CN104592255B - 一种修复铜基-金属有机骨架多孔材料的方法 - Google Patents

一种修复铜基-金属有机骨架多孔材料的方法 Download PDF

Info

Publication number
CN104592255B
CN104592255B CN201410753132.1A CN201410753132A CN104592255B CN 104592255 B CN104592255 B CN 104592255B CN 201410753132 A CN201410753132 A CN 201410753132A CN 104592255 B CN104592255 B CN 104592255B
Authority
CN
China
Prior art keywords
porous material
cuprio
organic framework
metallic organic
reparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410753132.1A
Other languages
English (en)
Other versions
CN104592255A (zh
Inventor
夏启斌
孙雪娇
李忠
李�浩
李玉洁
陈永伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201410753132.1A priority Critical patent/CN104592255B/zh
Publication of CN104592255A publication Critical patent/CN104592255A/zh
Application granted granted Critical
Publication of CN104592255B publication Critical patent/CN104592255B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic System
    • C07F1/08Copper compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating

Abstract

本发明属于金属有机骨架材料技术领域,公开了修复一种铜基‑金属有机骨架多孔材料的方法。所述方法包含如下步骤:将结构坍塌的铜基‑金属有机骨架多孔材料放入球磨机中,加入修复溶剂进行球磨;球磨后取出固体材料进行干燥,即得到修复完毕的铜基‑金属有机骨架多孔材料。采用本发明所述方法修复得到的铜基‑金属有机骨架多孔材料的BET比表面积可以恢复到新HKUST‑1材料的95%,其吸附容量可以恢复到新HKUST‑1材料的92%。本发明所述方法修复过程中只需添加微量溶剂、修复快速、操作简单,是一种高效、经济的新型绿色修复方法。

Description

一种修复铜基-金属有机骨架多孔材料的方法
技术领域
本发明属于金属有机骨架材料技术领域,具体涉及一种修复铜基-金属有机骨架多孔材料的方法。
背景技术
金属有机骨架材料(Metal Organic Frameworks,简称MOFs)主要由含氧、氮等的多齿有机配体与过渡金属离子自组装而成的有特殊孔道结构的类沸石骨架材料,由于其具有比表面积巨大、孔容高,孔径结构、组成和功能设计可调等传统多孔材料所无法比拟的优点,使其在气体的存储、吸附分离和催化方面表现出巨大的潜在应用前景。
MOFs材料主要是由金属离子和有机配体通过配位自组装而成,配位键键能为10~200kJ·mol-1,远小于共价键和离子键(一般为200~1000kJ·mol-1)。在实际工况条件下,环境大气中存在大量水汽,MOFs材料(如HKUST-1多孔金属有机骨架材料,由Cu2+和均苯三甲酸通过自组装而形成的多孔材料),极易受H2O分子的攻击,导致配位键的断裂,骨架结构破坏,进而丧失原有的吸附性能(K.A.Cychosz,ea al.,Water Stability of MicroporousCoordination Polymers and the Adsorption of Pharmaceuticals fromWater.Langmuir,2010,26,17198–17202)。
为了增加MOFs材料的耐水性,目前主要通过前改性合成和后合成改性两种方式,在MOFs骨架上嫁接疏水性基团来实现这一目的。其中,MOFs材料的前改性合成方法,要求在其合成之前首先根据需要对有机配体进行官能团修饰,但由于功能化后的有机配体的性质发生改变,可能会发生位阻效应导致MOFs材料自组装难度大增,很难得到想要的改性MOFs材料。而后合成改性所得的MOFs材料,存在骨架中引入官能团位置不明确、引入区域分布不均和引入率低等问题。同时,这些改性方法过程较复杂,成本较高。因此,难以实现工业规模化生产。
同时,针对失效MOFs材料处置也是一个亟待解决的问题,失效MOFs材料主要由金属化合物和芳香族化合物组成,这些物质回收困难,部分成分有毒会危害人体健康,如处理不善,会造成对环境的二次污染。因此,有效再生处理失效MOFs多孔材料备受关注。G.Majano等(G.Majano,et al.,Solvent-Mediated Reconstruction of the Metal–Organic Framework HKUST-1(Cu3(BTC)2).Advanced Functional Materials,2014,24,3855–3865)采用溶液浸泡方法修复坍塌的HKUST-1多孔金属有机骨架材料,即采用乙醇浸泡搅拌1h,烘干后该材料的BET比表面积可以恢复到新HKUST-1材料的56%,这种方法操作简单,但需要消耗大量乙醇溶剂(用量40mL/g)。因此,需要寻求一种更为高效绿色的修复失效MOFs材料的技术方法。
发明内容
为了克服现有技术的缺点与不足,本发明的目的在于提供一种修复铜基-金属有机骨架多孔材料的方法;所述方法采用机械化学法,即机械力(能)诱发促进金属离子与有机配体之间再次发生化学络合反应,加速金属-有机骨架材料孔结构的形成。
本发明的目的通过下述技术方案实现:
一种修复铜基-金属有机骨架多孔材料的方法,包括以下步骤:
(1)将结构坍塌的铜基-金属有机骨架多孔材料放入球磨机中,加入修复溶剂进行球磨;
(2)球磨后取出固体材料进行干燥,即得到修复完毕的铜基-金属有机骨架多孔材料;
其中,步骤(1)所述修复溶剂为有机溶剂或者有机溶剂与水的混合物,优先选择低沸点的有机溶剂,具体可选:乙醇、甲醇、氯仿或丙酮;
更优选的,步骤(1)所述修复溶剂为乙醇或乙醇与水混合物;乙醇和水是实验室常用试剂,无毒、无腐蚀性、廉价易得。乙醇和水对1,3,5-苯三甲酸和铜盐等均具有良好的溶解性,利用水和乙醇不同的溶解性,容易得到高性能的铜基-金属有机骨架多孔材料;
优选的,步骤(1)所述修复溶剂的添加量为每克所述结构坍塌的铜基-金属有机骨架多孔材料对应加入0.4~2毫升修复溶剂;
当修复溶剂添加量过小,达不到所需的溶剂效果,因此结构坍塌的铜基-金属有机骨架多孔材料的修复效果差;当修复溶剂添加量过大,容易使固体材料粘在球磨罐底部,从而失去球磨的作用,难以修复结构坍塌的铜基-金属有机骨架多孔材料;
优选的,步骤(1)所述球磨的转速为900~1200r/min,球磨时间为5~30min;
优选的,步骤(2)所述干燥的温度为140~180℃,干燥时间为5~10h。
根据上述方法修复的铜基-金属有机骨架多孔材料可应用于吸附分离净化。
本发明的原理:
本发明所述修复铜基-金属有机骨架多孔材料的方法采用机械化学法,即在机械力的作用下,降低原料的表面自由能,并在少量溶剂的作用下,促进Cu2+与1,3,5-苯三甲酸配位重新发生化学络合反应,形成新的多孔骨架结构,从而高效修复铜基-金属有机骨架多孔材料。
本发明相对于现有技术具有如下的优点及效果:
(1)本发明所述方法将结构坍塌的铜基-金属有机骨架多孔材料进行回收利用,既能减少环境污染,又能实现资源再利用。
(2)本发明所述修复铜基-金属有机骨架多孔材料的方法,具有修复快速、操作简单、节约能源以及只需少量辅助溶剂等优点,利于规模化工业化生产,是一种高效清洁、环保友好的新型绿色修复方法。
(3)采用本发明所述方法修复得到的铜基-金属有机骨架多孔材料,BET比表面积大、孔隙率高,其BET比表面积可以恢复到新HKUST-1材料的95%。采用本发明所述方法修复得到的铜基-金属有机骨架多孔材料具有中微双孔的骨架,微孔对吸附质具有强吸附作用力,有利于吸附质的吸附,而中孔有利于吸附质的扩散。
(4)采用本发明所述方法修复得到的铜基-金属有机骨架多孔材料对VOCs具有高吸附容量,其吸附容量可以恢复到新HKUST-1材料的92%。在同等条件下,采用本发明所述方法修复得到的铜基-金属有机骨架多孔材料对苯的吸附量高于活性炭、沸石等传统吸附剂。
附图说明
图1为本发明实施例3和实施例4修复后的铜基-金属有机骨架多孔材料的XRD谱图。
图2为本发明实施例3和实施例4修复后的铜基-金属有机骨架多孔材料对苯的吸附等温线。
具体实施方式
下面结合实施例对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
本发明所述修复铜基-金属有机骨架多孔材料的方法对所有骨架结构遭破坏而丧失原有吸附性能的铜基-金属有机骨架多孔材料均有作用。为便于对比说明本发明所述修复铜基-金属有机骨架多孔材料的方法的效果,实施例1提供了一种依据常规方法制备的铜基-金属有机骨架多孔材料以及结构坍塌的铜基-金属有机骨架多孔材料,具体制备方法如下:
(1)铜基-金属有机骨架多孔材料的制备:将2.404g Cu(CH3COO)2·H2O和1.608g1,3,5-苯三甲酸放入不锈钢球磨罐中,加入不锈钢球磨珠,放入QM-3C高速振动球磨机中,然后在1100r/min(42.97Hz)球磨30min,得到蓝色固体粉末;将蓝色固体粉末用乙醇与水体积比为1:1的乙醇水溶液洗涤3次,再在乙醇中浸泡三次,每隔8h更换新鲜的乙醇,然后在5000r/min转速下离心过滤,得到产物,放入烘箱150℃下烘干,得到蓝紫色的铜基-金属有机骨架多孔材料(HKUST-1)样品;
(2)结构坍塌的铜基-金属有机骨架多孔材料的制备:将步骤(1)制备的HKUST-1样品自然存放一年后,即得到结构坍塌的铜基-金属有机骨架多孔材料,记为HK-D。
实施例2
一种修复铜基-金属有机骨架多孔材料的方法,包括如下步骤:
(1)称取0.25g实施例1的结构坍塌的铜基-金属有机骨架多孔材料HK-D置于不锈钢球磨罐中,按1.2mL/g的配比滴加入甲醇,加入不锈钢球磨珠,放入QM-3C高速振动球磨机中,然后将球磨机的转速设置为1200r/min(36.60Hz),球磨10min,得到蓝色固体粉末;
(2)将蓝色固体粉末在140℃下真空干燥5h,得到修复的铜基-金属有机骨架多孔材料。
实施例3
一种修复铜基-金属有机骨架多孔材料的方法,包括如下步骤:
(1)称取0.25g实施例1的结构坍塌的铜基-金属有机骨架多孔材料HK-D置于不锈钢球磨罐中,按2mL/g的配比滴加入乙醇,加入不锈钢球磨珠,放入QM-3C高速振动球磨机中,然后将球磨机的转速设置为1100r/min(44.73Hz),球磨30min,得到蓝色固体粉末;
(2)将蓝色固体粉末在150℃下真空干燥8h,得到修复的铜基-金属有机骨架多孔材料。
实施例4
一种修复铜基-金属有机骨架多孔材料的方法,包括如下步骤:
(1)称取0.25g实施例1的结构坍塌的铜基-金属有机骨架多孔材料HK-D置于不锈钢球磨罐中,按2mL/g的配比滴加入乙醇与水体积比为3:2的乙醇水溶液,加入不锈钢球磨珠,放入QM-3C高速振动球磨机中,然后将球磨机的转速设置为1100r/min(44.73Hz),球磨30min,得到蓝色固体粉末;
(2)将蓝色固体粉末在180℃下真空干燥10h,得到修复的铜基-金属有机骨架多孔材料。
实施例5
一种修复铜基-金属有机骨架多孔材料的方法,包括如下步骤:
(1)称取0.25g实施例1的结构坍塌的铜基-金属有机骨架多孔材料HK-D置于不锈钢球磨罐中,按0.8mL/g的配比滴加入丙酮,加入不锈钢球磨珠,放入QM-3C高速振动球磨机中,然后将球磨机的转速设置为900r/min(44.73Hz),球磨20min,得到蓝色固体粉末;
(2)将蓝色固体粉末在180℃下真空干燥6h,得到修复的铜基-金属有机骨架多孔材料。
性能检测分析:
(一)修复后的铜基-金属有机骨架多孔材料的比表面积和孔结构性质表征:
采用美国Micromertics公司生产的三站全功能型多用吸附仪3Flex对实施例1的HKUST-1样品、HK-D样品以及实施例2~5修复得到的铜基-金属有机骨架多孔材料的比表面积和孔隙结构进行表征,结果如表1所示。
表1 铜基-金属有机骨架多孔材料的比表面积和孔隙结构参数
由表1可以看到,原始的铜基-金属有机骨架多孔材料HKUST-1样品的BET比表面积高达1215.1m2·g-1,结构坍塌的HK-D材料的BET比表面积降为66.2m2·g-1。而采用本发明所述方法修复制备的铜基-金属有机骨架多孔材料比表面积为597.2~1150.4m2·g-1,总孔容可达0.54cm3·g-1,微孔孔容可达0.39cm3·g-1,说明实施例2~5修复得到的铜基-金属有机骨架多孔材料均具有较大比表面积和较高孔隙率,且具有中微双孔骨架结构,微孔利于对吸附质分子物质的强吸附作用,同时中孔利于吸附质分子的吸附扩散。
实施例2~5修复得到的铜基-金属有机骨架多孔材料中,修复率最佳的实施例4修复得到的铜基-金属有机骨架多孔材料的BET比表面积为实施例1的新HKUST-1材料的95%,而且修复时间只需30分钟,比在乙醇/水中浸泡1h修复的HKUST-1多孔材料(G.Majano,etal.,Solvent-Mediated Reconstruction of the Metal–Organic Framework HKUST-1(Cu3(BTC)2).Advanced Functional Materials,2014,24,3855–3865.)具有更高的孔隙修复率。且浸泡法需要使用大量的乙醇溶剂,而本发明所述方法采用球磨法修复只需使用少量溶剂,修复时间大幅度缩短。
(二)修复后的铜基-金属有机骨架多孔材料的晶体结构性质:
采用德国Bruker公司生产的D8-ADVANCE型号X射线衍射仪对实施例1的HKUST-1、HK-D以及实施例3和实施例4修复得到的铜基-金属有机骨架多孔材料的晶体结构分别进行表征,光源采用辐射源Cu靶Kα辐射,管压40kV,管流40mA,2θ范围为2-40°,连续扫描。结果如图1所示。
从图1可以看出,HK-D的XRD图谱中没有出现HKUST-1的衍射特征峰,说明HKUST-1结构已经完全坍塌。而本发明实施例3和实施例4修复得到的铜基-金属有机骨架多孔材料均在2θ=9.3°、11.6°、13.4°等位置出现了HKUST-1的特征衍射峰,峰强且尖锐,表明实施例3和实施例4修复得到的铜基-金属有机骨架多孔材料与原始的HKUST-1具有相同的晶体结构,这说明结构坍塌的铜基-金属有机骨架多孔材料已被成功修复。
(三)修复后的铜基-金属有机骨架多孔材料对苯的吸附性能:
采用美国Micromertics公司生产的三站全功能型多用吸附仪3Flex测定298K下实施例1的HKUST-1、HK-D以及实施例3、4修复得到的铜基-金属有机骨架多孔材料对苯的吸附等温线。样品测试前的预处理条件为:在150℃下将样品抽真空干燥12h,真空度为5~10Pa。结果如图2所示。
由图2可以看到,在298K、P/P0=0.8时,实施例1的HKUST-1对苯的吸附量为6.2mmol·g-1,实施例3和4修复得到的铜基-金属有机骨架多孔材料对苯的吸附量分别为5.6和5.7mmol·g-1,这表明铜基-金属有机骨架多孔材料对苯吸附性能也得到了有效恢复,吸附容量为实施例1的HKUST-1样品的92%。
由图2还可以看出,HKUST-1以及实施例3和4修复得到的铜基-金属有机骨架多孔材料在低压下对苯的吸附量急剧上升,主要表现为微孔吸附。在高压下,曲线继续上升,主要发生中孔吸附。这与材料的孔结构表征结果一致。
表2为苯在不同吸附剂材料上的吸附量对比。从表2中可以看到,采用本发明修复得到的铜基-金属有机骨架多孔材料对苯的吸附量比活性炭、沸石等传统吸附剂高。例如在高压(0.8P/P0)下,实施例4修复的铜基-金属有机骨架多孔材料对苯的吸附量约为H-ZSM-5的2.6倍,Y型分子筛的1.6倍。而在低压(0.02P/P0)下实施例4修复的铜基-金属有机骨架多孔材料对苯的吸附量为H-ZSM-5的4.3倍,MCM-48的8.6倍。这表明采用本发明方法修复的铜基-金属有机骨架多孔材料对苯表现出优异的吸附性能,尤其适合应用于低压条件下对苯的吸附。
表2 苯在不同吸附剂材料上的吸附量
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (5)

1.一种修复铜基-金属有机骨架多孔材料的方法,其特征在于,包括以下步骤:
(1)将结构坍塌的铜基-金属有机骨架多孔材料放入球磨机中,加入修复溶剂进行球磨;
(2)球磨后取出固体材料进行干燥,即得到修复完毕的铜基-金属有机骨架多孔材料;
步骤(1)所述修复溶剂为有机溶剂或者有机溶剂与水的混合物;
步骤(1)所述有机溶剂为乙醇、甲醇、氯仿或丙酮。
2.根据权利要求1所述的修复铜基-金属有机骨架多孔材料的方法,其特征在于:步骤(1)所述修复溶剂为乙醇或乙醇与水混合物。
3.根据权利要求1~2任一项所述的修复铜基-金属有机骨架多孔材料的方法,其特征在于:步骤(1)所述修复溶剂的添加量为每克所述结构坍塌的铜基-金属有机骨架多孔材料对应加入0.4~2毫升修复溶剂。
4.根据权利要求1所述的修复铜基-金属有机骨架多孔材料的方法,其特征在于:步骤(1)所述球磨的转速为900~1200r/min,球磨时间为5~30min。
5.根据权利要求1所述的修复铜基-金属有机骨架多孔材料的方法,其特征在于:步骤(2)所述干燥的温度为140~180℃,干燥时间为5~10h。
CN201410753132.1A 2014-12-10 2014-12-10 一种修复铜基-金属有机骨架多孔材料的方法 Active CN104592255B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410753132.1A CN104592255B (zh) 2014-12-10 2014-12-10 一种修复铜基-金属有机骨架多孔材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410753132.1A CN104592255B (zh) 2014-12-10 2014-12-10 一种修复铜基-金属有机骨架多孔材料的方法

Publications (2)

Publication Number Publication Date
CN104592255A CN104592255A (zh) 2015-05-06
CN104592255B true CN104592255B (zh) 2016-10-05

Family

ID=53118350

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410753132.1A Active CN104592255B (zh) 2014-12-10 2014-12-10 一种修复铜基-金属有机骨架多孔材料的方法

Country Status (1)

Country Link
CN (1) CN104592255B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105153204B (zh) * 2015-08-27 2017-06-06 华南理工大学 一种CuBTC型中微双孔金属有机骨架材料及制备方法
CN111410750B (zh) * 2020-04-21 2022-02-15 济南大学 一种Co-MOF-71金属有机骨架的修复方法
CN115304776B (zh) * 2021-05-07 2023-07-28 中国石油化工股份有限公司 一种金属有机骨架材料的修复方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103432997B (zh) * 2013-08-30 2015-09-02 华南理工大学 Cu基有机骨架-氧化石墨烯复合多孔材料及其制备方法
CN104138746A (zh) * 2014-07-22 2014-11-12 华南理工大学 一种铜基-金属有机骨架多孔材料及其制备方法与应用

Also Published As

Publication number Publication date
CN104592255A (zh) 2015-05-06

Similar Documents

Publication Publication Date Title
CN105727736B (zh) 以金属有机骨架材料制备催化剂用于脱除二氧化硫的方法
CN104148021B (zh) 一种用于吸附水中重金属离子的双功能化介孔二氧化硅的制备方法
CN103432997B (zh) Cu基有机骨架-氧化石墨烯复合多孔材料及其制备方法
CN105080490B (zh) 一种铬镁双金属MOFs吸附剂MIL‑101(Cr,Mg)及其制备方法
CN102335592B (zh) 金属有机骨架-氧化石墨纳米复合吸附材料及其制备方法
CN112679731B (zh) 一类含有磺酸基团的共价有机框架材料及其制备和应用
CN106345435B (zh) 一种金属有机框架/聚二乙烯基苯复合VOCs吸附剂的制备方法
CN103432998B (zh) 一种憎水多孔材料及其制备方法和应用
CN104226256B (zh) 一种球形成型Cu基金属有机骨架‑氧化石墨烯复合材料及制备方法
CN106866741B (zh) 一种无溶剂法快速合成金属有机骨架材料MIL-100(Cr)的方法
CN106861634A (zh) 金属‑有机骨架化合物@介孔材料复合材料及其制备方法与应用
CN107029673A (zh) 一种铝基MOFs/氧化石墨烯复合材料及其制备方法与应用
CN106905536A (zh) 一种快速合成多级孔zif‑8材料的方法
CN108751189A (zh) 高比表面积的铝基mof多孔碳材料的制备与应用
CN102350303B (zh) 具有高效co2捕获功能的沸石分子筛材料及其制备方法
CN105854801A (zh) 一种氮掺杂的多孔碳材料及其制备方法和用途
CN104592255B (zh) 一种修复铜基-金属有机骨架多孔材料的方法
CN105294749A (zh) 一种用于高效吸附烟气中单质汞的改性有机金属骨架
CN101837281A (zh) 一种具有复合吸附功能的甲醛吸附剂的制备方法
CN101862638A (zh) 一种甲醛吸附剂的制备方法
CN105944679B (zh) 一种用于吸附分离co2吸附剂的制备方法
CN104138744A (zh) 一种生物炭复合矿晶空气净化材料及其制备方法
CN108126660A (zh) 一种基于浸渍活性炭的co2固体吸附剂、制备方法及其用途
CN104492405B (zh) 一种核壳型分子筛微球及其制备方法和用途
CN108435143A (zh) 一种高亲水性吸附剂、制备及吸附铷离子或锂离子的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant