CN104601026A - Suspended capacitor voltage control method of five-level ANPC (Active Neutral-Point-Clamped) converter - Google Patents
Suspended capacitor voltage control method of five-level ANPC (Active Neutral-Point-Clamped) converter Download PDFInfo
- Publication number
- CN104601026A CN104601026A CN201410810131.6A CN201410810131A CN104601026A CN 104601026 A CN104601026 A CN 104601026A CN 201410810131 A CN201410810131 A CN 201410810131A CN 104601026 A CN104601026 A CN 104601026A
- Authority
- CN
- China
- Prior art keywords
- floating capacitor
- level
- anpc converter
- converter
- level anpc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 86
- 238000000034 method Methods 0.000 title claims abstract description 20
- 238000007667 floating Methods 0.000 claims abstract description 65
- 239000000725 suspension Substances 0.000 claims abstract description 22
- 238000005070 sampling Methods 0.000 claims abstract description 7
- 238000007599 discharging Methods 0.000 claims abstract description 3
- 238000001514 detection method Methods 0.000 abstract 1
- 238000011897 real-time detection Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003908 quality control method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/487—Neutral point clamped inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/42—Conversion of DC power input into AC power output without possibility of reversal
- H02M7/44—Conversion of DC power input into AC power output without possibility of reversal by static converters
- H02M7/48—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/53—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/537—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
- H02M7/539—Conversion of DC power input into AC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters with automatic control of output wave form or frequency
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明涉及一种五电平ANPC变换器,特别是一种五电平ANPC变换器悬浮电容电压控制方法,包括以下步骤,SHEPWM脉冲波作用于五电平ANPC变换器;实时检测五电平ANPC变换器悬浮电容电压值,并与悬浮电容电压的参考值进行比较,确定悬浮电容需要充电还是放电;检测五电平ANPC变换器负载电流的正负,根据ANPC变换器负载电流的正负和确定的悬浮电容需要充放电状态选择合适ANPC变换器的冗余开关状态;通过选择的开关状态对五电平ANPC变换器悬浮电容进行充放电,直至在一个采样周期内,悬浮电容电压的变化量为0,重复检测悬浮电容电压值。采用上述方法后,根据负载电流的方向跟悬浮电容电压的大小来选择合适的冗余开关状态,使悬浮电容电压维持在一个很小的范围内波动。
The present invention relates to a five-level ANPC converter, in particular to a method for controlling the suspension capacitor voltage of a five-level ANPC converter, comprising the following steps: the SHEPWM pulse wave acts on the five-level ANPC converter; real-time detection of the five-level ANPC The voltage value of the floating capacitor of the converter is compared with the reference value of the floating capacitor voltage to determine whether the floating capacitor needs to be charged or discharged; detect the positive and negative of the load current of the five-level ANPC converter, and determine the positive and negative values according to the positive and negative sum of the load current of the ANPC converter The suspension capacitor needs to be charged and discharged in the state of charging and discharging, and the redundant switch state of the appropriate ANPC converter is selected; the suspension capacitor of the five-level ANPC converter is charged and discharged through the selected switch state, until the change of the suspension capacitor voltage in a sampling period is 0, repeat detection of floating capacitor voltage value. After adopting the above method, an appropriate redundant switch state is selected according to the direction of the load current and the voltage of the floating capacitor, so that the voltage of the floating capacitor can fluctuate within a small range.
Description
技术领域 technical field
本发明涉及一种五电平ANPC变换器,特别是一种五电平ANPC变换器悬浮电容电压控制方法。 The invention relates to a five-level ANPC converter, in particular to a method for controlling the suspension capacitor voltage of the five-level ANPC converter.
背景技术 Background technique
随着科技的进步与生活水平的提高,人们对电能质量的要求也在不断提升,有源中点钳位(active neutral-point-clamped,ANPC)拓扑的出现弥补了二极管钳位型拓扑和电容钳位型拓扑的缺点,更好的适用于6和10kV的高压变频领域。ANPC多电平变换器越来越多被使用与工业与社会生活等领域以提供更优质的电能,目前,国内选用SHEPWM调制方法作用于五电平ANPC变换器尚未见刊。选用SHEPWM控制,可以有效降低高频下的低次谐波,改善波形质量,也降低了对滤波器的要求。五电平及以上ANPC拓扑能够正常工作前提之一是悬浮电容电压必须保持稳定,在SHEPWM控制时,若不考虑悬浮电容电压这一关键问题,若得到的SHEPWM开关状态使悬浮电容电压发生较大的波动,将失去实际意义。 With the advancement of technology and the improvement of living standards, people's requirements for power quality are also constantly improving. The emergence of active neutral-point-clamped (ANPC) topology makes up for the diode-clamped topology and capacitor The shortcomings of the clamping topology are better suited for the high-voltage frequency conversion fields of 6 and 10kV. ANPC multi-level converters are more and more used in the fields of industry and social life to provide higher quality electric energy. At present, domestic selection of SHEPWM modulation method for five-level ANPC converters has not been published yet. Selecting SHEPWM control can effectively reduce low-order harmonics at high frequencies, improve waveform quality, and reduce requirements for filters. One of the prerequisites for five-level and above ANPC topologies to work normally is that the floating capacitor voltage must remain stable. During SHEPWM control, if the key issue of the floating capacitor voltage is not considered, if the obtained SHEPWM switch state causes the floating capacitor voltage to be large fluctuations will lose practical significance.
发明内容 Contents of the invention
本发明需要解决的技术问题是提供一种SHEPWM调制五电平ANPC变换器时保持悬浮电容电压稳定的控制方法。 The technical problem to be solved by the present invention is to provide a control method for keeping the floating capacitor voltage stable when SHEPWM modulates the five-level ANPC converter.
为解决上述的技术问题,本发明的五电平ANPC变换器悬浮电容电压控制方法,包括以下步骤: In order to solve the above-mentioned technical problems, the five-level ANPC converter suspension capacitor voltage control method of the present invention comprises the following steps:
步骤S101:根据SHEPWM的调制度m确定需要设置的开关角度,确定SHEPWM调制的三相输出,输出三相五电平SHEPWM脉冲波作用于五电平ANPC变换器; Step S101: Determine the switch angle to be set according to the modulation degree m of SHEPWM, determine the three-phase output modulated by SHEPWM, and output the three-phase five-level SHEPWM pulse wave to act on the five-level ANPC converter;
步骤S102:实时检测五电平ANPC变换器悬浮电容电压的电压值,并与悬浮电容电压的参考值进行比较,确定悬浮电容需要充电还是放电; Step S102: Detect the voltage value of the floating capacitor voltage of the five-level ANPC converter in real time, and compare it with the reference value of the floating capacitor voltage to determine whether the floating capacitor needs to be charged or discharged;
步骤S103:检测五电平ANPC变换器负载电流的正负,根据ANPC变换器负载电流的正负和步骤S102中确定的悬浮电容需要充放电状态选择合适ANPC变换器的冗余开关状态; Step S103: Detect the positive and negative of the load current of the five-level ANPC converter, and select the appropriate redundant switch state of the ANPC converter according to the positive and negative of the load current of the ANPC converter and the required charge and discharge state of the floating capacitor determined in step S102;
步骤S104:通过选择的开关状态对五电平ANPC变换器悬浮电容进行充放电,直至在一个采样周期内,悬浮电容电压的变化量为0,返回步骤S102。 Step S104: Charge and discharge the suspension capacitor of the five-level ANPC converter according to the selected switch state until the variation of the voltage of the suspension capacitor is 0 within one sampling period, and return to step S102.
进一步的,所述步骤S104中流经悬浮电容的电流可表示为Icf=IS3-IS1,流经各开关管的电流可以表示为ISi=XiIload,其中Xi表示各开关管的开关状态,当开关管Si导通时,Xi的值为1,当开关管Si关断时,Xi的值为0;Icf=(X3-X1)Iload,在一个采样周期内,悬浮电容电压的变化量为
进一步的,所述步骤S101中五电平SHEPWM脉冲波作用于五电平ANPC变换器输出5个电平分别为2E,E,0,-E和-2E。 Further, in the step S101, the five-level SHEPWM pulse wave acts on the five-level ANPC converter to output five levels which are 2E, E, 0, -E and -2E respectively.
更进一步的,步骤S102中,当每次检测到中间电平E或-E来临之时,标志位置1,开始逻辑判断,当实时检测到的悬浮电容电压值大于参考电压值E时,则选择对悬浮电容进行放电;反之,当实时检测到的悬浮电容电压值小于参考电压值E时,则选择对悬浮电容进行充电。 Further, in step S102, when the intermediate level E or -E is detected each time, the flag position is 1, and the logic judgment is started. When the real-time detected floating capacitor voltage value is greater than the reference voltage value E, select Discharge the floating capacitor; otherwise, when the real-time detected voltage value of the floating capacitor is lower than the reference voltage value E, choose to charge the floating capacitor.
更进一步的,步骤S103中负载电流以从五电平ANPC变换器的单相桥臂流向负载的方向为正方向,负载电流为正,反之为负。 Furthermore, in step S103 , the load current flows from the single-phase bridge arm of the five-level ANPC converter to the load as the positive direction, and the load current is positive, otherwise it is negative.
更进一步的,根据步骤S102中需要对悬浮电容充放电状态和负载电流的正负选择合适的冗余开关状态,选择合适的冗余开关状态后,标志位置0。 Furthermore, according to the need to select the appropriate redundant switch state for the charging and discharging state of the floating capacitor and the positive and negative of the load current in step S102, after selecting the appropriate redundant switch state, the flag position is 0.
采用上述方法后,五电平ANPC变换器在整个工作范围内都可以有效抑制低次谐波,得到较好的输出波形,该方法动态性能较好,理想稳态情况下,能够控制悬浮电容电压在一个很小范围内波动。动态情况下,也能根据负载电流的方向跟悬浮电容电压的大小来选择合适的冗余开关状态,使悬浮电容电压维持在一个很小的范围内波动。 After adopting the above method, the five-level ANPC converter can effectively suppress low-order harmonics in the entire working range and obtain a better output waveform. This method has better dynamic performance and can control the floating capacitor voltage under ideal steady-state conditions. fluctuate within a small range. Under dynamic conditions, the appropriate redundant switch state can also be selected according to the direction of the load current and the magnitude of the floating capacitor voltage, so that the floating capacitor voltage can fluctuate within a small range.
附图说明 Description of drawings
下面结合附图和具体实施方式对本发明作进一步详细的说明。 The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments.
图1为本发明五电平ANPC变换器单相拓扑结构。 Fig. 1 is the single-phase topology structure of the five-level ANPC converter of the present invention.
图2为本发明五电平ANPC变换器悬浮电容电压控制方法的流程图 Fig. 2 is the flow chart of the five-level ANPC converter floating capacitor voltage control method of the present invention
图3为本发明五电平ANPC变换器悬浮电容电压控制方法的逻辑判断示意图。 Fig. 3 is a schematic diagram of logical judgment of the method for controlling the floating capacitor voltage of the five-level ANPC converter according to the present invention.
图4为逻辑判断选择合适的冗余开关状态原理图。 Fig. 4 is a schematic diagram for logic judgment to select an appropriate redundant switch state.
图5为本发明五电平ANPC变换器开关状态表。 Fig. 5 is a switch state table of the five-level ANPC converter of the present invention.
具体实施方式 Detailed ways
SHEPWM控制是在电压波形特定的位置设置“缺口”,通过开关时刻的优化选择,恰当地控制脉宽调制电压波形,可以使变换器输出的电压中不存在某些特定次数谐波。SHEPWM可以在高开关频率的情况下消除一定的低次谐波,而剩下的高次谐波则很容易通过滤波器的设计来滤去。选用SHEPWM控制,可以有效降低高频下的低次谐波,改善波形质量,也降低了对滤波器的要求。五电平ANPC变换器输出波形质量较好,能更好的应用于电机控制、电力电子及电能质量控制等场合,而调制的重点在于能否使悬浮电容电压保持平衡。 SHEPWM control is to set a "gap" at a specific position of the voltage waveform. Through the optimal selection of the switching time, the pulse width modulation voltage waveform is properly controlled, so that there are no specific orders of harmonics in the output voltage of the converter. SHEPWM can eliminate certain low-order harmonics in the case of high switching frequency, while the remaining high-order harmonics can be easily filtered out by filter design. Selecting SHEPWM control can effectively reduce low-order harmonics at high frequencies, improve waveform quality, and reduce requirements for filters. The output waveform quality of the five-level ANPC converter is better, and it can be better used in motor control, power electronics, and power quality control. The key point of modulation is whether the suspension capacitor voltage can be kept in balance.
如图2和图3所示,本发明一种五电平ANPC变换器SHEPWM与悬浮电容电压的控制方法,包括以下步骤: As shown in Fig. 2 and Fig. 3, a kind of five-level ANPC converter SHEPWM of the present invention and the control method of floating capacitor voltage comprise the following steps:
步骤S101:根据SHEPWM的调制度m确定需要设置的开关角度,确定SHEPWM调制的三相输出,输出三相五电平SHEPWM脉冲波作用于五电平ANPC变换器。其中五电平ANPC变换器的单相拓扑图如图1所示,可见五电平ANPC变换器包括三个电容,其中包括一个悬浮电容,流经悬浮电容的电流可表示为Icf=IS3-IS1,流经各开关管的电流可以表示为ISi=XiIload,其中Xi表示各开关管的开关状态,当开关管Si导通时,Xi的值为1,当开关管Si关断时,Xi的值为0;Icf=(X3-X1)Iload,在一个采样周期内,悬浮电容电压的变化量为 五电平SHEPWM波作用于五电平ANPC变换器将输出5个电平值,即2E,E,0,-E,-2E。而五电平ANPC有8种开关状态,如表1中所示,除2E跟-2E两个电平值只有一种开关状态外,其他3个电平值都有两个冗余开关状态,但表1中V1、V4、V5、V8四种开关状态,电流不流经悬浮电容,故对悬浮电容电压没影响。即在每相2E跟-2E两个电平值时分别使用对应的开关状态V8和V1,0电平时,对0电平的两个冗余开关状态V4与V5平均分配使用。对两个中间电平值E和-E,开关状态V2、V3、V6、V7随着负载电流的方向不一致,对悬浮电容电压的影响也不同,将由接下来的步骤动态的去选择。 Step S101: Determine the switching angle to be set according to the modulation degree m of the SHEPWM, determine the three-phase output of the SHEPWM modulation, and output the three-phase five-level SHEPWM pulse wave to act on the five-level ANPC converter. The single-phase topology diagram of the five-level ANPC converter is shown in Figure 1. It can be seen that the five-level ANPC converter includes three capacitors, including a floating capacitor, and the current flowing through the floating capacitor can be expressed as Icf = I S3 -I S1 , the current flowing through each switch tube can be expressed as I Si =X i I load , where Xi i represents the switching state of each switch tube, when the switch tube S i is turned on, the value of Xi i is 1, when When the switch tube S i is turned off, the value of Xi i is 0; I cf =(X 3 -X 1 )I load , within one sampling period, the variation of the floating capacitor voltage is The five-level SHEPWM wave acting on the five-level ANPC converter will output five level values, namely 2E, E, 0, -E, -2E. The five-level ANPC has 8 switch states, as shown in Table 1, except that the two level values of 2E and -2E have only one switch state, and the other three level values have two redundant switch states. However, in the four switching states of V1, V4, V5, and V8 in Table 1, the current does not flow through the floating capacitor, so it has no effect on the voltage of the floating capacitor. That is, the corresponding switch states V8 and V1 are respectively used at the two level values of 2E and -2E in each phase, and the two redundant switch states V4 and V5 at the 0 level are equally distributed and used at the 0 level. For the two intermediate level values E and -E, the switching states V2, V3, V6, and V7 are inconsistent with the direction of the load current, and have different effects on the suspension capacitor voltage, which will be dynamically selected by the next step.
如图4所示,五电平ANPC能正常工作,悬浮电容电压必须保持在直流母线电压的四分之一,即E,输出相电压才能正常输出五个电平值。当第一个中间电 平E或-E来临之时,标志位置1,进行一次逻辑判断,选择合适的冗余开关状态后,标志位置0,停止逻辑判断,当下一个中间电平来临之时,标志位置1,再进行逻辑判断,选择合适的冗余开关状态,依此重复进行。进行逻辑判断包括两方面的内容,一方面是对悬浮电容电压值进行判断,另一方面是负载电流的正负,步骤S102和步骤S103就是分别对以上两个方面进行判断。 As shown in Figure 4, the five-level ANPC can work normally, and the floating capacitor voltage must be kept at a quarter of the DC bus voltage, that is, E, so that the output phase voltage can output five-level values normally. When the first intermediate level E or -E comes, the flag position is 1, and a logical judgment is made. After selecting the appropriate redundant switch state, the flag position is 0, and the logical judgment is stopped. When the next intermediate level comes, The flag position is 1, and then logical judgment is made to select the appropriate redundant switch state, and the process is repeated accordingly. The logical judgment includes two aspects, one is to judge the voltage value of the floating capacitor, and the other is to judge whether the load current is positive or negative. Steps S102 and S103 are to judge the above two aspects respectively.
步骤S102:实时检测五电平ANPC变换器悬浮电容电压的电压值,并与悬浮电容电压的参考值进行比较,确定悬浮电容需要充电还是放电。 Step S102: Detect the voltage value of the suspension capacitor voltage of the five-level ANPC converter in real time, and compare it with a reference value of the suspension capacitor voltage to determine whether the suspension capacitor needs to be charged or discharged.
步骤S103:检测五电平ANPC变换器负载电流的正负,根据ANPC变换器负载电流的正负和步骤S102中确定的悬浮电容需要充放电状态选择合适ANPC变换器的冗余开关状态。其中,负载电流以从五电平ANPC变换器的单相桥臂流向负载的方向为正方向。 Step S103: Detect whether the load current of the five-level ANPC converter is positive or negative, and select an appropriate redundant switch state of the ANPC converter according to the positive or negative of the load current of the ANPC converter and the required charge and discharge state of the floating capacitor determined in step S102. Wherein, the direction of the load current flowing from the single-phase bridge arm of the five-level ANPC converter to the load is the positive direction.
步骤S104:通过选择的开关状态对五电平ANPC变换器悬浮电容进行充放电,直至在一个采样周期内,悬浮电容电压的变化量为0,返回步骤S102。 Step S104: Charge and discharge the suspension capacitor of the five-level ANPC converter according to the selected switch state until the variation of the voltage of the suspension capacitor is 0 within one sampling period, and return to step S102.
步骤S102-S104具体如下:如图4所示,本实施方式中,当检测到中间电平E来临之时,标志位置1,通过步骤S102实时检测到的悬浮电容电压与悬浮电容电压参考比较的结果,确定是给悬浮电容充电还是放电。当实时检测到的悬浮电容电压值大于参考电压值E时,则选择冗余开关状态将对悬浮电容放电,若实时检测到的悬浮电容电压值小于参考电压值E时,则选择冗余开关状态将对悬浮电容充电,然后再通过步骤S103检测到的负载电流的流向综合判断选用合适的开关状态作用于五电平ANPC变换器。如图5所示,当需要给悬浮电容充电时,若负载电流大于0,则选择开关状态V7,若负载电流小于0时,则选择开关状态V6。当需要给悬浮电容放电时,若负载电流大于0,则选择开关状态 V6,若负载电流小于0时,则选择开关状态V7。同样,当检测到中间电平-E来临之时,标志位置1,通过步骤S102实时检测到的悬浮电容电压与悬浮电容电压参考比较的结果,确定是给悬浮电容充电还是放电;当实时检测到的悬浮电容电压值大于参考电压值E时,则选择冗余开关状态将对悬浮电容放电,若实时检测到的悬浮电容电压值小于参考电压值E时,则选择冗余开关状态将对悬浮电容充电,然后再通过步骤四检测到的负载电流的流向综合判断选用合适的开关状态。如图5所示,当需要给悬浮电容充电时,若负载电流大于0,则选择开关状态V3,若负载电流小于0时,则选择开关状态V2。当需要给悬浮电容放电时,若负载电流大于0,则选择开关状态V2,若负载电流小于0时,则选择开关状态V3。 The details of steps S102-S104 are as follows: As shown in Figure 4, in this embodiment, when it is detected that the intermediate level E is approaching, the flag position is 1, and the floating capacitor voltage detected in real time by step S102 is compared with the floating capacitor voltage reference As a result, it is determined whether to charge or discharge the floating capacitance. When the real-time detected floating capacitor voltage value is greater than the reference voltage value E, select the redundant switch state to discharge the floating capacitor; if the real-time detected floating capacitor voltage value is lower than the reference voltage value E, then select the redundant switch state The floating capacitor is charged, and then the flow direction of the load current detected in step S103 is comprehensively judged to select an appropriate switch state to act on the five-level ANPC converter. As shown in FIG. 5 , when the floating capacitor needs to be charged, if the load current is greater than 0, the switch state V7 is selected, and if the load current is less than 0, the switch state V6 is selected. When it is necessary to discharge the floating capacitor, if the load current is greater than 0, select the switch state V6, and if the load current is less than 0, select the switch state V7. Similarly, when it is detected that the intermediate level-E is coming, the flag position is 1, and the result of comparing the floating capacitor voltage detected in real time with the floating capacitor voltage reference in step S102 determines whether to charge or discharge the floating capacitor; When the floating capacitor voltage value is greater than the reference voltage value E, the redundant switch state is selected to discharge the floating capacitor; if the real-time detected floating capacitor voltage value is lower than the reference voltage value E, the redundant switch state is selected to discharge the floating capacitor charging, and then comprehensively judge the flow direction of the load current detected in step 4 to select an appropriate switch state. As shown in FIG. 5 , when the floating capacitor needs to be charged, if the load current is greater than 0, the switch state V3 is selected, and if the load current is less than 0, the switch state V2 is selected. When it is necessary to discharge the suspension capacitor, if the load current is greater than 0, select the switch state V2, and if the load current is less than 0, select the switch state V3.
虽然以上描述了本发明的具体实施方式,但是本领域熟练技术人员应当理解,这些仅是举例说明,可以对本实施方式作出多种变更或修改,而不背离本发明的原理和实质,本发明的保护范围仅由所附权利要求书限定。 Although the specific embodiments of the present invention have been described above, those skilled in the art should understand that these are only examples, and various changes or modifications can be made to the embodiments without departing from the principle and essence of the present invention. The scope of protection is limited only by the appended claims.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410810131.6A CN104601026A (en) | 2014-12-23 | 2014-12-23 | Suspended capacitor voltage control method of five-level ANPC (Active Neutral-Point-Clamped) converter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410810131.6A CN104601026A (en) | 2014-12-23 | 2014-12-23 | Suspended capacitor voltage control method of five-level ANPC (Active Neutral-Point-Clamped) converter |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104601026A true CN104601026A (en) | 2015-05-06 |
Family
ID=53126609
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410810131.6A Pending CN104601026A (en) | 2014-12-23 | 2014-12-23 | Suspended capacitor voltage control method of five-level ANPC (Active Neutral-Point-Clamped) converter |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104601026A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106787888A (en) * | 2016-12-26 | 2017-05-31 | 安徽大学 | A kind of three level ANPC converter neutral-point voltage balance methods |
CN107070276A (en) * | 2017-04-20 | 2017-08-18 | 上海交通大学 | Active neutral point clamp Five-level converter DC side charging soft starting circuit and method |
WO2017157338A1 (en) * | 2016-03-17 | 2017-09-21 | 汪洪亮 | Single-phase five-level active clamping converter unit and converter |
CN107465207A (en) * | 2017-08-11 | 2017-12-12 | 阳光电源股份有限公司 | Flying capacitor five-electrical level inverter and its low voltage traversing control method and device |
CN108712121A (en) * | 2018-04-20 | 2018-10-26 | 浙江大学 | DC bus-bar voltage based on Selective harmonic elimination pulsewidth modulation fluctuates the method for sampling |
CN109474195A (en) * | 2018-11-28 | 2019-03-15 | 阳光电源股份有限公司 | Clamp capacitor voltage control method, control device and multi-electrical level inverter |
CN110768557A (en) * | 2019-09-24 | 2020-02-07 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | H-bridge five-level active neutral point clamped inverter and modulation strategy thereof |
CN111245271A (en) * | 2020-01-18 | 2020-06-05 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | H-bridge five-level active neutral point clamped inverter and dead zone effect suppression method |
CN113037111A (en) * | 2021-02-25 | 2021-06-25 | 安徽大学绿色产业创新研究院 | Space vector modulation method for current transformer |
WO2022163212A1 (en) * | 2021-02-01 | 2022-08-04 | オムロン株式会社 | Power conversion device, and control method |
EP4274083A4 (en) * | 2021-02-16 | 2024-12-11 | OMRON Corporation | POWER CONVERSION DEVICE AND CONTROL METHOD |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102201755A (en) * | 2011-06-01 | 2011-09-28 | 清华大学 | Mixed clamping type four-level converter |
CN102510232A (en) * | 2011-12-21 | 2012-06-20 | 徐州中矿大传动与自动化有限公司 | Five-level voltage source inverter |
CN202475300U (en) * | 2011-12-21 | 2012-10-03 | 徐州中矿大传动与自动化有限公司 | Five-level voltage source inverter |
JP2012210066A (en) * | 2011-03-30 | 2012-10-25 | Meidensha Corp | Multilevel conversion apparatus |
CN103311936A (en) * | 2013-06-28 | 2013-09-18 | 江苏国源电气有限公司 | Control method for 3300V five-level anti-explosion reactive power compensation device |
CN103595281A (en) * | 2013-10-09 | 2014-02-19 | 徐州中矿大传动与自动化有限公司 | Five-level voltage source type conversion device |
-
2014
- 2014-12-23 CN CN201410810131.6A patent/CN104601026A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012210066A (en) * | 2011-03-30 | 2012-10-25 | Meidensha Corp | Multilevel conversion apparatus |
CN102201755A (en) * | 2011-06-01 | 2011-09-28 | 清华大学 | Mixed clamping type four-level converter |
CN102510232A (en) * | 2011-12-21 | 2012-06-20 | 徐州中矿大传动与自动化有限公司 | Five-level voltage source inverter |
CN202475300U (en) * | 2011-12-21 | 2012-10-03 | 徐州中矿大传动与自动化有限公司 | Five-level voltage source inverter |
CN103311936A (en) * | 2013-06-28 | 2013-09-18 | 江苏国源电气有限公司 | Control method for 3300V five-level anti-explosion reactive power compensation device |
CN103595281A (en) * | 2013-10-09 | 2014-02-19 | 徐州中矿大传动与自动化有限公司 | Five-level voltage source type conversion device |
Non-Patent Citations (1)
Title |
---|
PULIKANTI S R, AGELIDIS V G: "Five-Level Active NPC Converter Topology: SHE-PWM Control and Operation Principles", 《AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE.PERTH,AUSTRALIA》 * |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017157338A1 (en) * | 2016-03-17 | 2017-09-21 | 汪洪亮 | Single-phase five-level active clamping converter unit and converter |
CN106787888A (en) * | 2016-12-26 | 2017-05-31 | 安徽大学 | A kind of three level ANPC converter neutral-point voltage balance methods |
CN106787888B (en) * | 2016-12-26 | 2019-04-02 | 安徽大学 | A kind of three level ANPC converter neutral-point voltage balance methods |
CN107070276B (en) * | 2017-04-20 | 2019-04-12 | 上海交通大学 | Active neutral point clamp Five-level converter DC side charging soft starting circuit and method |
CN107070276A (en) * | 2017-04-20 | 2017-08-18 | 上海交通大学 | Active neutral point clamp Five-level converter DC side charging soft starting circuit and method |
CN107465207A (en) * | 2017-08-11 | 2017-12-12 | 阳光电源股份有限公司 | Flying capacitor five-electrical level inverter and its low voltage traversing control method and device |
CN107465207B (en) * | 2017-08-11 | 2019-08-13 | 阳光电源股份有限公司 | Flying capacitor five-electrical level inverter and its low voltage traversing control method and device |
CN108712121A (en) * | 2018-04-20 | 2018-10-26 | 浙江大学 | DC bus-bar voltage based on Selective harmonic elimination pulsewidth modulation fluctuates the method for sampling |
CN108712121B (en) * | 2018-04-20 | 2021-02-05 | 浙江大学 | Direct-current bus voltage fluctuation sampling method based on selective harmonic elimination pulse width modulation |
CN109474195A (en) * | 2018-11-28 | 2019-03-15 | 阳光电源股份有限公司 | Clamp capacitor voltage control method, control device and multi-electrical level inverter |
CN110768557A (en) * | 2019-09-24 | 2020-02-07 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | H-bridge five-level active neutral point clamped inverter and modulation strategy thereof |
CN111245271A (en) * | 2020-01-18 | 2020-06-05 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | H-bridge five-level active neutral point clamped inverter and dead zone effect suppression method |
CN111245271B (en) * | 2020-01-18 | 2021-06-11 | 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) | H-bridge five-level active neutral point clamped inverter and dead zone effect suppression method |
WO2022163212A1 (en) * | 2021-02-01 | 2022-08-04 | オムロン株式会社 | Power conversion device, and control method |
EP4274083A4 (en) * | 2021-02-16 | 2024-12-11 | OMRON Corporation | POWER CONVERSION DEVICE AND CONTROL METHOD |
CN113037111A (en) * | 2021-02-25 | 2021-06-25 | 安徽大学绿色产业创新研究院 | Space vector modulation method for current transformer |
CN113037111B (en) * | 2021-02-25 | 2022-05-31 | 安徽大学绿色产业创新研究院 | Space vector modulation method for current transformer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104601026A (en) | Suspended capacitor voltage control method of five-level ANPC (Active Neutral-Point-Clamped) converter | |
CN104038091B (en) | Three-level converter direct-current side neutral-point voltage balance control method based on SVPWM | |
AU2010263537B2 (en) | Three-phase rectifier | |
CN102710163B (en) | Neutral-point voltage control method of NPC (neutral-point converter) type three-level inverter based on interval selection | |
CN103812377B (en) | The control method of modularization multi-level converter brachium pontis electric current | |
CN105305862B (en) | A kind of electric capacity presses many level high-frequency inverters certainly | |
CN107317500A (en) | A kind of bus capacitor voltage balancing control method of the level converter of neutral point clamp four | |
Liu et al. | Power quality improvement using controllable inductive power filtering method for industrial DC supply system | |
CN104811069B (en) | A kind of forecast Control Algorithm of modular multilevel inverter | |
CN103746585A (en) | Hybrid modulation-based control method for mid-point voltage balance of multilevel inverter | |
CN104052323B (en) | Neutral point voltage balance control system and method based on power factor angle | |
CN103066878B (en) | Control method for modularized multilevel converter | |
CN105391313A (en) | Control method of modular multi-level current converter | |
CN106981865A (en) | A kind of two-way AC/DC converters control method for parallel connection system of direct-current grid | |
CN107505524A (en) | Converter valve routine test circuit and test method | |
CN103312208A (en) | Zero-error recent level modulating method of modularized multi-level current converter | |
CN105703650A (en) | Parallel control method employing selective harmonic elimination pulse width modulation (SHEPWM) for multiple T-type three-level inverters | |
CN106899223A (en) | A kind of neutral-point-clamped type three-level inverter bus capacitor neutral-point potential balance method | |
CN103986308B (en) | A kind of dynamic voltage-balancing of Multilevel Inverters DC capacitor | |
CN101651349B (en) | Fuel cell generator | |
CN102684533B (en) | Neutral point voltage control method for neutral point clamped (NPC) type three-level inverter based on carrier amplitude shift | |
CN107834885A (en) | Suppress the carrier modulating method of three level NPC type inverters midpoint potentials concussion | |
CN113659860A (en) | Switching power amplifier and control method and control system thereof | |
CN103427694B (en) | A kind of three-phase five-level converter electric capacity potential balance control method and system | |
CN103457501A (en) | SVG Modulation Method Based on PAM+PWM Cascaded Multilevel Inverter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150506 |