CN104588030A - 烃油加氢处理催化剂及其制法 - Google Patents
烃油加氢处理催化剂及其制法 Download PDFInfo
- Publication number
- CN104588030A CN104588030A CN201310527465.8A CN201310527465A CN104588030A CN 104588030 A CN104588030 A CN 104588030A CN 201310527465 A CN201310527465 A CN 201310527465A CN 104588030 A CN104588030 A CN 104588030A
- Authority
- CN
- China
- Prior art keywords
- catalyst
- active metal
- organic matter
- ratio
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
本发明公开了一种烃油加氢处理催化剂及其制法。该加氢处理催化剂,采用氧化铝基载体,活性金属组分为Mo、Ni、Co,其中活性金属组分在每个催化剂颗粒横截面上的浓度分布如下:Ni0/Ni1>Ni1/2/Ni1>1,Mo0/Mo1>Mo1/2/Mo1>1或者Mo基本上为均匀分布,Co基本上为均匀分布。本发明加氢处理催化剂具有较高的深度脱硫活性,特别适合作为柴油深度加氢脱硫催化剂。
Description
技术领域
本发明涉及一种加氢处理催化剂的制备方法,特别是一种适于重质馏分油加氢处理催化剂的制备方法。
背景技术
随着当今社会对重质馏分油(特别是柴油)清洁化的要求越来越高,重质馏分油的深度加氢脱硫技术就显得越来越重要。重质馏分油中的含硫化合物主要有脂肪族硫化物、硫醚、二苯并噻吩、烷基苯并噻吩和烷基二苯并噻吩等,其中较难脱除的是二苯并噻吩、烷基苯并噻吩和烷基二苯并噻吩等噻吩类化合物,尤其以4,6-二甲基二苯并噻吩(4,6-BMDBT)和 2,4,6-三甲基二苯并噻吩(2,4,6- BMDBT)类结构复杂且有空间位阻效应的含硫化合物最难脱除。要达到深度和超深度脱硫,就需要脱除这些结构复杂且空间位阻大的含硫化合物,而这些含硫化合物通常在高温高压等苛刻的操作条件下也较难脱除。因此,重质馏分油深度和超深度脱硫在反应机理上与常规的加氢脱硫有显著的差异,这就要求在深度加氢脱硫催化剂的设计上有特殊要求。
加氢处理催化剂通常是采用氧化铝基载体,以第VIB族和第VIII族金属为加氢活性金属组分,其中活性金属组分在催化剂中一般是均匀分布的。CN99103007.9公开了一种含钼和/或钨的轻质油品加氢处理催化剂。该催化剂含有负载在氧化铝载体上的氧化钨和/或氧化钼、氧化镍和氧化钴,所述氧化钨和/或氧化钼的含量为4重%至小于10重 %,氧化镍的含量为1~5%,氧化钴的含量为0.01~1重%,镍和钴总原子数与镍、钴、钨和/或钼的总原子数之比为0.3~0.9。与现有技术相比,该催化剂具有较低的金属含量却具有较高的低温活性。该催化剂特别适用于轻质油品的加氢脱硫醇过程。
CN99113281.5公开了一种馏分油加氢精制催化剂及其制备方法。该催化剂以氧化铝或含硅氧化铝为载体,以W、Mo、Ni为活性组分,添加磷助剂。通过采用分段共浸技术,使得催化剂上的金属分布更加均匀,催化剂的活性,特别是加氢脱氮活性得到大幅度提高。
这些现有技术的加氢处理催化剂均属于常规的加氢脱硫催化剂,并不能有效地适用于重质馏分油(尤其是柴油)的加氢脱硫。因此,现有技术仍旧需要一种加氢处理催化剂,尤其适用于重质馏分油(尤其是柴油)的加氢脱硫(尤其是深度加氢脱硫)。
发明内容
针对现有技术中存在的问题,本发明提供了一种加氢处理催化剂及其制备方法。该催化剂具有更高的加氢脱硫活性。
本发明提供的加氢处理催化剂,采用氧化铝基载体,活性金属组分为Mo、Ni、Co,其中活性金属组分在每个催化剂颗粒的横截面上的浓度分布如下:Ni0/Ni1>Ni1/2/Ni1>1,Co基本上为均匀分布,Mo基本上为均匀分布或者Mo0/Mo1>Mo1/2/Mo1>1。
所述催化剂中含有有机物A即为数均分子量为400~10000的多元醇,有机物A为氧化铝基载体重量的0.05%~10.0%,优选为0.1%~9.0%。本发明加氢处理催化剂中,多元醇的数均分子量为400~10000,优选为1000~8000,所述的多元醇可以为聚醚二醇,优选为聚乙二醇。
本发明中,活性金属组分在每个催化剂颗粒的横截面上的浓度分布用式子Am/Bn表示,即每个催化剂颗粒的横截面上m处元素A的浓度与n处元素B的浓度的比值(在本发明中,单位为摩尔比),其中A表示活性金属元素Mo、Co或Ni,B表示活性金属元素Mo、Co或Ni,其中A和B可以相同,也可以不同;以催化剂颗粒横截面最外缘的任意一点即最外缘点为起始点记为0,以催化剂颗粒横截面的中心点为终点记为1,连接起始点和终点得到直线线段,m和n分别表示在上述直线线段上选取的位置点,m和n的值表示从起始点到选取的位置点的距离占上述直线线段的长度的比值,m和n的取值为0~1,其中m(或n)取值为0、1/4、1/2、3/4、1时分别表示从起始点到选取的位置点的距离占上述直线线段的长度的0、1/4、1/2、3/4、1时选取点所在的位置(见图3),上述位置点也称为最外缘点(或外表面点)、1/4位置点、1/2位置点、3/4位置点、中心点。本发明中,本发明中,为了表述方便,A和B直接采用活性金属元素Mo、Co或Ni代替,m和n为直接用0~1的数字代表上述直线线段上确定的位置点,用x1或x2代表上述直线线段上任意的位置点,比如,Co0/Co1表示A和B均为Co,m=0,n=1即表示催化剂颗粒横截面最外缘点处元素Co的浓度与中心点处元素Co的浓度的比值,Ni1/2/Ni1表示A和B均为Ni,m=1/2,n=1即表示在催化剂颗粒横截面上的所述直线线段上,使从最外缘点到选取点的距离占上述直线线段长度的1/2时选取点所在位置处元素Ni的浓度与中心点处元素Ni的浓度的比值。Co1/Mo1表示A为Co,B为Mo,m=1,n=1,即表示催化剂颗粒横截面中心点处元素Co的浓度与该点元素Mo的浓度的比值。本发明中的x1和x2分别在连接上述最外缘点和中心点得到的直线线段上任意选取的位置点(但不包括最外缘点和中心点),且从最外缘点到x1点的距离小于从最外缘点到x2点的距离即0<x1<x2<1。
本发明中,涉及用式子Am/Bn形式表示的具体如下:Co0/Co1(A和B均为Co,m=0,n=1)、Co1/4/Co1(A和B均为Co,m=1/4,n=1)、Co1/2/Co1(A和B均为Co,m=1/2,n=1)、Co3/4/Co1(A和B均为Co,m=3/4,n=1)、Cox1/Co1(A和B均为Co,m=x1,n=1)、Cox2/Co1(A和B均为Co,m=x2,n=1)、Ni0/Ni1(A和B均为Ni,m=0,n=1)、Ni1/4/Ni1(A和B均为Ni,m=1/4,n=1)、Ni1/2/Ni1(A和B均为Ni,m=1/2,n=1)、Ni3/4/Ni1(A和B均为Ni,m=3/4,n=1)、Nix1/Ni1(A和B均为Ni,m=x1,n=1)、Nix2/Ni1(A和B均为Ni,m=x2,n=1)、Mo0/Mo1(A和B均为Mo,m=0,n=1)、Mo1/4/Mo1(A和B均为Mo,m=1/4,n=1)、Mo1/2/Mo1(A和B均为Mo,m=1/2,n=1)、Mo3/4/Mo1(A和B均为Mo,m=3/4,n=1),Co1/Mo1(A为Co,B为Mo,m=1,n=1)。
本发明加氢处理催化剂中,活性金属组分在催化剂颗粒中,优选方案如下: Ni0/Ni1与Ni1/2/Ni1的比值1.5~2.6,优选为1.7~2.5;Mo0/Mo1与Mo1/2/Mo1的比值0.9~2.6,优选为0.9~2.5。
本发明加氢处理催化剂中,活性金属组分在催化剂颗粒中,优选方案如下: Co1/Mo1的比值为0.07~2.0,优选为0.08~1.2。
本发明加氢处理催化剂中,活性金属组分在催化剂颗粒横截面上的分布优选如下:Ni0/Ni1>Ni1/4/Ni1>Ni1/2/Ni1。
本发明加氢处理催化剂中,活性金属组分在催化剂颗粒横截面上的分布优选如下:Ni1/2/Ni1>Ni3/4/Ni1>1。
本发明加氢处理催化剂中,活性金属组分在催化剂颗粒中,优选方案如下:Ni0/Ni1与Ni1/4/Ni1的比值为1.2~1.8,优选为1.3~1.7,Ni1/4/Ni1与Ni1/2/Ni1的比值为1.1~1.7,优选为1.2~1.6。
本发明加氢处理催化剂中,活性金属组分在催化剂颗粒横截面上的浓度分布优选如下:Ni0/Ni1>Nix1/Ni1>Nix2/Ni1>1,其中0<x1<x2<1。
本发明加氢处理催化剂中,在催化剂颗粒横截面上,沿所述直线线段从最外缘点到中心点,活性金属组分浓度分布如下:Co的浓度基本上为均匀分布,Mo的浓度基本上为均匀分布或者Mo的浓度基本上逐渐减少,Ni的浓度基本上逐渐减少。
本发明中,所述“沿着所述直线线段基本上逐渐减少”指的是所述活性金属元素的浓度分布沿着所述直线线段在从最外缘点至中心点的整个区间内总体上呈现逐渐减少的趋势,但允许存在一个或多个局部区间;在该局部区间内,所述活性金属元素的浓度分布沿着所述直线线段呈现出不同的趋势(比如维持恒定和/或逐渐增加和/或无序状态)。前提是,这类局部区间的存在对于本领域技术人员而言是可以容忍或可以忽略的,或者对于本领域的技术发展水平而言是不可避免的,而且这些局部区间的存在并不影响本领域技术人员将所述活性金属元素在所述整个区间内的浓度分布依然判定为“总体上呈现逐渐减少的趋势”。另外,该局部区间的存在并不影响本发明预期目的的实现,是可以接受的,并且也包含在本发明的保护范围之内。
本发明中,所述“Co或Mo的浓度基本上为均匀分布”指的是Co或Mo在每个所述催化剂颗粒的整个横截面上的浓度分布是均匀一致的,但允许存在对于本领域技术人员而言可以容忍或可以忽略或者对于本领域的技术发展水平而言不可避免的浓度分布波动(偏差)。举例而言,比如,此时Co0/Co1处于1±5%范围内且Com/Co1处于1±5%范围内,优选Co0/Co1处于1±2%范围内且Com/Co1处于1±2%范围内。此时Mo0/Mo1处于1±5%范围内且Mom/Mo1处于1±5%范围内,优选Mo0/Mo1处于1±2%范围内且Mom/Mo1处于1±2%范围内。该浓度分布波动并不影响本发明预期目的的实现,是可以接受的,并且也包含在本发明的保护范围之内。
本发明中,所述加氢处理催化剂是(实心)颗粒状的,而不是粉末等无定形状态。作为所述颗粒的形状,可以举出本领域加氢处理催化剂常规使用的各种形状,比如可以进一步举出球形、柱状等,其中优选球形或柱状。作为所述球形,比如可以举出圆球形和椭球形等;作为所述柱状,比如可以举出圆柱状、方柱状和异型截面(比如三叶草、四叶草等)柱状等。所述的加氢处理催化剂的粒度为3~8mm,优选为3~5mm。
本发明中,所述“催化剂颗粒的横截面”指的是沿着一个催化剂颗粒的最小尺寸方向通过其形状的几何中心切割后暴露的整个表面。比如,在所述催化剂颗粒为球形时,所述横截面指的是沿着该球的半径或短轴方向通过其球心切割后暴露的整个表面(比如参见图1)。或者,在所述催化剂颗粒为柱状时,所述横截面指的是垂直于该柱的长度尺寸方向通过该长度尺寸的中心点切割后暴露的整个表面(比如参见图2)。本发明中,将所述暴露表面的外周称为该横截面的最外缘,将所述几何中心(比如前述的球心或长度尺寸的中心点)称为该横截面上的中心点。
本发明的加氢处理催化剂,以催化剂的重量为基准,氧化铝基载体的含量为46wt%~87wt%,优选为余量,Ni以NiO计的含量为1wt%~8wt%,Mo以MoO3计的含量为10wt%~40wt%,Co以CoO计的含量为0.5wt%~6wt%。
本发明的加氢处理催化剂中,位于催化剂颗粒横截面上最外缘点处的Mo的浓度与颗粒中心点处Mo的浓度比(摩尔比)即Mo0/Mo1为0.9~7.0,优选为0.9~4.0,位于催化剂颗粒横截面上最外缘点处的Ni的浓度与中心点处Ni的浓度比(摩尔比)即Ni0/Ni1为1.2~7.0。
本发明加氢处理催化剂中还可以含有助剂组分,比如氟、硅、磷、钛、锆、硼中的一种或多种,助剂组分以元素计在催化剂中的重量含量为15%以下,优选为1%~10%。本发明加氢处理催化剂中优选含有磷,以P2O5计在催化剂中的重量含量为1%~6%。
本发明的加氢处理催化剂中,所述的氧化铝基载体是指以氧化铝为主要组分,可以不含助剂组分,也可以含助剂组分,其中助剂组分可以为氟、硅、磷、钛、锆、硼等中的一种或多种,助剂组分以元素计在氧化铝基载体中的含量在30wt%以下,优选20wt%以下。所述的氧化铝基载体可以采用常规方法制备。所述氧化铝基载体的性质优选如下:比表面积为100~500 m2/g,优选为150~400 m2/g,孔容为0.25~1.0mL/g,优选为0.3~0.9 mL/g。
本发明的加氢处理催化剂的性质如下:比表面积为100~260 m2/g,优选为120~220 m2/g,孔容为0.20~0.60mL/g,优选为0.2~0.5 mL/g。
本发明的加氢处理催化剂中,含有有机物A和/或有机物B,有机物A即多元醇,所述的多元醇为数均分子量为400~10000的多元醇,优选为数均分子量为1000~8000的多元醇,所述的多元醇可以为聚醚二醇,优选为聚乙二醇。多元醇在催化剂中的重量含量为0.05%~10.0%,优选为0.1%~9.0%。所述的有机物B为碳原子数为2~20的含氮有机化合物、含硫有机化合物和含氧有机化合物中的一种或几种。本发明的加氢处理催化剂中含有的有机物(即有机物A或有机物A和有机物B),与Mo原子摩尔比为0.002:1~2.0:1,优选为0.02:1~1.5:1,进一步优选为0.02:1~1.0:1。
所述含氮有机化合物为至少包含一个共价键氮原子的有机物,含氮有机化合物中碳原子数为2~20,具体如乙二胺、己二胺等中的一种或多种,优选为除包含至少一个共价键的氮原子外,还至少包含一个羟基或羧基部分的有机化合物,如:乙醇胺、二乙醇胺、三乙醇胺,乙二胺四乙酸(EDTA)、氮川三乙酸(NTA)和环乙二胺四乙酸等中的一种或多种。
所述含硫有机化合物为至少包含一个共价键硫原子的有机物,含硫有机化合物中碳原子数一般为2~20。如磺酸类(通式R-SO3H)其中的R为含2~20个碳原子的烷基,如苯磺酸、十二烷基苯磺酸、对甲苯磺酸等中的一种或多种。含硫有机化合物中可以含有一个或多个羧基、羰基、酯、醚、羟基、巯基的基团取代,如巯基乙酸、巯基丙酸、二巯基丙醇等。除上述含硫化合物外,可以包含砜和亚砜类化合物,如二甲基亚砜、二甲基砜等中的一种或多种。
所述含氧有机化合物为至少含有一个碳原子和一个氧原子的有机物。优选包含至少两个氧原子和两个碳原子的有机化合物,含氧有机化合物碳原子数优选为2~20。含氧部分可为羧基、羰基、羟基部分或它们的组合。这些物质可为酸类、醇类、醚类、糖类、酮类、酚类、醛类和脂类中的一种或多种。进一步优选如下:醋酸、草酸、丙二酸、酒石酸、苹果酸、柠檬酸、乙二醇、丙二醇、丁二醇、甘油、二甘醇、二丙二醇、三甘醇、三丁二醇、四甘醇、聚乙二醇、葡萄糖、果糖、乳糖、麦芽糖、蔗糖等中的一种或多种。
本发明提供的加氢处理催化剂的制备方法,其中活性金属组分Co在步骤(1)之前和/或步骤(2)之后引入催化剂中,活性金属组分Mo引入催化剂中的方式:或者全部Mo与Co一同引入催化剂中,或者部分Mo同Ni一同引入催化剂中,剩余部分Mo与Co一同引入催化剂中;活性金属Ni或活性金属Ni和部分Mo引入催化剂中的过程包括:
(1)用含有吸附剂(即有机物A)的溶液浸渍氧化铝基载体,经干燥,得到含吸附剂的氧化铝基载体,吸附剂的用量占氧化铝基载体重量的0.1%~10%,吸附剂为数均分子量为400~10000,优选为400~8000的多元醇,所述的浸渍采用饱和浸渍或过量浸渍;
(2)在步骤(1)所得物上浸渍负载活性金属组分Ni或Ni和Mo。
本发明方法中,部分Mo同Ni一同引入催化剂中,剩余部分Mo与Co一同引入催化剂中;其中前者引入Mo量与后者引入Mo量的摩尔比为0.4~2.5。
本发明方法中,部分Mo同Co在步骤(1)之前引入催化剂中,步骤(2)用含有活性金属组分Mo、Ni的溶液浸渍步骤(1)所得物,经干燥或干燥和焙烧,得到加氢处理催化剂。
本发明方法中,部分Mo同Co在步骤(2)之后引入催化剂中,具体如下:
(1)用含有吸附剂的溶液浸渍氧化铝基载体,经干燥,得到含吸附剂的氧化铝基载体,吸附剂的用量占氧化铝基载体重量的0.1%~10%,吸附剂为数均分子量为400~10000,优选为400~8000的多元醇,所述的浸渍采用饱和浸渍或过量浸渍;
(2)用含活性金属组分Ni或Ni和Mo的溶液浸渍步骤(1)所得物,经干燥和焙烧,
(3)在步骤(2)所得物上浸渍负载活性金属Mo、Co,经干燥或干燥和焙烧后,得到加氢处理催化剂。
所述的含有吸附剂的溶液中还可以包含醇,其中醇为C5以下的醇中的一种或多种,可以为一元醇、多元醇中的一种或多种,具体的醇包含如乙二醇、丙二醇、丙三醇、季戊四醇、木糖醇等中的一种或多种。所述的醇的加入量占步骤(1)所得氧化铝载体重量的0.5%~10.0%。
本发明方法,用含有吸附剂的溶液浸渍氧化铝基载体,采用等体积浸渍或过量浸渍。浸渍结束后,样品可经过养生或不经过养生,若经过养生一般养生时间为1~12h。养生结束后,再经过干燥步骤。所述的干燥条件如下:温度为60℃~250℃,优选为100~200℃,干燥时间0.5h~20h,优选为1h~6h。
本发明方法,步骤(2)用含有Ni或Ni和Mo的浸渍溶液浸渍后,可经过养生,也可不经过养生,如需养生,养生时间为0.5~6.0h,再进行干燥。干燥条件如下:干燥温度为60℃~300℃,优选为100~200℃,干燥时间0.5h~20h,优选为1h~6h。干燥之后可进行焙烧,焙烧温度为350℃~750℃,焙烧时间为0.5h~20h。
本发明方法,步骤(3)中所述的干燥条件如下:干燥温度为60℃~250℃,优选为70~200℃,优选为100~200℃,干燥时间0.5h~20h,优选为1h~6h。干燥之后可进行焙烧,所述的焙烧条件如下:烧温度为300℃~750℃,优选为400℃~650℃,焙烧时间为0.5h~20h,优选为1h~6h。
本发明方法中,助剂组分氟、硅、磷、钛、锆和硼中的一种或多种,采用常规方法引入催化剂中,比如可以在载体制备时引入催化剂中,也可以在载体制备后引入催化剂。在载体制备后引入催化剂中,可以采用单独浸渍的方法引入催化剂中,也可以与活性金属组分一同浸渍引入催化剂中。
本发明加氢处理催化剂制备方法中,活性金属Ni或Ni和部分Mo通过浸渍法负载到氧化铝基载体上,通常采用等体积浸渍法。浸渍方法是技术人员所熟知的。用含活性金属的溶液浸渍催化剂前体后,需要经过干燥。活性金属溶液制备方法是技术人员所熟知的,其溶液浓度可通过各化合物的用量来调节,从而制备指定活性组分含量的催化剂。所需活性组分的原料一般为盐类、氧化物或酸等类型的化合物,如钼源一般来自氧化钼、钼酸铵、仲钼酸铵中的一种或几种。镍源来自硝酸镍、碳酸镍、碱式碳酸镍、氯化镍、草酸镍中的一种或几种。在所述的浸渍溶液中,除活性金属组分外,还可以含有含磷化合物,如为磷酸、亚磷酸、磷酸氢铵、磷酸二氢铵和磷酸铵等中的一种或几种。
所述的加氢处理催化剂中可以含有有机物A和/或有机物B,有机物A选自数均分子量为400~10000,优选为400~8000的多元醇,有机物B选自为碳原子数为2~20的含氮有机化合物、含硫有机化合物和含氧有机化合物中的一种或几种。
本发明的加氢处理催化剂中有机物(有机物A和/或有机物B)与Mo原子摩尔比为0.002:1~2.0:1,优选为0.02:1~1.5:1,进一步优选为0.02:1~1.0:1。
所述含氮有机化合物为至少包含一个共价键氮原子的有机物,含氮有机化合物中碳原子数为2~20,具体如乙二胺、己二胺等中的一种或多种,优选为除包含至少一个共价键的氮原子外,还至少包含一个羟基或羧基部分的有机化合物,如:乙醇胺、二乙醇胺、三乙醇胺,乙二胺四乙酸(EDTA)、氮川三乙酸(NTA)和环乙二胺四乙酸等中的一种或多种。
所述含硫有机化合物为至少包含一个共价键硫原子的有机物,含硫有机化合物中碳原子数一般为2~20。如磺酸类(通式R-SO3H)其中的R为含2~20个碳原子的烷基,如苯磺酸、十二烷基苯磺酸、对甲苯磺酸等中的一种或多种。含硫有机化合物中可以含有一个或多个羧基、羰基、酯、醚、羟基、巯基的基团取代,如巯基乙酸、巯基丙酸、二巯基丙醇等。除上述含硫化合物外,可以包含砜和亚砜类化合物,如二甲基亚砜、二甲基砜等中的一种或多种。
所述含氧有机化合物为至少含有一个碳原子和一个氧原子的有机物。优选包含至少两个氧原子和两个碳原子的有机化合物,含氧有机化合物碳原子数优选为2~20。含氧部分可为羧基、羰基、羟基部分或它们的组合。这些物质可为酸类、醇类、醚类、糖类、酮类、酚类、醛类和脂类中的一种或多种。进一步优选如下:醋酸、草酸、乳酸、丙二酸、酒石酸、苹果酸、柠檬酸、三氯乙酸、一氯乙酸等、巯基乙酸、巯基丙酸、乙二胺四乙酸、氮川三乙酸、环乙二胺四乙酸、乙二醇、丙二醇、丁二醇、甘油、二甘醇、二丙二醇、三甘醇、三丁二醇、四甘醇、聚乙二醇、葡萄糖、果糖、乳糖、麦芽糖、蔗糖等中的一种或多种。
所述的有机物A引入催化剂中的方式在步骤(2)干燥处理即可得到含有机物A的加氢处理催化剂。所述的有机物A在催化剂中的含量占氧化铝基载体重量的0.05%~10.0%,优选为0.1%~9.0%。
所述的有机物B引入催化剂中的方式可以采用常规方式引入,可以单独浸渍引入,也可以与活性金属溶液共浸引入,引入有机物后一般经干燥处理即可得到含有有机物的加氢处理催化剂。在加氢处理催化剂中引入有机物B,比如其加入方法为:在步骤(3)的含Co和Mo的浸渍溶液中加入有机物B,或者步骤(3)后,用有机物B浸渍;所述有机物B的用量,使加氢处理催化剂中的有机物与Mo原子的摩尔比为0.002:1~2:1;有机物B选自含氮有机化合物、含硫有机化合物和含氧有机化合物中的一种或几种。还可以在步骤(2)的含Ni或Ni和Mo的浸渍溶液中加入有机物B,或者步骤(2)后,用有机物B浸渍;所述有机物B的用量,使加氢处理催化剂中的有机物与Mo原子的摩尔比为0.002:1~2:1;有机物B选自含氮有机化合物、含硫有机化合物和含氧有机化合物中的一种或几种。
本发明加氢处理催化剂在重质馏分油(尤其是柴油)的加氢脱硫(尤其是深度加氢脱硫)中作为加氢脱硫催化剂的应用。
所述重质馏分油可以为柴油、蜡油,其中优选柴油。所述重质馏分油的总硫含量一般为0.3wt%~3.0wt%,优选0.3wt%~2.5wt%,其中难脱含硫化合物(以4,6-二甲基二苯并噻吩为计)所贡献的硫含量大约是0.01wt%以上,一般是0.01 wt%~0.05wt%。
采用本发明加氢处理催化剂作为加氢脱硫催化剂,可以将所述重质馏分油的总硫含量降低至0.05wt%或更低,优选降低至0.005wt%或更低,尤其是可以脱除80wt%以上(优选90wt%以上)的所述难脱含硫化合物。
本发明,在所述应用或所述加氢脱硫方法中,可以仅使用本发明的加氢处理催化剂,也可以将本发明的加氢处理催化剂与其他加氢处理催化剂(比如现有技术已知的那些)按照任意需要的比例配合使用,比如采用不同催化剂床层级配或混合使用。
根据本发明,对所述的加氢脱硫的操作条件没有任何特别的限定,可以采用本领域常规使用的操作条件,比如反应温度260~400℃,优选310~370℃,反应总压3~13MPa,优选5~9MPa,液时体积空速0.5~4h-1,优选1~2h-1,氢油体积比200:1~2000:1,优选400:1~1000:1。
本发明的加氢处理催化剂Co基本上均匀分布于催化剂中, Ni从催化剂颗粒外表面至中心呈逐渐减少的趋势,Mo为基本上均匀分布或者呈逐渐减少的趋势,优选含有有机物。此催化剂特别适用于加氢脱硫过程中,提高加氢脱硫的活性和选择性,尤其是脱除具有空间位阻的难脱除的噻吩类含硫化合物。
本发明制备的加氢处理催化剂, Co基本上均匀分布于催化剂中,通过饱和浸渍或过量浸渍含吸附剂的溶液,然后浸渍含Ni活性金属溶液后,减缓Ni向催化剂颗粒中心的扩散速度,从而使Ni活性相在每个催化剂颗粒中的浓度从边缘位置到中心呈逐渐减少的趋势,Mo基本上均匀分布于催化剂中或呈逐渐减少的趋势,这样通过控制Mo、Co、Ni不同金属在催化剂中呈不同浓度的分布,使其相互配合,从而提高催化剂的活性和选择性,尤其是脱除具有空间位阻的难脱除的噻吩类含硫化合物。此外,本发明通过控制加氢处理催化剂的制备条件,使有机物存在于最终的加氢处理催化剂中,活性金属硫化后,能够形成更多的叠层数,使催化剂的加氢活性得到进一步提高。
附图说明
图1为球形催化剂颗粒切割方式的示意图;
图2为柱形催化剂颗粒切割方式的示意图;
图3为催化剂颗粒通过切割后所得横截面以及该横截面上的所选取的各位置点,其中0代表该横截面上最外缘上的任意一点即最外缘点,1/4代表1/4位置点,1/2代表1/2位置点,3/4代表3/4位置点,1代表中心点。
图4为实施例2所得催化剂C1中活性金属组分Ni和Co在该横截面上的浓度分布图。其中横坐标是该横截面上的各位置点,纵坐标是某一位置点处的浓度与该横截面上中心点处的浓度的比值。
具体实施方式
本发明方法中,在步骤(1)之前将全部或部分Mo与Co一同引入催化剂中,可采用下述至少一种方法:在载体组分干胶粉制备过程中加入然后再成型制成含Mo和Co的氧化铝基载体、在载体组分混捏成型时加入制成含Mo和Co的氧化铝基载体和载体组分成型后采用浸渍法加入制成含Mo和Co的氧化铝基载体。以氧化铝作为载体组分为例进行说明:
一、在氧化铝干胶粉的制备过程中加入,如以共沉淀、分步沉淀方式引入,然后成型,经干燥、焙烧后制得含Mo和Co的氧化铝载体;
二、在载体成型时以混捏形式加入:把氧化铝干胶粉与含Mo和Co活性金属组分化合物混合均匀,然后经混捏成型,干燥、焙烧制成含Mo和Co的氧化铝载体;
三、将氧化铝干胶粉混捏成型,然后进行干燥、焙烧制成载体,之后用含Mo和Co活性金属组分的溶液浸渍氧化铝载体,经干燥、焙烧制成含Mo和Co的氧化铝载体。
在上述成型过程中,可以加入常规的成型助剂,比如助挤剂、粘合剂、胶溶剂等中的一种或几种,加入量可以根据制备催化剂性质按本领域知识确定。其中粘合剂一般采用小孔氧化铝,选自氯化铝-氨水法、碳化法或硫酸铝法生产的拟薄水铝石以及Zlegler合成反应副产物的SB氧化铝粉等。
本发明加氢处理催化剂制备方法中,含Mo和Co的氧化铝载体制备过程中的干燥和焙烧采用现有技术条件,如干燥温度为40℃~250℃,干燥时间为0.5h~20h;焙烧温度为350℃~750℃,焙烧时间为0.5h~20h。
按照本发明提供的加氢处理催化剂的制备方法,其具体步骤如下:
Ⅰ、制备含Mo和Co活性金属组分的氧化铝基载体;
Ⅱ、将所需的吸附剂加入计量水中,配制溶液,在氧化铝基载体上喷浸含吸附剂的溶液,得样品优选经过养生再进行下一步骤,养生时间为1~12h;
Ⅲ、步骤Ⅱ所得样品优选经过干燥后再进行下一步骤,干燥温度一般为60℃~250℃,干燥时间0.5h~20h,控制干燥条件使吸附剂存在于催化剂中;
Ⅳ、采用等体积浸渍法,用含Ni或Mo和Ni的活性金属溶液浸渍步骤Ⅲ所得样品,在60℃~300℃温度下干燥 0.5h~20h,控制干燥条件使吸附剂存在于催化剂中,得到加氢处理催化剂。
下面通过实施例进一步描述本发明的技术方案,但不应认为本发明仅局限于此实施例中。本发明中,wt%为质量分数。
本发明所采用的分析方法如下:
(1)活性金属组分和助剂组分的含量(wt%)采用X射线荧光光谱法进行测量。
(2)催化剂的比表面积(m2/g)和孔容(ml/g)采用BET法进行测量。
(3)各活性金属组分在催化剂颗粒中的浓度分布
在以下的实施例和对比例中,使用了圆柱形的载体(但本发明显然并不限于此,也可以使用其他的颗粒形状),由此所获得的催化剂颗粒也是圆柱形的。从每个实施例和对比例所获得的催化剂中随机选取一个催化剂颗粒作为测量样品。为了测量各活性金属组分在该催化剂颗粒中的浓度分布,垂直于该圆柱形颗粒的长度尺寸方向,通过该长度尺寸的中心点进行切割,获得两个暴露表面。取其中的一个暴露表面作为测量用横截面。
该测量使用EPMA法,参照GB/T15074-2008(电子探针定量分析方法通则)进行,在电子探针显微分析仪(JXA-8230型,日本电子株式会社制造)上进行。测量条件为:加速电压15kV,束流强度5×10-8A,束斑直径1μm,X射线检出角:W为53°,Mo为38°,Ni为24°,Co为26°,较正方法:ZAF校正法,使用的标样:纯金属氧化物标样(分别为NiO、CoO、MoO3和WO3),精度:小于1% ,二次电子像分辨率:3nm(LaB6),线系:Ni和Co采用Kα线系,Mo采用Lα线系,W采用Mα线系。
测量方法为:在该横截面的最外缘上任意选取一个位置点作为0,以该横截面上的中心点作为1,连接所述位置点0与所述位置点1的直线线段(实质上是该横截面的半径,因此也称为径向),测量规定位置点处目标活性金属的浓度值,然后通过除法计算,获得各浓度值的比值(本发明中为摩尔比)。
图4为实施例2中所得的催化剂C1中活性金属的浓度分布图是通过在该直线线段上均匀选取21个位置点(包括位置点0和位置点1),以这些位置点为横坐标,以各位置点处测量的目标活性金属(以Ni和Co为例)的浓度值与位置点1处(即中心点)测量的相应活性金属的浓度值的比值(分别用Nim/Ni1和Com/Co1表示)为纵坐标,如此绘图而获得的。
(4)催化剂的相对脱硫活性
相对脱硫活性=100×[(1/S1)0.65-(1/S0)0.65]/ [(1/Sc1)0.65-(1/S0)0.65],式中S1和Sc1分别表示采用本发明催化剂或参比剂所得加氢产物中的硫含量,S0表示采用本发明催化剂或参比剂所用原料油中的硫含量。其中硫含量以S计,单位为μg/g。
原料和加氢产物中的总硫含量是采用紫外荧光法测定(ASTM D5453-1993),4,6-BMDBT含量是采用GC-AED(气相色谱-原子发光光谱法)测定。
(5)数均分子量Mn采用GPC法测量。
实施例中所用圆柱型载体,其中载体长度约为3~5mm。
实施例1
本实施例介绍含Co和Mo的氧化铝基载体的制备方法。含硅、硼的氧化铝干胶粉比表面350m2/g,孔容为0.90ml/g。
称取含硅、硼的氧化铝干胶粉400g,加入柠檬酸和田菁粉各6g,混合均匀后,加入酸性溶液345g,酸性溶液中HNO3的重量浓度为1.74%,其余为蒸馏水。碾压20min后,用直径1.7mm的圆形孔板挤条。120℃干燥4h后,500℃焙烧3h。制得的载体条记为S1。用含Mo、Co的溶液浸渍所制得的载体条S1,130℃干燥4h后,500℃焙烧2h,制得的含Co和Mo的氧化铝基载体记为Z1。
称取含硅、硼的氧化铝干胶粉400g,加入柠檬酸和田菁粉各6g,加入酸性溶液345g,酸性溶液中HNO3的重量浓度为2.6%,Mo以MoO3计的重量含量为12.9%,Co以CoO计的重量含量为2.9%,其余为蒸馏水。碾压20min后,用直径1.7mm的圆形孔板挤条。120℃干燥4h后500℃焙烧3h,制得的含Co和Mo的氧化铝基载体记为Z2。
制备含硅、钼和钴的氧化铝干胶粉。在容器内加入1L去离子水,升温至58℃,同时加入3L含Al2O3为4g/100mL的硝酸铝溶液和含NH3为10g/100mL的氨水溶液,控制pH值为7.8,加料时间为120min。停止加料后,体系在上述温度和pH值条件下老化50min,加入SiO2含量为4.2g的偏硅酸钠溶液100mL,继续老化 60min,然后洗涤4次,至Cl-/Al2O3<0.5%为止。配制含钼和钴的水溶液1L,其中MoO3浓度1.8g/100mL,CoO浓度0.4g/100mL,加入滤饼中,搅拌成糊状,120℃干燥8h后,将其粉碎至颗粒度小于180目的占95%以上,得到所需干胶粉。
所得的含硅、钼和钴的氧化铝干胶粉的性质如下:比表面330m2/g,孔容为0.85ml/g。
称取含硅、钼和钴的氧化铝干胶粉400g,加入柠檬酸和田菁粉各6g,混合均匀后,加入酸性溶液345g,酸性溶液中HNO3的重量浓度为1.74%,其余为蒸馏水。碾压20min后,用直径1.7mm的圆形孔板挤条。120℃干燥4h后500℃焙烧3h。制得含Co和Mo的氧化铝基载体记为Z3。
表1 含Co和Mo的氧化铝基载体的组成和性质
催化剂前体 | Z1 | Z2 | Z3 |
Si,wt% | 1.35 | 1.33 | 1.39 |
B,wt% | 1.65 | 1.69 | - |
CoO,wt% | 2.85 | 2.93 | 2.78 |
MO3,wt% | 12.5 | 12.8 | 12.2 |
比表面积,m2/g | 215 | 216 | 213 |
孔容,mL/g | 0.52 | 0.52 | 0.53 |
饱和吸液量,mL/100g | 61 | 61 | 60 |
实施例2
在计量好的水中搅拌溶解聚乙二醇1000(即分子量为1000的聚乙二醇,下同),制得吸附剂溶液,聚乙二醇的用量占氧化铝基载体重量的7.5%。取Z1 300g,将吸附剂溶液均匀喷洒在Z1上,喷洒时间为10min。然后进行5h的养生,经过100℃干燥3h后,制得的样品记为B1。用含Mo、Ni、P和乙二醇的浸渍液(第一浸渍液)等体积喷浸B1,引入的乙二醇与催化剂上Mo的摩尔比为0.06:1,将浸渍后所得样品等分成三份,第一份样品直接120℃干燥3h,获得的成品记为C1;第二份样品养生1h,经120℃干燥3h,制得的成品记为C2;第二份样品养生3h,经120℃干燥3h,制得的成品记为C3。
实施例3
在计量好的水中搅拌溶解聚乙二醇8000,制得吸附剂溶液,聚乙二醇的用量占氧化铝基载体重量的2%。取Z2 100g,将吸附剂溶液均匀喷洒在Z2上,然后进行5h的养生,经过100℃干燥3h后,制得的样品记为B2。用含Mo、Ni、P和葡萄糖的浸渍液(第一浸渍液)等体积喷浸B2样品,引入的葡萄糖与催化剂上Mo的摩尔比为0.03:1,直接经120℃干燥3h,获得的成品记为C4。
实施例4
在计量好的水中搅拌溶解聚乙二醇2000,制得吸附剂溶液,聚乙二醇的用量占氧化铝基载体重量的5.5%。取Z3 200g,将吸附剂溶液均匀喷洒在Z3上,然后进行5h的养生,经过100℃干燥3h后,制得的样品记为B3。用含Mo、Ni、P的浸渍液(第一浸渍液)等体积喷浸B3样品,直接经120℃干燥3h,获得的成品记为C5。
配制含柠檬酸的水溶液,等体积喷浸部分C5样品,引入的柠檬酸与催化剂上Mo的摩尔比为0.06:1,喷浸结束后,经120℃干燥3h,获得的催化剂记为C6。
实施例5
在计量好的水中搅拌溶解聚乙二醇4000,制得吸附剂溶液,聚乙二醇的用量占氧化铝基载体重量的4%。取Z3 100g,将吸附剂溶液均匀喷洒在Z3上,然后进行5h的养生,经过100℃干燥3h后,制得的样品记为B4。用含Mo、Ni、P的浸渍液(第一浸渍液)等体积喷浸B4样品,直接经120℃干燥3h,获得的成品记为C7。
对比例1
取Z1前体100g,用含Mo、Ni、P的浸渍液等体积浸渍上述载体后,经120℃干燥3h,等体积喷浸含聚乙二醇2000和柠檬酸的水溶液,聚乙二醇的用量占氧化铝基载体重量的5.5%,引入的柠檬酸量与催化剂上Mo的摩尔比为0.06:1,喷浸结束后,养生3h,120℃干燥3h后,获得的催化剂记为C8。
表2 实施例与对比例催化剂活性金属组成
催化剂编号 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
组成 | ||||||||
Mo(以MoO3计),wt% | 24.3 | 24.3 | 24.4 | 24.6 | 24.5 | 24.4 | 24.3 | 24.3 |
Co(以CoO计),wt% | 2.4 | 2.3 | 2.3 | 2.4 | 2.3 | 2.3 | 2.3 | 2.3 |
Ni(以NiO计),wt% | 2.1 | 1.9 | 2.0 | 2.1 | 2.0 | 1.9 | 2.0 | 2.0 |
P(以P2O5计),wt% | 2.7 | 2.8 | 2.7 | 2.7 | 2.8 | 2.7 | 2.8 | 2.8 |
载体中引入Mo与第一浸渍液引入Mo的摩尔比 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 | 0.75 |
表3 实施例与对比例所得催化剂中元素Mo在催化剂颗粒中的浓度分布
催化剂编号 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Mo0/Mo1 | 2.62 | 2.35 | 2.10 | 1.94 | 2.63 | 2.58 | 2.43 | 1.02 |
Mo1/4/Mo1 | 1.71 | 1.50 | 1.43 | 1.34 | 1.73 | 1.69 | 1.59 | 1.01 |
Mo1/2/Mo1 | 1.25 | 1.18 | 1.12 | 1.12 | 1.26 | 1.24 | 1.21 | 0.99 |
Mo3/4/Mo1 | 1.06 | 1.05 | 1.04 | 1.03 | 1.05 | 1.05 | 1.05 | 1.00 |
表4 实施例与对比例催化剂中元素Ni在催化剂颗粒中的浓度分布
催化剂编号 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Ni0/Ni1 | 3.03 | 2.68 | 2.27 | 1.88 | 2.98 | 2.93 | 2.59 | 1.0 |
Ni/4/Ni1 | 1.95 | 1.90 | 1.54 | 1.55 | 1.96 | 1.92 | 1.83 | 0.99 |
Ni1/2/Ni1 | 1.58 | 1.43 | 1.16 | 1.22 | 1.55 | 1.51 | 1.43 | 1.01 |
Ni3/4/Ni1 | 1.12 | 1.07 | 1.05 | 1.02 | 1.13 | 1.10 | 1.09 | 1.0 |
表5 实施例与对比例催化剂中元素Co在催化剂颗粒中的浓度分布
催化剂编号 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
Co0/ Co1 | 1.01 | 1.0 | 1.01 | 1.01 | 0.99 | 1.01 | 1.01 | 1.02 |
Co1/4/Co1 | 1.0 | 1.02 | 0.99 | 1.02 | 0.98 | 0.99 | 0.99 | 1.0 |
Co1/2/Co1 | 0.99 | 1.01 | 1.0 | 1.00 | 1.01 | 0.99 | 0.99 | 1.01 |
Co3/4/Co1 | 1.02 | 0.99 | 0.98 | 1.01 | 1.0 | 1.0 | 1.02 | 0.99 |
由表3和表4可见,采用本发明制备的催化剂C1~C7,活性金属Mo、Ni沿催化剂颗粒径向从边缘到中心浓度逐渐减小,而对比例催化剂C8活性金属Mo、Ni在径向处各个位置上的浓度基本相同,不像本发明制备催化剂呈明显的梯度分布。通过C1、C2和C3发现,通过控制养生时间,可以调整活性金属在催化剂颗粒径向上的分布浓度;从C1、C4和C5看出,通过吸附剂的含量及分子量变化也能调整活性金属Mo、Ni在催化剂颗粒径向上的分布浓度。因此本发明催化剂的制备方法与对比例催化剂相比,可以方便的调整活性金属在催化剂颗粒径向上的分布浓度,从而提高催化剂的深度脱硫性能。
实施例6
本实施例为催化剂的活性评价实验。
催化剂活性评价实验在100ml小型加氢装置上进行,活性评价前对催化剂进行预硫化。催化剂评价条件为在反应总压6.0MPa,液时体积空速2.0 h-1,氢油比500:1,反应温度为340℃。活性评价实验用原料油性质见表6,活性评价结果见表7,表8给出加氢产物中典型难脱含硫化合物的含量,由表中数据可见,用本发明制备加氢处理催化剂,催化剂的脱硫活性明显高于对比例催化剂。
表6 原料油性质
原料油 | 常三线柴油 |
密度(20℃),g/cm3 | 0.8533 |
馏程,℃ | |
IBP | 217 |
EBP | 375 |
S,wt% | 1.78 |
N,μg/g | 140 |
表7 催化剂活性评价结果
催化剂 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 |
相对脱硫活性,% | 142 | 140 | 139 | 138 | 133 | 142 | 131 | 100 |
表8 原料和加氢产物中典型难脱含硫化合物的含量
原料/加氢产物 | 原料 | 加氢产物 | 加氢产物 | 加氢产物 | 加氢产物 | 加氢产物 | 加氢产物 | 加氢产物 | 加氢产物 |
催化剂 | C1 | C2 | C3 | C4 | C5 | C6 | C7 | C8 | |
4,6- BMDBT,μg/g | 215 | 12.2 | 12.5 | 12.7 | 12.8 | 13.4 | 12.1 | 13.8 | 23.8 |
Claims (29)
1.一种加氢处理催化剂,采用氧化铝基载体,活性金属组分为Co、Mo、Ni,其中活性金属组分在每个催化剂颗粒横截面上的浓度分布如下:Co0的浓度基本上为均匀分布,Mo0/Mo1>Mo1/2/Mo1>1或者Mo基本上为均匀分布,Ni0/Ni1>Ni1/2/Ni1>1;
其中,活性金属组分在每个催化剂颗粒的横截面上的浓度分布用式子Am/Bn表示,即每个催化剂颗粒的横截面上m处元素A的浓度与n处元素B的浓度的比值,其中A表示活性金属元素Mo、Co或Ni,B表示活性金属元素Mo、Co或Ni;以催化剂颗粒横截面最外缘的任意一点为起始点记为0,以催化剂颗粒横截面的中心点为终点记为1,连接起始点和终点得到直线线段,m和n分别表示在上述直线线段上选取的位置点,m和n的值表示从起始点到选取的位置点的距离占上述直线线段的长度的比值,m和n的取值为0~1,为了表述方便,A和B直接采用活性金属元素Mo、Co或Ni代替,m和n直接用0~1的数字代表上述直线线段上确定的位置点。
2.按照权利要求1所述的催化剂,其特征在于所述的加氢处理催化剂中,活性金属组分在催化剂颗粒中,至少包括以下一种方案:
(1)Mo0/Mo1与Mo1/2/Mo1的比值为0.9~2.6;
(2)Ni0/Ni1与Ni1/2/Ni1的比值1.5~2.6;
(3)Co1/Mo1的比值为0.07~2.0。
3.按照权利要求1所述的催化剂,其特征在于所述的加氢处理催化剂中,活性金属组分在催化剂颗粒中,至少包括以下一种方案:
(1)Mo0/Mo1与Mo1/2/Mo1的比值为0.9~2.5;
(2)Ni0/Ni1与Ni1/2/Ni1的比值1.7~2.5;
(3)Co1/Mo1的比值为0.08~1.2。
4.按照权利要求1所述的催化剂,其特征在于所述的加氢处理催化剂中,活性金属组分在催化剂颗粒横截面上的浓度分布至少包括如下的一种方案:
(1)Ni0/Ni1>Ni1/4/Ni1>Ni1/2/Ni1;
(2)Ni1/2/Ni1>Ni3/4/Ni1>1;
(3)Ni0/Ni1>Nix1/Ni1>Nix2/Ni1>1,其中0<x1<x2<1。
5.按照权利要求4所述的催化剂,其特征在于所述的加氢处理催化剂中,活性金属组分在催化剂颗粒中,至少包括以下一种方案:
(1)Ni0/Ni1与Ni1/4/Ni1的比值为1.2~1.8;
(2)Ni1/4/Ni1与Ni1/2/Ni1的比值为1.1~1.7。
6.按照权利要求4所述的催化剂,其特征在于所述的加氢处理催化剂中,活性金属组分在催化剂颗粒中,至少包括以下一种方案:
(1)Ni0/Ni1与Ni1/4/Ni1的比值为1.3~1.7;
(2)Ni1/4/Ni1与Ni1/2/Ni1的比值为1.2~1.6。
7.按照权利要求1所述的催化剂,其特征在于所述的加氢处理催化剂中,在催化剂颗粒横截面上,沿所述直线线段从最外缘点到中心点,活性金属组分浓度分布如下:Co的浓度基本上为均匀分布,Mo的浓度基本上逐渐减少或者Mo的浓度基本上为均匀分布,Ni的浓度基本上逐渐减少。
8.按照权利要求1所述的催化剂,其特征在于所述的加氢处理催化剂,氧化铝基载体的含量为46wt%~87wt%,Mo以MoO3计的含量为10wt%~40wt%,Co以CoO计的含量为0.5 wt%~6wt%,Ni以NiO计的含量为1wt%~8wt%。
9.按照权利要求1所述的催化剂,其特征在于所述的加氢处理催化剂中,位于催化剂颗粒最外缘点处的Mo的浓度与颗粒中心点处Mo的浓度比即Mo0/Mo1为0..9~7.0,位于催化剂颗粒横截面最外缘点处的Ni的浓度与中心点处Ni的浓度比即Ni0/Ni1为1.2~7.0。
10.按照权利要求1所述的催化剂,其特征在于所述的加氢处理催化剂的性质如下:比表面积为120~220 m2/g,孔容为0.20~0.60mL/g。
11.按照权利要求1所述的催化剂,其特征在于所述的加氢处理催化剂中,含有有机物A和/或有机物B,所述的有机物A即多元醇,所述的多元醇为数均分子量为400~10000的多元醇,优选为数均分子量为1000~8000的多元醇,所述的有机物B为碳原子数为2~20的含氮有机化合物、含硫有机化合物和含氧有机化合物中的一种或几种。
12.按照权利要求11所述的催化剂,其特征在于所述的多元醇为聚乙二醇。
13.按照权利要求11所述的催化剂,其特征在于所述的多元醇在催化剂中的重量含量为0.05%~10.0%,优选为0.1%~9.0%。
14.按照权利要求11~14任一所述的催化剂,其特征在于所述的加氢处理催化剂中含有的有机物与Mo和W原子摩尔比为0.002:1~2.0:1,优选为0.02:1~1.0:1。
15.按照权利要求1所述的催化剂,其特征在于所述的加氢处理催化剂中,氧化铝基载体为以氧化铝为主要组分,不含助剂组分或者含助剂组分,其中助剂组分为氟、硅、磷、钛、锆、硼中的一种或多种,助剂组分以元素计在氧化铝基载体中的含量在30wt%以下。
16.按照权利要求1所述的催化剂,其特征在于所述的加氢处理催化剂中,含有助剂组分,其中助剂组分为氟、硅、磷、钛、锆、硼中的一种或多种,助剂组分以元素计在催化剂中的重量含量在15wt%以下。
17.按照权利要求1所述的催化剂,其特征在于所述的加氢处理催化剂中含有磷,以P2O5计在催化剂中的重量含量为1%~6%。
18.权利要求1~10任一所述的催化剂的制备方法,其中活性金属组分Co在步骤(1)之前和/或步骤(2)之后引入催化剂中,活性金属组分Mo引入催化剂中的方式:或者全部Mo与Co一同引入催化剂中,或者部分Mo同Ni一同引入催化剂中,剩余部分Mo与Co一同引入催化剂中;
活性金属Ni或活性金属Ni和部分Mo引入催化剂中的过程包括:
(1)用含有吸附剂的溶液浸渍氧化铝基载体,经干燥,得到含吸附剂的氧化铝基载体,吸附剂的用量占氧化铝基载体重量的0.1%~10%,吸附剂为数均分子量为400~10000,优选为400~8000的多元醇,所述的浸渍采用饱和浸渍或过量浸渍;
(2)在步骤(1)所得物上浸渍负载活性金属组分Ni或Ni和Mo。
19.按照权利要求18所述的方法,其特征在于部分Mo同Ni一同引入催化剂中,剩余部分Mo与Co一同引入催化剂中;其中前者引入Mo量与后者引入Mo量的摩尔比为0.4~2.5。
20.按照权利要求18所述的方法,其特征在于:部分Mo同Co在步骤(1)之前引入催化剂中,步骤(2)用含有活性金属组分Mo、Ni的溶液浸渍步骤(1)所得物,经干燥或干燥和焙烧,得到加氢处理催化剂。
21.按照权利要求18所述的方法,其特征在于:部分Mo同Co在步骤(2)之后引入催化剂中,具体如下:
(1)用含有吸附剂的溶液浸渍氧化铝基载体,经干燥,得到含吸附剂的氧化铝基载体,吸附剂的用量占氧化铝基载体重量的0.1%~10%,吸附剂为数均分子量为400~10000,优选为400~8000的多元醇,所述的浸渍采用饱和浸渍或过量浸渍;
(2)用含活性金属组分Ni或Ni和Mo的溶液浸渍步骤(1)所得物,经干燥和焙烧,
(3)在步骤(2)所得物上浸渍负载活性金属Mo、Co,经干燥或干燥和焙烧后,得到加氢处理催化剂。
22.按照权利要求18所述的方法,其特征在于:步骤(1)用含有吸附剂的溶液浸渍氧化铝基载体,采用等体积浸渍或过量浸渍,浸渍结束后,样品经过养生或不经过养生,再进行干燥,若需养生,养生时间为1~12h;所述的干燥条件如下:温度为60℃~250℃,干燥时间0.5h~20h。
23.按照权利要求18所述的方法,其特征在于:步骤(2)用含有Ni或Ni和Mo的浸渍溶液浸渍后,经过养生或者不经过养生,再进行干燥,如需养生,养生时间为0.5~6.0h。
24.按照权利要求18所述的方法,其特征在于:步骤(2)所述的浸渍溶液中,除活性金属组分外,还含有磷,磷源选自磷酸、亚磷酸、磷酸氢铵、磷酸二氢铵和磷酸铵中的一种或几种,磷的引入量以P2O5计占最终加氢处理催化剂重量的1%~6%。
25.按照权利要求21所述的方法,其特征在于步骤(2)或步骤(3)所述的干燥条件如下:干燥温度为70℃~300℃,干燥时间为0.5h~20h,所述焙烧条件:焙烧温度为300℃~750℃,焙烧时间为0.5h~20h。
26.按照权利要求18所述的方法,其特征在于:在加氢处理催化剂中引入有机物B,其加入方法为:在步骤(2)的含Ni或Ni和Mo的浸渍溶液中加入有机物B,或者步骤(2)后,用有机物B浸渍;所述有机物B的用量,使加氢处理催化剂中的有机物与Mo原子的摩尔比为0.002:1~2:1;有机物B选自含氮有机化合物、含硫有机化合物和含氧有机化合物中的一种或几种。
27.按照权利要求21所述的方法,其特征在于:在加氢处理催化剂中引入有机物B,其加入方法为:在步骤(3)的含Co和Mo的浸渍溶液中加入有机物B,或者步骤(3)后,用有机物B浸渍;所述有机物B的用量,使加氢处理催化剂中的有机物与Mo原子的摩尔比为0.002:1~2:1;有机物B选自含氮有机化合物、含硫有机化合物和含氧有机化合物中的一种或几种。
28.一种重质馏分油加氢脱硫的方法,其特征在于采用权利要求1~17任一所述的加氢处理催化剂。
29.按照权利要求28所述的方法,其特征在于:所述的重质馏分油为柴油。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310527465.8A CN104588030B (zh) | 2013-10-31 | 2013-10-31 | 烃油加氢处理催化剂及其制法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310527465.8A CN104588030B (zh) | 2013-10-31 | 2013-10-31 | 烃油加氢处理催化剂及其制法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104588030A true CN104588030A (zh) | 2015-05-06 |
CN104588030B CN104588030B (zh) | 2017-02-22 |
Family
ID=53114285
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310527465.8A Active CN104588030B (zh) | 2013-10-31 | 2013-10-31 | 烃油加氢处理催化剂及其制法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104588030B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107297209A (zh) * | 2016-04-16 | 2017-10-27 | 中国石油化工股份有限公司 | 一种加氢处理催化剂及其制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4382854A (en) * | 1978-02-03 | 1983-05-10 | Kaiser Aluminum & Chemical Corporation | Ni/Co Mo P on titania-alumina hydrodesulfurizing catalyst and process of hydrodesulfurizing using the same |
CN1229835A (zh) * | 1998-03-20 | 1999-09-29 | 中国石油化工集团公司 | 含钼和/或钨的轻质油品加氢处理催化剂及其制备方法 |
CN1289828A (zh) * | 1999-09-29 | 2001-04-04 | 中国石油化工集团公司 | 馏分油加氢精制催化剂及其制备方法 |
-
2013
- 2013-10-31 CN CN201310527465.8A patent/CN104588030B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4382854A (en) * | 1978-02-03 | 1983-05-10 | Kaiser Aluminum & Chemical Corporation | Ni/Co Mo P on titania-alumina hydrodesulfurizing catalyst and process of hydrodesulfurizing using the same |
CN1229835A (zh) * | 1998-03-20 | 1999-09-29 | 中国石油化工集团公司 | 含钼和/或钨的轻质油品加氢处理催化剂及其制备方法 |
CN1289828A (zh) * | 1999-09-29 | 2001-04-04 | 中国石油化工集团公司 | 馏分油加氢精制催化剂及其制备方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107297209A (zh) * | 2016-04-16 | 2017-10-27 | 中国石油化工股份有限公司 | 一种加氢处理催化剂及其制备方法 |
CN107297209B (zh) * | 2016-04-16 | 2019-08-06 | 中国石油化工股份有限公司 | 一种加氢处理催化剂及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN104588030B (zh) | 2017-02-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101491766B (zh) | 加氢催化剂的制备方法 | |
JP6802806B2 (ja) | ドープされた担体に金属有機硫化物を含有する水素化処理触媒 | |
CN101940957B (zh) | 一种含碳催化剂的制备方法 | |
CN104588114A (zh) | 烃油加氢处理催化剂及其制备方法 | |
CN104588028A (zh) | 加氢催化剂及其制备方法 | |
CN103801348B (zh) | 一种烃油加氢处理催化剂及其制备方法 | |
CN104588031A (zh) | 馏分油加氢处理催化剂及其制备方法 | |
CN104588030A (zh) | 烃油加氢处理催化剂及其制法 | |
CN103801313B (zh) | 一种馏分油加氢处理催化剂及其制备方法 | |
CN104588029B (zh) | 一种加氢催化剂及其制备方法 | |
CN104667962B (zh) | 柴油加氢改质催化剂及其制法 | |
CN103785432B (zh) | 一种馏分油加氢催化剂及其制备方法 | |
CN104667956B (zh) | 一种烃油加氢改质催化剂及其制备方法 | |
CN104667960B (zh) | 柴油加氢改质催化剂及其制备方法 | |
CN103801311B (zh) | 一种加氢处理催化剂的制备方法 | |
CN103801403B (zh) | 一种加氢处理催化剂及其制备方法 | |
CN103785433B (zh) | 一种加氢处理催化剂及其制备方法 | |
CN104588116B (zh) | 加氢处理催化剂及其制法 | |
CN104588115A (zh) | 加氢处理催化剂及其制备方法 | |
CN104667982B (zh) | 一种加氢改质催化剂及其制法 | |
CN104667959B (zh) | 一种柴油加氢改质催化剂及其制备方法 | |
CN104667983B (zh) | 加氢改质催化剂及其制备方法 | |
CN104667961A (zh) | 加氢改质催化剂及其制法 | |
CN104667964B (zh) | 一种柴油加氢改质催化剂及其制法 | |
CN104667963B (zh) | 一种加氢改质催化剂及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant |