比较”,IEEE无线通信学报,第3卷,第4期,第1271-1284页,2004年7月),后者在频率选择信道中性能更好。这里的一个具体创新是使用了如上所述的r和两者。的使用改进了先前的估计器,因为它忽略了将因符号间干扰而遭受污染的样本。
iii.整数频率偏移校正
为校正整数频率偏移,必须为精细频率偏移校正之后的接收信号写出等效系统模型。通过将剩余定时误差纳入信道中,在不存在噪声的情况下的接收信号具有以下结构:
r f [ n ] = e j 2 &pi; nk N s &Sigma; l = 0 L cp g [ l ] s [ n - l ]
,n=0,1,...,4Nt-1。整数频率偏移为k,而未知等效信道为g[l]。
方法3-改进的整数频率偏移校正:整数频率偏移是下式的解
k ^ = arg max m = 0,1 , . . . , N t - 1 r * D [ k ] S ( S * S ) - 1 S * D [ k ] * r
其中
r=D[k]Sg
D [ k ] : = diag { 1 , e j 2 &pi; n 1 N t , . . . , e j 2 &pi; n ( 4 N t - 1 ) N t }
S : = s [ 0 ] s [ - 1 ] . . . . . . s [ - L cp ] s [ 1 ] s [ 0 ] s [ - 1 ] . . . s [ - L cp + 1 ] s [ 4 N t - 1 ] s [ 4 N t - 2 ] s [ 4 N t - 3 ] . . . s [ 4 N t - 1 - L cp ]
g : = g [ 0 ] g [ 1 ] . . . g [ L cp ]
这给出了总频率偏移的估计
&Element; ^ = k ^ N t + &Element; ^ f .
实际上,方法3相当复杂。为降低复杂性,可制定以下观测量。首先,可预计算乘积SS(S*S)-1S*。遗憾的是,这仍会留下相当大的矩阵乘法。一种替代方法是利用具有所提议的训练序列的观测量,S*S≈I。这会得到以下复杂度降低的方法。
方法4–低复杂度的改进的整数频率偏移校正:低复杂度整数频率偏移 估计器求解
k ^ = arg max m = 0,1 , . . . , N t - 1 ( S * D [ k ] * r ) * ( S * D [ k ] * r ) .
iv.结果
在该节中,我们比较了所提议的不同估计器的性能。
首先,在图50中,我们比较了每种方法所需的开销的量。注意,两种新方法均使所需的开销减少到1/10和1/20。为比较不同估计器的性能,执行了蒙特卡罗实验。所考虑的设置是我们常用的NVIS发射波形,该NVIS发射波形从符号率为每秒3K符号(对应于3kHz的通带带宽)的线性调制以及升余弦脉冲整形构造而成。针对每个蒙特卡罗实现,根据[-fmax,fmax]上的均匀分布生成了频率偏移。
图51中示出了具有小频率偏移fmax=2Hz并且不具有整数偏移校正的模拟。从该性能比较可以看出,Nt/Mt=1时的性能稍低于原始估计器,但仍大幅度降低了开销。Nt/Mt=4时的性能好得多,差不多为10dB。由于整数偏移估计中的误差,所有曲线在低SNR点处均经历拐点。整数偏移中的小误差可产生大的频率误差,并且因此产生大均方差。在小偏移时可关闭整数偏移校正以提升性能。
在存在多路径信道时,频率偏移估计器的性能通常会降低。然而,在图52中,关闭整数偏移估计器展现了相当好的性能。因此,在多路径信道中,更重要的是执行稳健的粗略校正并继之以改进的精细校正算法。注意,在多路径情况下,Nt/Mt=4时的偏移性能好得多。
自适应DIDO发射方案
以下描述了用于自适应DIDO系统的新的系统和方法。这些系统和方法是2007年8月20提交的名称为“用于分布式输入分布式输出无线通信的系统和方法”的专利申请序列号11/894,394、11/894,362和11/894,540的延伸,本专利申请是这些专利申请的部分继续申请。上面已描述了这些专利申请的内容。上述专利申请中描述的自适应DIDO系统和方法设计用于利用瞬时和/或统计信道质量信息。以下描述了通过假定瞬时信道知识来允许实现不同DIDO模式之间的自适应的其他技术。
下面将在本发明实施例的背景下讨论以下现有技术参考文献。每个参考文献将由其对应的带括号数字来标识:
[1]K.K.Wong,R.D.Murch,and K.B.Letaief,“A joint-channeldiagonalization for multiuser MIMO antenna systems,”IEEE Trans.Commun.,vol.2,no.4,pp.773-786,July 2003(K.-K.Wong、R.D.Murch和K.B.Letaief,“用于多用户MIMO天线系统的联合信道对角化”,IEEE通信学报,第2卷,第4期,第773-786页,2003年7月)。
[2]R.Chen,R.W.Heath,Jr.,and J.G.Andrews,“Transmit SelectionDiversity for Unitary Precoded Multiuser Spatial MultiplexingSystems with Linear Receivers,”IEEE Trans.on Signal Processing,vol.55,no.3,pp.1159-1171,March 2007(R.Chen、R.W.Heath,Jr.和J.G.Andrews,“具有线性接收器的一体化预编码多用户空间多路复用系统的发射选择分集”,IEEE信号处理学报,第55卷,第3期,第1159-1171页,2007年3月)。
[3]R.W.Heath,Jr.and A.J.Paulraj,“Switching Between Diversityand Multiplexing in MIMO Systems,”IEEE Trans.onCommunications,vol.53,no.6,pp.962-968,June 2005(R.W.Heath,Jr和A.J.Paulraj,“MIMO系统中的分集与多路复用之间的切换”,IEEE通信学报,第53卷,第6期,第962-968页,2005年6月)。
与链路自适应(LA)相关联的一个基础概念是根据变化的信道条件自适应地调节系统参数,诸如调制阶次、FEC编码率和/或发射方案,以提升吞吐量或错误率性能。这些系统参数通常在本文中称为DIDO模式的多组“发射模式”中组合。用于LA的技术的一个实施例是测量信道质量信息并根据一定性能标准来预测最佳发射模式。信道质量由统计信道信息(如在慢LA中)或(瞬时)CSI(如在快LA中)组成。在快LA系统的背景下采用了本文所述的系统和方法的一个实施例,目标是针对固定的预定义目标错误率增加吞吐量。
图21中示出了用于自适应DIDO发射的方法的一个实施例。在频分双工(FDD)系统中,所提议的自适应算法由以下步骤组成:i)用户计算信道质量指标(CQI)2102;ii)用户根据时域/频域/空域中的CQI 2104为发射选择最佳DIDO模式2106;iii)基站选择活动用户并以所选择的DIDO模式经由DIDO预编码发射数据。在其中可利用上行链路/下行链路信道互易性的时分双工(TDD)系统中,基站可计算CQI并为所有用户选择最佳DIDO模式。此外,为计算DIDO预编码权重,可在FDD系统中的用户侧或在TDD系统中的基站处计算信道状态信息(CSI)。当在用户侧计算CSI并反馈至基站时,基站利用该CSI来为每个用户计算CQI以允许实现自适应DIDO算法。
我们首先定义一个信道质量指标,其用于预测不同DIDO模式的性能以及针对给定发射选择最佳DIDO模式。信道质量指标(CQI)的一个例子是DIDO系统的交互信息(MI),其定义为[1,2]
C = &Sigma; k = 1 K log 2 | I N k + &gamma; k N k H ~ k H H ~ k | - - - ( 1 )
其中K为用户数量,为等效信道传输矩阵,Hk为第k个用户的信道矩阵,Tk为第k个用户的DIDO预编码矩阵,γk为每用户SNR,并且Nk为发送至用户k的并行数据流数量。我们观察到,(1)中的CQI取决于SNR和信道矩阵。
(1)中的MI测量可以可靠地在DIDO链路上传输的每单位带宽数据速率(即无错频谱效率)。当给定DIDO模式的频谱效率(SE)低于(1)中的MI时,错误率性能为任意小,而当SE超过(1)时,错误率接近100%。例如,我们在图53中描绘了三种DIDO模式的频谱效率随MI(1)的变化关系。DIDO模式由三个星座图阶次组成:4-QAM、16-QAM和64-QAM。为简单起见,并且在不失普遍性的情况下,我们假定没有FEC编码。2×2 DIDO系统的发射器采用块对角化预编码方案[1]。从符号错误率得到SE,即SE=log2M(1-SER),其中M为M-QAM星座图大小。我们根据分组衰落i.i.d.信道模型来模拟信道。我们生成了1000个信道实现,并且对于每个实现,我们模拟了500个AWGN样本。为该模拟选择的SNR值是{0,10,20,30}dB。
在图53中,每个点对应于在每个AWGN块内获得的交互信息和SE的一个组合。此外,不同颜色与不同SNR值相关联。在图54中,通过SER随MI(1)的变化关系表达了相似结果。对于4-QAM的情况,我们注意到,当在图53中SE超过MI时,在图54中SER接近100%。遗憾的是,由于在SER与MI关系图中存在大方差,导致无法识别用于定义链路质量区域的阈值。
接下来,我们定义另一个CQI以减小该方差。首先将(1)展开为
C = &Sigma; k = 1 K &Sigma; i = 1 N k log 2 ( 1 + &gamma; k N k | &lambda; k , i | 2 )
其中λk,i为矩阵的第i个奇异值。我们观察到,每用户SER(其为后处理SNR的函数)取决于并且系统SER由所有用户中具有最小奇异值的用户限定上界[2]。之后,我们定义以下CQI
C min = min k = 1 , . . . , K { min i = 1 , . . . , N k [ log 2 ( 1 + &gamma; k N k | &lambda; k , i | 2 ) ] } - - - ( 2 )
图55示出了对于不同DIDO模式,SER与Cmin的关系。我们观察到,方差较图54有所减小。为定义CQI阈值和链路质量区域,我们将目标SER固定。例如,如果目标SER为1%,则CQI阈值为T1=2.8bps/Hz、T2=5bps/Hz以及T3=7bps/Hz。
最后,我们对照自适应DIDO算法,比较了不同DIDO模式下SER和SE性能随SNR的变化关系。结果在图56和图57中示出。我们观察到,对于SNR>20dB,自适应算法使SER维持低于1%,并同时增大SE,从而接近理想总速率容量。图58和图59示出了对于CQI阈值的不同值,自适应DIDO算法的性能。我们观察到,通过减小固定SNR的CQI阈值,SE以更大的SER为代价增加。在一个实施例中,根据系统性能要求来调节CQI阈值。
用于DIDO系统中快LA的所提议的方法包括不同类型的自适应标准和CQI。例如,可设计类似的自适应DIDO算法以使固定速率发射的错误率性能尽可能小,类似于[3]中所述的用于MIMO系统的方法。此外,可采用不同类型的CQI,诸如下式中的复合信道矩阵的最小奇异值
&lambda; min = min j = 1 , . . . , N &OverBar; { &lambda; j ( HH H ) } - - - ( 3 )
其中为发送至用户的数据流总数,并且H为如下通过叠加所有用户的信道矩阵所获得的复合信道矩阵
H = H 1 . . . H K - - - ( 4 )
图60示出了对于4-QAM星座图、平均SNR=15dB和单抽头信道,表达的SER随(3)中的最小奇异值的变化关系。将(4)中的复合信道矩阵归一化,使得我们观察到,对于4-QAM星座图,用于保证SER<1%的CQI阈值为-16dB。可为更高阶次调制获得类似的结果。
所提议的方法可延伸至多载波系统,诸如正交频分多路复用(OFDM)系统。在多载波系统中,为每个子载波计算(1)和(2)中的MI,并将不同MCS分配至不同子载波,从而利用无线信道的频率选择性。然而,这个方法可引起大量控制信息在发射器与接收器之间共享CQI或DIDO模式数量。一种替代方法是将具有相似信道质量的多个子载波分组,然后计算每个子载波组上的(1)或(2)的平均值。之后,根据以上所述的标准将不同DIDO模式分配至不同子载波组。
本发明的实施例可包括如上所示的各种步骤。所述步骤可体现为使通用或专用处理器执行某些步骤的机器可执行指令。例如,上述基站/AP和客户端设备内的各种部件可实现为在通用或专用处理器上执行的软件。为避免混淆本发明的相关方面,图中不列出各种熟知的个人计算机部件,诸如计算机存储器、硬盘驱动器、输入设备等。
作为另外一种选择,在一个实施例中,本文示出的各种功能模块和相关步骤可通过包含用于执行步骤的硬连线逻辑的特定硬件部件,诸如专用集成电路(“ASIC”),或通过编程计算机部件和定制硬件部件的任何组合执行。
在一个实施例中,某些模块,例如上述编码、调制和信号处理逻辑单元903可在可编程的数字信号处理器(“DSP”)(或DSP组)例如使用美国德州仪器公司(Texas Instruments)的TMS320x架构的DSP(例如,TMS320C6000、TMS320C5000、……等)上实现。该实施例中的DSP可嵌入在个人计算机的附加卡(诸如PCI卡)内。当然,可使用多种不同的DSP架构,同时仍符合本发明的基本原理。
本发明的元件也可以作为用于存储机器可执行指令的机器可读介质提供。机器可读介质可包括但不限于闪存存储器、光盘、CD-ROM、DVDROM、RAM、EPROM、EEPROM、磁卡或光卡、传播介质或适于存储电子指令的其他类型的机器可读介质。例如,本发明可下载为计算机程序,所述计算机程序可以数据信号的方式从远程计算机(例如,服务器)经由通信链路(例如,调制解调器或网络连接)转移至请求计算机(例如,客户端),所述数据信号体现为载波或其他传播介质。
在整个前述说明书中,出于解释目的,示出了许多具体细节,以提供对本发明系统和方法的深入理解。然而,对于本领域技术人员显而易见的是,所述系统和方法可在没有这些具体细节中的一些的情况下实施。因此,本发明的范围和实质应以如下权利要求书判断。
此外,在整个前述说明书中,引用了许多出版物,以提供对本发明更深入的理解。所有这些引用的参考文献均以引用的方式并入本专利申请中。

Claims (35)

1.一种多用户(MU)多天线系统(MAS),所述多用户多天线系统包括:一个或多个集中式单元,所述一个或多个集中式单元经由网络通信地耦接到多个分布式收发器站或天线上;所述网络包括作为回程通信信道采用的有线链路或无线链路或两者的组合;
所述MU-MAS自适应地重新配置以补偿归因于用户移动或所述传播环境改变的多普勒效应。
2.根据权利要求1所述的系统,其中所述MU-MAS系统包括一组或多组用户装置(UE)、收发器基站(BTS)、控制器(CTR)、集中式处理器(CP)和基站网络(BSN)。
3.根据权利要求1所述的系统,采用分布式天线,所述分布式天线利用空间、极化和/或方向图分集来提高无线系统中对一个或多个用户的数据速率和/或覆盖率。
4.根据权利要求1所述的系统,其中所述UE位于所述分布式天线周围或之间或被所述分布式天线包围。
5.根据权利要求1所述的系统,其中MU-MAS在所述上行链路信道的接收器处采用复合权重来解调来自所述UE的独立流(例如,数据或CSI)。
6.根据权利要求5所述的系统,其中所述上行链路接收器的复合权重从所述下行链路预编码权重得出或经由最大比合并接收器计算。
7.根据权利要求2所述的系统,其中所述CP和所述BTS配备有编码器/解码器,以压缩/解压缩通过所述BSN在它们之间交换的信息。
8.根据权利要求7所述的系统,其中经预编码的基带数据流在从所述BTS向所述MU-MAS分布式天线或从所述MU-MAS分布式天线向所述BTS传输之前被压缩,以降低通过所述BSN上的开销。
9.根据权利要求2所述的系统,其中所述CP基于所述BSN上的延迟自适应地选择用于低移动性UE或高移动性UE的所述BTS。
10.根据权利要求9所述的系统,其中所述自适应基于高/低数据速率BSN的类型或QoS或所述BSN上的平均通信统计值(例如,不同网络的白天或夜间使用)或瞬时通信统计值(例如,临时网络拥塞)。
11.根据权利要求2所述的系统,其中所述CP基于每个BTS-UE链路的多普勒速度自适应地选择用于低移动性UE或高移动性UE的所述BTS。
12.根据权利要求2所述的系统,其中采用线性预测估计未来的所述CSI或MU-MAS预编码权重,从而消除多普勒效应对所述MU-MAS性能的不利影响。
13.根据权利要求12所述的系统,其中在时域、频域和/或空间域中采用所述预测。
14.一种在多用户(MU)多天线系统(MAS)内实施以补偿多普勒效应的方法,所述方法包括:
测量第一移动用户相对于多个收发器基站(BTS)的多普勒速度;以及
基于所测量的第一BTS相对于其他BTS的多普勒速度将所述第一移动用户动态地分配至所述第一BTS或所述多个BTS中的第一组BTS。
15.根据权利要求14所述的方法,其中如果与第二移动用户相比,所述第一移动用户具有相对较高的测量的多普勒速度,那么动态分配包括将所述第一移动用户分配至第一BTS或第一组BTS并且将所述第二移动用户分配至第二BTS或第二组BTS,与所述第二BTS或第二组BTS相比,所述第一BTS或所述第一组BTS具有相对较低的与之相关的延迟。
16.根据权利要求14所述的方法,其中所述延迟包括(a)将第一训练信号从所述第一移动用户传输至BTS所花费的时间,(b)将所述BTS连接到集中式处理器(CP)的基站网络(BSN)上的往返延迟,以及(c)购买所述CP以处理所述BTS与所述第一移动用户之间的所述无线信道的信道状态信息(CSI)、基于所述CSI生成用于所述第一移动用户的预编码数据流以及调度传输至包括用于所述当前传输的所述第一用户在内的不同移动用户所花费的时间。
17.根据权利要求16所述的方法,其中所述延迟还包括将第二训练信号从所述BTS传输至所述第一移动用户所花费的时间。
18.根据权利要求14所述的方法,其中动态分配还包括基于每个BTS与所述第一移动用户之间的通信信道的链路质量和与相对于所述第一用户的每个BTS相关联的所测量的多普勒速度的组合进行分配。
19.根据权利要求18所述的方法,其中对于给定的多普勒速度,选择所述具有相对较高链路质量的BTS。
20.根据权利要求18所述的方法,其中对于给定的链路质量,选择所述具有相对较低多普勒速度的BTS。
21.根据权利要求14所述的方法,所述方法还包括:
基于过去的复信道系数估计未来的复信道系数,以补偿多普勒效应对所述BTS与所述第一移动用户之间的通信的不利影响。
22.根据权利要求21所述的方法,其中采用线性预测用于估计。
23.根据权利要求14所述的方法,其中基于限定所述移动用户与所述多个BTS中的每个BTS之间的通信信道质量的所述多普勒速度和信道状态信息(CSI)两者将所述第一移动用户动态地分配至所述第一BTS或第一组BTS。
24.根据权利要求23所述的方法,所述方法还包括:
构建相对于所述第一移动用户的所述多个BTS中的每个BTS的多普勒速度和链路质量的矩阵;以及
选择具有低于指定阈值的多普勒速度和高于指定阈值的链路质量的BTS。
25.一种补偿多普勒效应的多用户(MU)多天线系统(MAS),所述多用户多天线系统包括:
多个收发器基站(BTS);
与所述BTS中的每一者建立通信链路的第一移动用户;
集中式处理器(CP),所述集中式处理器测量第一移动用户相对于所述BTS中的每一者的多普勒速度,并且基于所测量的第一BTS相对于其他BTS的多普勒速度动态地将所述第一移动用户分配至所述多个BTS中的第一BTS。
26.根据权利要求25所述的系统,其中如果与第二移动用户相比,所述第一移动用户具有相对较高的测量的多普勒速度,那么动态分配包括将所述第一移动用户分配至第一BTS并且将所述第二移动用户分配至第二BTS,与所述第二BTS相比,所述第一BTS具有相对较低的与之相关的延迟。
27.根据权利要求25所述的系统,其中所述延迟包括(a)将第一训练信号从所述第一移动用户传输至BTS所花费的时间,(b)通过基站网络(BSN)将所述BTS连接到集中式处理器(CP)的往返延迟,以及(c)购买所述CP以处理所述BTS与所述第一移动用户之间的所述无线信道的信道状态信息(CSI)、基于所述CSI生成用于所述第一移动用户的预编码数据流以及调度传输至包括用于所述当前传输的所述第一用户在内的不同移动用户所花费的时间。
28.根据权利要求27所述的系统,其中所述延迟还包括将第二训练信号从所述BTS传输至所述第一移动用户所花费的时间。
29.根据权利要求25所述的系统,其中动态分配还包括基于每个BTS与所述第一移动用户之间的通信信道的链路质量和与相对于所述第一用户的每个BTS相关联的所述测量的多普勒速度的组合进行分配。
30.根据权利要求29所述的系统,其中对于给定的多普勒速度,选择所述具有相对较高链路质量的BTS。
31.根据权利要求29所述的系统,其中对于给定的链路质量,选择所述具有相对较低多普勒速度的BTS。
32.根据权利要求25所述的系统,其中所述CP基于过去的复信道系数估计未来的复信道系数,以补偿多普勒效应对所述BTS与所述第一移动用户之间的通信的不利影响。
33.根据权利要求32所述的系统,其中采用线性预测用于估计。
34.根据权利要求25所述的系统,其中基于限定所述移动用户与所述多个BTS中的每个BTS之间的通信信道质量的所述多普勒速度和信道状态信息(CSI)两者将所述第一移动用户动态地分配至所述第一BTS。
35.根据权利要求34所述的系统,其中所述CP执行以下另外的操作:
构建相对于所述第一移动用户的所述多个BTS中的每个BTS的多普勒速度和链路质量的矩阵;以及
选择具有低于指定阈值的多普勒速度和高于指定阈值的链路质量的BTS。
CN201380035543.0A 2012-05-04 2013-05-03 用于处理分布式输入-分布式输出无线系统中的多普勒效应的系统和方法 Active CN104603853B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010055466.7A CN111262613A (zh) 2012-05-04 2013-05-03 用于处理分布式输入-分布式输出无线系统中的多普勒效应的系统和方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/464,648 2012-05-04
US13/464,648 US9312929B2 (en) 2004-04-02 2012-05-04 System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
PCT/US2013/039580 WO2013166464A1 (en) 2012-05-04 2013-05-03 System and methods for coping with doppler effects in distributed-input distributed-output wireless systems

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202010055466.7A Division CN111262613A (zh) 2012-05-04 2013-05-03 用于处理分布式输入-分布式输出无线系统中的多普勒效应的系统和方法

Publications (2)

Publication Number Publication Date
CN104603853A true CN104603853A (zh) 2015-05-06
CN104603853B CN104603853B (zh) 2020-02-18

Family

ID=49514932

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201380035543.0A Active CN104603853B (zh) 2012-05-04 2013-05-03 用于处理分布式输入-分布式输出无线系统中的多普勒效应的系统和方法
CN202010055466.7A Pending CN111262613A (zh) 2012-05-04 2013-05-03 用于处理分布式输入-分布式输出无线系统中的多普勒效应的系统和方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202010055466.7A Pending CN111262613A (zh) 2012-05-04 2013-05-03 用于处理分布式输入-分布式输出无线系统中的多普勒效应的系统和方法

Country Status (14)

Country Link
EP (1) EP2845178A4 (zh)
JP (3) JP6178842B2 (zh)
KR (1) KR101875397B1 (zh)
CN (2) CN104603853B (zh)
AU (3) AU2013256044B2 (zh)
BR (1) BR112014027631A2 (zh)
CA (1) CA2872502C (zh)
HK (1) HK1209521A1 (zh)
IL (2) IL272481B2 (zh)
MX (1) MX354045B (zh)
RU (2) RU2649078C2 (zh)
SG (1) SG11201407381VA (zh)
TW (4) TW202243428A (zh)
WO (1) WO2013166464A1 (zh)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106302301A (zh) * 2015-06-24 2017-01-04 北京三星通信技术研究有限公司 基于复数调制的fbmc信号发送和接收的方法及其装置
CN107124213A (zh) * 2016-02-23 2017-09-01 中国科学院声学研究所 多入多出系统中基于直接自适应的双向turbo均衡方法
CN107294888A (zh) * 2016-04-11 2017-10-24 晨星半导体股份有限公司 等化增强模块、解调制系统以及等化增强方法
CN107591002A (zh) * 2017-09-21 2018-01-16 电子科技大学 一种基于分布式光纤的高速公路交通参数实时估计方法
CN107766366A (zh) * 2016-08-18 2018-03-06 深圳市劲嘉数媒科技有限公司 物理空间和信息空间实现对偶关系的方法和系统
CN107846464A (zh) * 2017-11-08 2018-03-27 深圳大学 一种多天线物联网信息传输方法
CN108072864A (zh) * 2016-11-07 2018-05-25 中国科学院沈阳自动化研究所 一种基于变载频调频序列的多目标探测方法
CN109064694A (zh) * 2018-08-22 2018-12-21 平安科技(深圳)有限公司 入侵检测方法、装置、计算机设备及存储介质
CN109314568A (zh) * 2016-06-10 2019-02-05 At&T知识产权部有限合伙公司 分布式天线系统的客户端节点设备
CN109314566A (zh) * 2016-06-10 2019-02-05 At&T知识产权部有限合伙公司 主机节点设备以及与其一起使用的方法
CN109391961A (zh) * 2017-08-10 2019-02-26 捷开通讯(深圳)有限公司 通信方法、用户设备、基站和具有存储性能的装置
CN109716812A (zh) * 2016-08-26 2019-05-03 李尔登公司 用于减轻现用的频谱内的干扰的系统及方法
CN110635836A (zh) * 2019-09-12 2019-12-31 重庆大学 一种基于波束选择的毫米波大规模mimo系统mmse-pca信道估计方法
CN110678772A (zh) * 2017-06-09 2020-01-10 维宁尔瑞典公司 用于车辆雷达系统的增强的竖直对象检测
CN110945804A (zh) * 2017-07-24 2020-03-31 高通股份有限公司 用于测试毫米波设备的方法和装置
CN110971763A (zh) * 2019-12-10 2020-04-07 Oppo(重庆)智能科技有限公司 到站提醒方法、装置、存储介质及电子设备
CN111162824A (zh) * 2019-12-27 2020-05-15 中国人民解放军国防科技大学 一种基于mimo的多波束高通量卫星通信系统和实现方法
CN111405667A (zh) * 2020-03-17 2020-07-10 重庆邮电大学 基于线性预测的tdma动态时隙分配的节点及其方法
CN111540212A (zh) * 2020-07-08 2020-08-14 浙江浙能天然气运行有限公司 一种用于分布式光纤的高速公路干扰估计系统及方法
CN111869009A (zh) * 2018-01-21 2020-10-30 英菲尼朵美有限公司 相位阵列抗干扰装置及方法
CN111937032A (zh) * 2018-03-29 2020-11-13 莱卡微系统Cms有限责任公司 用于输入信号数据中的基线估计的装置和方法
CN112187321A (zh) * 2020-09-23 2021-01-05 江苏恒宝智能系统技术有限公司 一种mimo数据传输同步方法及装置
CN112512074A (zh) * 2020-11-19 2021-03-16 北京邮电大学 一种设备性能测试方法及装置
CN112889183A (zh) * 2018-11-30 2021-06-01 华为技术有限公司 波束控制天线结构和包括所述结构的电子设备
CN113114323A (zh) * 2021-04-22 2021-07-13 桂林电子科技大学 一种mimo系统的信号接收方法
CN113225274A (zh) * 2021-04-14 2021-08-06 西安宇飞电子技术有限公司 一种针对快速移动的多径信道模型测量方法
CN114374407A (zh) * 2022-01-10 2022-04-19 哈尔滨工程大学 基于m序列的空间信道特性预测方法、系统及可存储介质
CN114520681A (zh) * 2020-11-20 2022-05-20 维沃移动通信有限公司 信息传输方法、装置、通信设备及存储介质
CN114553256A (zh) * 2022-01-26 2022-05-27 荣耀终端有限公司 射频模组及电子设备
CN114884787A (zh) * 2022-04-22 2022-08-09 华中科技大学 适用快时变信道的波形可控多载波通信方法、装置及系统
CN115941021A (zh) * 2022-10-24 2023-04-07 西安电子科技大学 一种高超声速飞行器遥测simo信道下基于功率调制的ldpc-bicm-id系统
CN116628729B (zh) * 2023-07-25 2023-09-29 天津市城市规划设计研究总院有限公司 根据数据特性差异化提升数据安全的方法及系统

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9826537B2 (en) 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US10200094B2 (en) 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US8654815B1 (en) 2004-04-02 2014-02-18 Rearden, Llc System and method for distributed antenna wireless communications
US8542763B2 (en) 2004-04-02 2013-09-24 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US10886979B2 (en) 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US9685997B2 (en) 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9923657B2 (en) 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
RU2767777C2 (ru) 2013-03-15 2022-03-21 Риарден, Ллк Системы и способы радиочастотной калибровки с использованием принципа взаимности каналов в беспроводной связи с распределенным входом - распределенным выходом
US9379789B2 (en) 2013-07-03 2016-06-28 Qualcomm Incorporated Antenna selection adjustment
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US9680547B2 (en) * 2014-05-15 2017-06-13 Mediatek Inc. Methods for efficient beam training and network control device utilizing the same
US10680644B2 (en) 2017-09-15 2020-06-09 Groq, Inc. Decompression of model parameters using functions based upon cumulative count distributions
WO2020019336A1 (en) * 2018-07-27 2020-01-30 Nokia Shanghai Bell Co., Ltd. Method and apparatus for transmiting demodulation reference signal
SG11201903591QA (en) * 2018-10-24 2020-05-28 Advanced New Technologies Co Ltd Fast computation of a convolutional neural network
WO2020122973A1 (en) * 2018-12-14 2020-06-18 Waviot Integrated Systems Llc Method and system of frequency correction in lpwan networks
US10893492B2 (en) * 2019-01-19 2021-01-12 Maxim Integrated Products, Inc. Near field communication reader with dynamic power control
TWI708196B (zh) * 2019-03-22 2020-10-21 美商葛如克公司 使用基於累積計數分佈之函數之用於模型參數之解壓縮之方法及處理器
TWI729939B (zh) * 2019-03-22 2021-06-01 美商葛如克公司 使用基於累積計數分佈之函數之用於模型參數之解壓縮之方法及處理器
US10979120B2 (en) 2019-05-30 2021-04-13 Cypress Semiconductor Corporation Method for optimizing channel sounding feedback in MIMO systems
CN114930982A (zh) * 2019-11-21 2022-08-19 智慧天空网络有限公司 用于增强空对地wifi系统的方法和装置
DE112020007407B4 (de) * 2020-09-17 2024-09-12 Mitsubishi Electric Corporation Funkkommunikationsvorrichtung, regelungsschaltung, speichermedium und signalverarbeitungsverfahren
CN112733930B (zh) * 2021-01-07 2022-10-18 北京邮电大学 人体行为感知系统、方法及存储介质
CN113691990A (zh) * 2021-07-16 2021-11-23 德清阿尔法创新研究院 一种基于信噪比冗余和干扰消除技术的异构网络智能共存方法
TWI790000B (zh) 2021-11-18 2023-01-11 立積電子股份有限公司 都卜勒雷達裝置及其窄頻干擾抑制方法
US20230246974A1 (en) * 2022-01-28 2023-08-03 Mediatek Inc. Transmission rate management method and device
CN114978386B (zh) * 2022-05-07 2023-05-16 南京信息工程大学 一种基于组合法的Nakagami衰落信道仿真方法
US12088369B2 (en) 2022-08-22 2024-09-10 Samsung Electronics Co., Ltd Method and apparatus for learning-based channel matrix prediction

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920192B1 (en) * 2000-08-03 2005-07-19 Lucent Technologies Inc. Adaptive antenna array methods and apparatus for use in a multi-access wireless communication system
CN1703113A (zh) * 2004-05-28 2005-11-30 株式会社Ntt都科摩 频率选择装置、移动通信系统及多频带控制方法
CN101405965A (zh) * 2006-03-20 2009-04-08 英特尔公司 下行链路资源分配和映射
WO2009099752A1 (en) * 2008-02-01 2009-08-13 Dish Network Llc Methods and apparatus for place shifting content to a vehicle entertainment system
US20110044193A1 (en) * 2004-04-02 2011-02-24 Antonio Forenza Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US20120093078A1 (en) * 2004-04-02 2012-04-19 Perlman Stephen G System and methods for planned evolution and obsolescence of multiuser spectrum

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2754968B1 (fr) * 1996-10-22 1999-06-04 Sagem Terminal de telephonie mobile cellulaire localisable
US8396368B2 (en) * 2009-12-09 2013-03-12 Andrew Llc Distributed antenna system for MIMO signals
KR100957395B1 (ko) * 2003-05-23 2010-05-11 삼성전자주식회사 레벨 교차율을 이용한 속도추정 장치 및 방법
US8170081B2 (en) * 2004-04-02 2012-05-01 Rearden, LLC. System and method for adjusting DIDO interference cancellation based on signal strength measurements
US8571086B2 (en) * 2004-04-02 2013-10-29 Rearden, Llc System and method for DIDO precoding interpolation in multicarrier systems
US8041362B2 (en) * 2006-03-20 2011-10-18 Intel Corporation Downlink resource allocation and mapping
JP4946922B2 (ja) * 2008-03-06 2012-06-06 住友電気工業株式会社 無線通信装置
US8174428B2 (en) * 2008-05-21 2012-05-08 Integrated Device Technology, Inc. Compression of signals in base transceiver systems
US8243690B2 (en) * 2008-07-09 2012-08-14 Intel Corporation Bandwidth allocation base station and method for allocating uplink bandwidth using SDMA
KR101236033B1 (ko) * 2008-07-21 2013-02-21 한국전자통신연구원 통신 오버헤드를 제거하는 통신 시스템
EP2398157B1 (en) * 2009-02-13 2019-04-03 LG Electronics Inc. Data transmission method and apparatus in multiple antenna system
JP5455026B2 (ja) * 2009-10-28 2014-03-26 京セラ株式会社 無線基地局および無線通信方法
US8861332B2 (en) * 2010-02-11 2014-10-14 Lg Electronics Inc. Method and apparatus of recovering backhaul link failure between base station and relay node
KR102171272B1 (ko) * 2011-09-14 2020-10-29 리어덴 엘엘씨 무선 시스템들의 코히어런스의 영역들을 이용하기 위한 시스템들 및 방법들
RU2767777C2 (ru) * 2013-03-15 2022-03-21 Риарден, Ллк Системы и способы радиочастотной калибровки с использованием принципа взаимности каналов в беспроводной связи с распределенным входом - распределенным выходом

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6920192B1 (en) * 2000-08-03 2005-07-19 Lucent Technologies Inc. Adaptive antenna array methods and apparatus for use in a multi-access wireless communication system
US20110044193A1 (en) * 2004-04-02 2011-02-24 Antonio Forenza Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US20120093078A1 (en) * 2004-04-02 2012-04-19 Perlman Stephen G System and methods for planned evolution and obsolescence of multiuser spectrum
CN1703113A (zh) * 2004-05-28 2005-11-30 株式会社Ntt都科摩 频率选择装置、移动通信系统及多频带控制方法
CN101405965A (zh) * 2006-03-20 2009-04-08 英特尔公司 下行链路资源分配和映射
WO2009099752A1 (en) * 2008-02-01 2009-08-13 Dish Network Llc Methods and apparatus for place shifting content to a vehicle entertainment system

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106302301A (zh) * 2015-06-24 2017-01-04 北京三星通信技术研究有限公司 基于复数调制的fbmc信号发送和接收的方法及其装置
CN107124213A (zh) * 2016-02-23 2017-09-01 中国科学院声学研究所 多入多出系统中基于直接自适应的双向turbo均衡方法
CN107124213B (zh) * 2016-02-23 2019-12-24 中国科学院声学研究所 多入多出系统中基于直接自适应的双向turbo均衡方法
CN107294888A (zh) * 2016-04-11 2017-10-24 晨星半导体股份有限公司 等化增强模块、解调制系统以及等化增强方法
CN107294888B (zh) * 2016-04-11 2020-08-14 联发科技股份有限公司 等化增强模块、解调制系统以及等化增强方法
CN109314566A (zh) * 2016-06-10 2019-02-05 At&T知识产权部有限合伙公司 主机节点设备以及与其一起使用的方法
CN109314568A (zh) * 2016-06-10 2019-02-05 At&T知识产权部有限合伙公司 分布式天线系统的客户端节点设备
CN107766366A (zh) * 2016-08-18 2018-03-06 深圳市劲嘉数媒科技有限公司 物理空间和信息空间实现对偶关系的方法和系统
CN109716812B (zh) * 2016-08-26 2024-01-19 李尔登公司 用于减轻现用的频谱内的干扰的系统及方法
CN109716812A (zh) * 2016-08-26 2019-05-03 李尔登公司 用于减轻现用的频谱内的干扰的系统及方法
CN108072864A (zh) * 2016-11-07 2018-05-25 中国科学院沈阳自动化研究所 一种基于变载频调频序列的多目标探测方法
CN108072864B (zh) * 2016-11-07 2021-03-26 中国科学院沈阳自动化研究所 一种基于变载频调频序列的多目标探测方法
CN110678772B (zh) * 2017-06-09 2023-05-02 维宁尔瑞典公司 用于车辆雷达系统的增强的竖直对象检测
CN110678772A (zh) * 2017-06-09 2020-01-10 维宁尔瑞典公司 用于车辆雷达系统的增强的竖直对象检测
CN110945804A (zh) * 2017-07-24 2020-03-31 高通股份有限公司 用于测试毫米波设备的方法和装置
CN109391961A (zh) * 2017-08-10 2019-02-26 捷开通讯(深圳)有限公司 通信方法、用户设备、基站和具有存储性能的装置
CN107591002B (zh) * 2017-09-21 2020-06-02 电子科技大学 一种基于分布式光纤的高速公路交通参数实时估计方法
CN107591002A (zh) * 2017-09-21 2018-01-16 电子科技大学 一种基于分布式光纤的高速公路交通参数实时估计方法
CN107846464B (zh) * 2017-11-08 2020-09-29 深圳大学 一种多天线物联网信息传输方法
CN107846464A (zh) * 2017-11-08 2018-03-27 深圳大学 一种多天线物联网信息传输方法
CN111869009B (zh) * 2018-01-21 2022-06-21 英菲尼朵美有限公司 相位阵列抗干扰装置及方法
CN111869009A (zh) * 2018-01-21 2020-10-30 英菲尼朵美有限公司 相位阵列抗干扰装置及方法
CN111937032A (zh) * 2018-03-29 2020-11-13 莱卡微系统Cms有限责任公司 用于输入信号数据中的基线估计的装置和方法
CN109064694B (zh) * 2018-08-22 2022-07-19 平安科技(深圳)有限公司 入侵检测方法、装置、计算机设备及存储介质
CN109064694A (zh) * 2018-08-22 2018-12-21 平安科技(深圳)有限公司 入侵检测方法、装置、计算机设备及存储介质
US11996629B2 (en) 2018-11-30 2024-05-28 Huawei Technologies Co., Ltd. Beam steering antenna structure and electronic device comprising said structure
CN112889183A (zh) * 2018-11-30 2021-06-01 华为技术有限公司 波束控制天线结构和包括所述结构的电子设备
CN110635836A (zh) * 2019-09-12 2019-12-31 重庆大学 一种基于波束选择的毫米波大规模mimo系统mmse-pca信道估计方法
CN110971763A (zh) * 2019-12-10 2020-04-07 Oppo(重庆)智能科技有限公司 到站提醒方法、装置、存储介质及电子设备
CN111162824A (zh) * 2019-12-27 2020-05-15 中国人民解放军国防科技大学 一种基于mimo的多波束高通量卫星通信系统和实现方法
CN111162824B (zh) * 2019-12-27 2021-06-29 中国人民解放军国防科技大学 一种基于mimo的多波束高通量卫星通信系统和实现方法
CN111405667A (zh) * 2020-03-17 2020-07-10 重庆邮电大学 基于线性预测的tdma动态时隙分配的节点及其方法
CN111405667B (zh) * 2020-03-17 2022-05-03 重庆邮电大学 基于线性预测的tdma动态时隙分配的节点及其方法
CN111540212A (zh) * 2020-07-08 2020-08-14 浙江浙能天然气运行有限公司 一种用于分布式光纤的高速公路干扰估计系统及方法
CN112187321A (zh) * 2020-09-23 2021-01-05 江苏恒宝智能系统技术有限公司 一种mimo数据传输同步方法及装置
CN112512074A (zh) * 2020-11-19 2021-03-16 北京邮电大学 一种设备性能测试方法及装置
CN114520681B (zh) * 2020-11-20 2023-06-23 维沃移动通信有限公司 信息传输方法、装置、通信设备及存储介质
CN114520681A (zh) * 2020-11-20 2022-05-20 维沃移动通信有限公司 信息传输方法、装置、通信设备及存储介质
CN113225274B (zh) * 2021-04-14 2023-11-03 西安宇飞电子技术有限公司 一种针对快速移动的多径信道模型测量方法
CN113225274A (zh) * 2021-04-14 2021-08-06 西安宇飞电子技术有限公司 一种针对快速移动的多径信道模型测量方法
CN113114323B (zh) * 2021-04-22 2022-08-12 桂林电子科技大学 一种mimo系统的信号接收方法
CN113114323A (zh) * 2021-04-22 2021-07-13 桂林电子科技大学 一种mimo系统的信号接收方法
CN114374407B (zh) * 2022-01-10 2024-03-08 哈尔滨工程大学 基于m序列的空间信道特性预测方法、系统及可存储介质
CN114374407A (zh) * 2022-01-10 2022-04-19 哈尔滨工程大学 基于m序列的空间信道特性预测方法、系统及可存储介质
CN114553256A (zh) * 2022-01-26 2022-05-27 荣耀终端有限公司 射频模组及电子设备
CN114553256B (zh) * 2022-01-26 2022-10-18 荣耀终端有限公司 射频模组及电子设备
CN114884787A (zh) * 2022-04-22 2022-08-09 华中科技大学 适用快时变信道的波形可控多载波通信方法、装置及系统
CN114884787B (zh) * 2022-04-22 2024-06-04 华中科技大学 适用快时变信道的波形可控多载波通信方法、装置及系统
CN115941021A (zh) * 2022-10-24 2023-04-07 西安电子科技大学 一种高超声速飞行器遥测simo信道下基于功率调制的ldpc-bicm-id系统
CN116628729B (zh) * 2023-07-25 2023-09-29 天津市城市规划设计研究总院有限公司 根据数据特性差异化提升数据安全的方法及系统

Also Published As

Publication number Publication date
IL272481B2 (en) 2024-03-01
RU2014148791A (ru) 2016-06-27
RU2018109118A (ru) 2019-02-26
BR112014027631A2 (pt) 2019-05-14
TW202243428A (zh) 2022-11-01
AU2017210619B2 (en) 2019-10-24
JP6178842B2 (ja) 2017-08-09
KR20150016299A (ko) 2015-02-11
HK1209521A1 (zh) 2016-04-01
AU2013256044B2 (en) 2017-05-25
SG11201407381VA (en) 2014-12-30
IL235518A0 (en) 2015-01-29
TWI756605B (zh) 2022-03-01
TWI685222B (zh) 2020-02-11
JP6542300B2 (ja) 2019-07-10
JP2019198082A (ja) 2019-11-14
KR101875397B1 (ko) 2018-08-02
JP2015526917A (ja) 2015-09-10
AU2013256044A1 (en) 2014-11-27
RU2649078C2 (ru) 2018-03-29
TWI591976B (zh) 2017-07-11
AU2017210619A1 (en) 2017-08-24
TW201407987A (zh) 2014-02-16
MX354045B (es) 2018-02-09
MX2014013377A (es) 2015-06-03
EP2845178A4 (en) 2015-12-23
CN104603853B (zh) 2020-02-18
AU2020200070A1 (en) 2020-01-30
JP2017225138A (ja) 2017-12-21
CN111262613A (zh) 2020-06-09
IL272481B1 (en) 2023-11-01
IL235518B (en) 2020-02-27
CA2872502A1 (en) 2013-11-07
EP2845178A1 (en) 2015-03-11
IL272481A (en) 2020-03-31
CA2872502C (en) 2021-05-18
WO2013166464A1 (en) 2013-11-07
TW201729553A (zh) 2017-08-16
TW202015357A (zh) 2020-04-16

Similar Documents

Publication Publication Date Title
US11196467B2 (en) System and method for distributed antenna wireless communications
CN104603853A (zh) 用于处理分布式输入-分布式输出无线系统中的多普勒效应的系统和方法
US8971380B2 (en) System and method for adjusting DIDO interference cancellation based on signal strength measurements
US9819403B2 (en) System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US8571086B2 (en) System and method for DIDO precoding interpolation in multicarrier systems
US10333604B2 (en) System and method for distributed antenna wireless communications
US9826537B2 (en) System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US10187133B2 (en) System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US10200094B2 (en) Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US10886979B2 (en) System and method for link adaptation in DIDO multicarrier systems
US11394436B2 (en) System and method for distributed antenna wireless communications
EP2904814A1 (en) Systems and methods for wireless backhaul in distributed-input distributed-output wireless systems
CN103348608A (zh) 经由用户群集在分布式无线系统中协调发射的系统及方法
US11923931B2 (en) System and method for distributed antenna wireless communications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1209521

Country of ref document: HK

GR01 Patent grant
GR01 Patent grant