CN104570440B - 半透半反式液晶显示器阵列基板的制造方法 - Google Patents

半透半反式液晶显示器阵列基板的制造方法 Download PDF

Info

Publication number
CN104570440B
CN104570440B CN201410778276.2A CN201410778276A CN104570440B CN 104570440 B CN104570440 B CN 104570440B CN 201410778276 A CN201410778276 A CN 201410778276A CN 104570440 B CN104570440 B CN 104570440B
Authority
CN
China
Prior art keywords
transmission
semi
electrode
extension
insulating barrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410778276.2A
Other languages
English (en)
Other versions
CN104570440A (zh
Inventor
霍思涛
黄忠守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Tianma Microelectronics Co Ltd
Original Assignee
Shanghai Tianma Microelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Tianma Microelectronics Co Ltd filed Critical Shanghai Tianma Microelectronics Co Ltd
Priority to CN201410778276.2A priority Critical patent/CN104570440B/zh
Priority claimed from CN201110155180.7A external-priority patent/CN102819133B/zh
Publication of CN104570440A publication Critical patent/CN104570440A/zh
Application granted granted Critical
Publication of CN104570440B publication Critical patent/CN104570440B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133351Manufacturing of individual cells out of a plurality of cells, e.g. by dicing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13624Active matrix addressed cells having more than one switching element per pixel
    • G02F1/136245Active matrix addressed cells having more than one switching element per pixel having complementary transistors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13625Patterning using multi-mask exposure

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Liquid Crystal (AREA)

Abstract

本发明提供一种半透半反式液晶显示器阵列基板的制造方法。其中,通过去除相邻像素的透射电极和反射电极交界处的第二延伸部,即由此制造的半透半反式液晶显示器阵列基板及液晶显示器不具有该第二延伸部,避免了该第二延伸部对液晶层分子取向的影响,从而防止了半透半反式液晶显示器的漏光,提高了半透半反式液晶显示器的显示效果,提高了开口率。

Description

半透半反式液晶显示器阵列基板的制造方法
本发明为发明专利申请“半透半反式液晶显示器阵列基板、制造方法及液晶显示屏”的分案申请,申请号:201110155180.7,申请日:2011.06.09。
技术领域
本发明涉及液晶显示器技术领域,特别涉及一种半透半反式液晶显示器阵列基板的制造方法。
背景技术
液晶显示器具有低电压、微功耗、显示信息量大、易于彩色化等优点,在当前的显示器市场占据了主导地位。其已被广泛应用于电子计算机、电子记事本、移动电话、摄像机、高清电视机等电子设备中。
液晶显示器最基本的构件之一是显示屏,所述显示屏包括对盒而成的阵列基板和彩膜基板,以及充满在阵列基板和彩膜基板之间的间隙内的液晶层。所述显示屏显示图像的基本原理是:通过在所述阵列基板和彩膜基板上施加作用于液晶层上的电场,控制所述液晶层分子的取向,从而控制穿透过液晶层分子的照射光线的多少,即达到调制通过液晶层的光强的目的。
由于所述显示屏自身并不发光,因此,其需要外界光源的照射,以达到显示目的。根据所用光源的不同,液晶显示器有透射式和反射式两种模式。透射式液晶显示器通过透射液晶显示器自带的背光源所发出的光线达到显示的目的;反射式液晶显示器通过反射液晶显示器外的光源,通常为自然光源所发出的光线达到显示的目的。透射式液晶显示器需要为其自带的背光源提供电源,因此,相对于反射式液晶显示器,其功耗更大。此外,当透射式液晶显示器在户外使用,且环境光源(例如阳光)非常强时,透射式液晶显示器上的显示图像会被冲刷,从而图像不能被清晰地显示。相反地,当使用反射式液晶显示器显示图像时,则需要很强的环境光源。
综合以上两种显示模式,产生了半透半反式液晶显示器,其相对于现有的透射式液晶显示器具有更低的功耗,并且在不同的环境光源的情况下,都具有比较好的显示效果。
半透半反式液晶显示器主要通过在阵列基板上形成有能够透射光线的透射区以及能够反射光线的反射区实现透射和反射功能。申请号为CN201110042229.8的中国专利申请公开了一种半透半反式液晶显示器,该半透半反式液晶显示器的阵列基板上每个像素包括反射电极和透射电极,用以反射光线的反射电极形成于一绝缘层上,相邻像素的反射电极和透射电极通过该绝缘层电学绝缘。由此,便可大大减小相邻像素的反射区域与透射电极透射区域在平行于基板的方向上的间隔,甚至使得相邻像素的反射区域和透射区域的间距为0。
但是,该半透半反式液晶显示器的阵列基板在形成该绝缘层后,需要进行固化工艺,以形成可靠的绝缘层。在完成固化工艺后,绝缘层边缘会向相邻的透射电极延伸,该延伸部位于该相邻的透射电极上,产生上述情况的原因是:固化工艺中,将相对比较疏松的绝缘层结构变得更加紧密,同时所述绝缘层的材料将不可避免地会发生流动,使得绝缘层位于相邻像素交界处的边缘向该透射区域延伸并形成具有圆弧状侧面的延伸部。该圆弧状侧面会使得其上方的液晶层分子沿其排列,从而将产生一定的漏光;另外,该圆弧状侧面向透射区域延伸,减小了开口率。
发明内容
本发明的目的在于提供一种半透半反式液晶显示器阵列基板的制造方法以解决现有的半透半反式液晶显示器产生漏光及开口率不高的问题。
为解决上述技术问题,本发明提供一种半透半反式液晶显示器阵列基板的制造方法,所述方法包括:步骤S11、提供一形成有至少两个透射电极的基板;步骤S12、在所述形成有至少两个透射电极的基板上形成绝缘层,刻蚀所述绝缘层以暴露出所述透射电极;步骤S13、对所述绝缘层实施固化工艺,使得所述绝缘层具有向与其在同一像素内的透射电极延伸的第一延伸部,以及具有向与其在相邻像素的透射电极延伸的第二延伸部;步骤S14、在所述绝缘层表面形成反射电极;步骤S15、刻蚀去除所述第二延伸部。
可选的,在所述的半透半反式液晶显示器阵列基板的制造方法中,在所述绝缘层表面形成反射电极的步骤S14包括:在所述绝缘层和所述暴露出的透射电极表面上形成金属层;在所述金属层上形成光阻层,并图案化所述光阻层;以所述图案化光阻层为掩模刻蚀所述金属层形成反射电极,并暴露所述透射电极和所述第二延伸部。
可选的,在所述的半透半反式液晶显示器阵列基板的制造方法中,步骤S15中刻蚀去除所述第二延伸部以所述图案化光阻层为掩模。
可选的,在所述的半透半反式液晶显示器阵列基板的制造方法中,反射电极覆盖所述第一延伸部并与同一像素内的透射电极相连。
可选的,在所述的半透半反式液晶显示器阵列基板的制造方法中,所述形成有至少两个透射电极的基板还包括作为像素开关的薄膜晶体管,所述薄膜晶体管的漏极与所述透射电极电连接或者所述薄膜晶体管的源极与所述透射电极电连接。
可选的,在所述的半透半反式液晶显示器阵列基板的制造方法中,所述形成有至少两个透射电极的基板还包括作为像素开关的薄膜晶体管,在步骤S13和S14之间具有刻蚀过孔的步骤,所述过孔用于导通所述反射电极和所述薄膜晶体管的漏极或者所述过孔用于导通所述反射电极和所述薄膜晶体管的源极。
本发明还提供另一种半透半反式液晶显示器阵列基板的制造方法,所述方法包括:步骤S11、提供一形成有至少两个透射电极的基板;步骤S12、在所述形成有至少两个透射电极的基板上形成绝缘层,刻蚀所述绝缘层以暴露出所述透射电极;步骤S13、对所述绝缘层实施固化工艺,使得所述绝缘层具有向与其在同一像素内的透射电极延伸的第一延伸部,以及具有向与其在相邻像素的透射电极延伸的第二延伸部,;步骤S14、在所述绝缘层表面形成反射电极;步骤S15、刻蚀去除所述第一延伸部和所述第二延伸部。
可选的,在所述的半透半反式液晶显示器阵列基板的制造方法中,在所述绝缘层表面形成反射电极的步骤S14包括:在所述绝缘层和所述暴露出的透射电极表面上形成金属层;在所述金属层上形成光阻层,并图案化所述光阻层;以所述图案化光阻层为掩模刻蚀所述金属层形成反射电极,并暴露所述透射电极和第一延伸部和所述第二延伸部。
可选的,在所述的半透半反式液晶显示器阵列基板的制造方法中,步骤S15中刻蚀去除第一延伸部和所述第二延伸部以所述图案化光阻层为掩模。
可选的,在所述的半透半反式液晶显示器阵列基板的制造方法中,所述形成有至少两个透射电极的基板还包括作为像素开关的薄膜晶体管,所述薄膜晶体管的漏极与所述透射电极电连接或所述薄膜晶体管的源极与所述透射电极电连接;在步骤S13和S14之间具有刻蚀过孔的步骤,所述过孔用于导通所述反射电极和所述薄膜晶体管的漏极或所述过孔用于导通所述反射电极和所述薄膜晶体管的源极。
可选的,在所述的两种半透半反式液晶显示器阵列基板的制造方法中,该方法还包括去除所述图案化光阻层的步骤。
可选的,在所述的两种半透半反式液晶显示器阵列基板的制造方法中,刻蚀去除所述第二延伸部后所述绝缘层在相邻像素的反射电极和透射电极的交界处形成侧面,所述侧面与所述透射电极具有角度为70度-110度的夹角。
可选的,在所述的两种半透半反式液晶显示器阵列基板的制造方法中,所述绝缘层的材料为有机膜。
可选的,在所述的两种半透半反式液晶显示器阵列基板的制造方法中,所述绝缘层的厚度为2微米-4微米。
可选的,在所述的两种半透半反式液晶显示器阵列基板的制造方法中,所述绝缘层的厚度为3微米。
可选的,在所述的两种半透半反式液晶显示器阵列基板的制造方法中,所述固化工艺为退火工艺或者紫外光照射工艺。
本发明还提供一种半透半反式液晶显示器阵列基板,包括:基板;形成于所述基板上的像素阵列;所述像素阵列中每一像素包括反射电极和透射电极;所述反射电极形成于一绝缘层上,相邻像素的反射电极和透射电极在透光方向上交叠并且通过所述绝缘层绝缘;所述绝缘层在相邻像素的反射电极和透射电极的交界处具有与所述透射电极夹角为70度-110度的侧面。
可选的,在所述的半透半反式液晶显示器阵列基板中,所述像素阵列中每一像素还包括作为像素开关的薄膜晶体管,所述薄膜晶体管的漏极与位于同一像素内的所述透射电极和所述反射电极电连接或者所述薄膜晶体管的源极与位于同一像素内的所述透射电极和所述反射电极电连接。
可选的,在所述的半透半反式液晶显示器阵列基板中,所述绝缘层具有向与其在同一像素内的透射电极延伸的第一延伸部,反射电极覆盖所述第一延伸部并与同一像素内的透射电极相连。
可选的,在所述的半透半反式液晶显示器阵列基板中,所述绝缘层的材料为有机膜。
可选的,在所述的半透半反式液晶显示器阵列基板中,所述绝缘层的厚度为2微米-4微米。
可选的,在所述的半透半反式液晶显示器阵列基板中,所述绝缘层的厚度为3微米。
在本发明提供的半透半反式液晶显示器阵列基板的制造方法中,通过去除相邻像素的透射电极和反射电极交界处的第二延伸部,即由此制造的半透半反式液晶显示器阵列基板及液晶显示屏不具有该第二延伸部,避免了该第二延伸部对液晶层分子取向的影响,从而防止了半透半反式液晶显示器的漏光,提高了半透半反式液晶显示器的显示效果。
特别的,所述绝缘层通常由非透明材料制成,因此该非透明的绝缘层的第二延伸部将遮挡光源的透射;即使该绝缘层用透明材料制成,其第二延伸部所覆盖的区域因产生漏光而不能用于显示;本发明通过去除所述第二延伸部,还将提高显示区域的面积,增加有效开口率,进而提高了半透半反式液晶显示器的显示质量。
附图说明
图1是本发明实施例的半透半反式液晶显示器阵列基板的制造方法的流程图;
图2是本发明实施例的形成有至少两个透射电极的基板的俯视示意图;
图3是图2沿A-A’方向的剖视示意图;
图4是图3所示的基板上形成有绝缘层的基板的剖视示意图;
图5是图4所示的基板上对所述绝缘层进行固化工艺后的基板的剖视示意图;
图6是图5所示的基板上形成有反射电极的基板的剖视示意图;
图7是图6所示的基板上刻蚀去除第二延伸部后的基板的剖视示意图;
图8是图6所示的基板上刻蚀去除第一延伸部和第二延伸部后的基板的剖视示意图;
图9是本发明实施例的半透半反式液晶显示屏的剖视示意图。
具体实施方式
以下结合附图和具体实施例对本发明提供的半透半反式液晶显示器阵列基板、制造方法及液晶显示屏作进一步详细说明。根据下面说明和权利要求书,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式,仅用以方便、明晰地辅助说明本发明实施例的目的。
本发明的核心思想在于,提供一种半透半反式液晶显示器阵列基板的制造方法,通过去除相邻像素的透射电极和反射电极交界处的第二延伸部,即由此制造的半透半反式液晶显示器阵列基板及液晶显示屏不具有该第二延伸部,避免了该第二延伸部对液晶层分子取向的影响,从而防止了半透半反式液晶显示器的漏光,提高了半透半反式液晶显示器的显示效果。特别的,所述绝缘层通常由非透明材料制成,因此该非透明的绝缘层将遮挡光源的透射,本发明通过去除所述第二延伸部,还将提高显示区域的面积,增加有效开口率,进而提高了半透半反式液晶显示器的显示质量。
如图1所示,本发明实施例的半透半反式液晶显示器阵列基板的制造方法包括如下步骤:
步骤S11、提供一形成有至少两个透射电极的基板;
步骤S12、在所述形成有至少两个透射电极的基板上形成绝缘层,刻蚀所述绝缘层以暴露出所述透射电极;
步骤S13、对所述绝缘层实施固化工艺,使得所述绝缘层具有向与其在同一像素内的透射电极延伸的第一延伸部,以及具有向与其在相邻像素的透射电极延伸的第二延伸部;
步骤S14、在所述绝缘层表面形成反射电极;
步骤S15、刻蚀去除所述第二延伸部;或者同时去除所述第一延伸部和所述第二延伸部。
首先,执行步骤S11,提供一形成有至少两个透射电极60的基板100。
图2为形成有至少两个透射电极60的基板100的俯视示意图,图3为图2沿A-A’方向的剖视图。所述基板100一般为透明基板,例如玻璃、塑料等。为了制备半透半反式液晶显示器阵列基板,步骤S11中所提供的基板100上需要形成有至少两个透射电极60。这里所说的“基板100上”的含义为透射电极60可以直接形成在基板100的表面上,也可以不直接形成在基板100的表面上。
作为一个优选的实施方式,步骤S11可以包括如下步骤:
步骤S111,在该基板100上还形成栅极线12、覆盖所述栅极线12的栅绝缘层30、与所述栅极线12交叉的数据线13、覆盖所述数据线13的钝化层40以及与所述栅极线12和数据线13耦接的开关单元14。优选的,所述栅极线12有多条,所述数据线13也有多条,所述多条栅极线12与所述多条数据线13垂直交叉形成阵列(未图示)。相邻一对栅极线12和相邻一对数据线所围的区域限定为像素区域。该像素区域用于形成半透半反式液晶显示器的像素单元,该像素单元包括反射电极和透射电极。
步骤S111的具体过程可以采用传统的工艺方法,在此不再累述。所述栅绝缘层30和钝化层40可通过化学气相沉积工艺形成;所述栅绝缘层30例如为厚度是1000埃~6000埃的二氧化硅,所述钝化层40例如为厚度是1000埃~6000埃氮化硅。需要说明的是,本发明并不局限于上述描述,在本发明其它实施例中,也可对上述膜层的材料和厚度进行相应的调整。
接着,执行步骤S112,在所述基板100上形成透射电极60。一般先在所述钝化层40上形成一层透明导电层,然后刻蚀所述透明导电层形成透射电极60。所述透明导电层的材料可以为氧化铟锡(ITO)、氧化铟锌(IZO)等,或者它们的组合。在本实施例中,所述透明导电层可通过磁控溅射的方法形成,其厚度优选为100埃~1000埃。在本实施例中,具体的,所述透射电极60覆盖部分钝化层40。
在步骤S11中,所述开关单元14优选为薄膜晶体管,其栅极与所述栅极线12电连接,其源极或漏极与所述数据线13电连接,所述漏极或源极则须与所述像素单元的透射电极和/或反射电极电连接。但是在步骤S11中,反射电极并未形成,因此可以如图2所示在步骤S11中先将所述漏极或源极与所述透射电极60连接(优选的,在步骤S111和步骤S112之间增加一刻蚀出用于导通透射电极60和所述漏极或源极的过孔的步骤),然后在步骤S11之后的制备过程中将所述漏极或源极与所述反射电极连接,或者在步骤S11之后的制备过程中将所述透射电极60与所述反射电极连接;也可以在步骤S11中不将所述漏极或源极与所述透射电极60连接,而是在步骤S11之后的制备过程中将所述漏极或源极与所述反射电极连接和所述透射电极电连接。
接着,执行步骤S12,在所述形成有至少两个透射电极60的基板100上形成绝缘层50,刻蚀所述绝缘层50以暴露出所述透射电极60。刻蚀后的剖视图如图4所示。刻蚀后,可以将透射电极60全部暴露出来,可以只暴露部分。优选的,刻蚀完所述绝缘层50后,所述绝缘层50与所述透射电极60具有交叠部分。在本实施例中,所述绝缘层50的材料优选为有机膜。为了形成下基板双盒厚的半透射半反射液晶显示器,位于像素区域的绝缘层50的表面用于形成反射电极,并且同一像素单元的反射电极和透射电极电位相同;而反射电极处的液晶层厚度D1与透射电极处的液晶层厚度D2的选取应当使得反射区域和透射区域的光电曲线一致,一般D1为D2的一半。因此,考虑到半透半反式液晶显示器的盒厚需要,所述绝缘层50的厚度为2微米-4微米,优选为3微米,在本发明的其他实施例中,所述绝缘层50的厚度也可以更厚或者更薄。
然后,执行步骤S13,对所述绝缘层50实施固化工艺,使得所述绝缘层50向与其相邻的所述透射电极60延伸。固化后的剖视图如图5所示,其中,所述绝缘层50在同一像素单元内具有与透射电极60交叠的第一延伸部51;在相邻像素单元的交界处所述绝缘层50具有与相邻像素单元的透射电极60交叠的第二延伸部52。所述固化工艺可以为退火工艺或者紫外光照射工艺。通过所述固化工艺,可以固化所述绝缘层50,提高半透半反式液晶显示器阵列基板的可靠性。同时,固化工艺中,将相对比较疏松的绝缘层结构变得更加紧密,不可避免的所述绝缘层的材料将会发生流动,使得绝缘层50向与其相邻的所述透射电极60延伸。与绝缘层50相邻的透射电极60有两种,第一种是与绝缘层50位于同一像素内的透射电极;第二种是与绝缘层50位于相邻像素的透射电极。绝缘层50向前述第一种透射电极延伸并在该透射电极上形成具有倾斜面的第一延伸部51;绝缘层50向前述第二种透射电极延伸并在该透射电极上形成具有倾斜面的第二延伸部52。所述倾斜面为平滑且延伸的圆弧面。
接着,执行步骤S14,在所述绝缘层50表面形成反射电极70。
具体地,先在所述绝缘层50和所述暴露出的透射电极60表面上形成金属层,然后在所述金属层上形成光阻层,经曝光、显影等工艺图案化所述光阻层后,以所述图案化光阻层为掩模刻蚀所述金属层形成反射电极70,并暴露所述透射电极60和第二延伸部52(未图示);或者以所述图案化光阻层为掩模刻蚀所述金属层形成反射电极70,并暴露所述透射电极60、第一延伸部51和第二延伸部52。优选的,在执行步骤S14时,所述绝缘层50上的反射电极70与其相邻像素单元的所述透射电极60具有交叠部分,可知的,刻蚀所述金属层形成反射电极70,暴露所述透射电极60时,并非暴露全部的透射电极60,被绝缘层50的第一延伸部51和第二延伸部52覆盖的透射电极60未被暴露出。优选的,第一延伸部51上的金属未被刻蚀,反射电极70覆盖所述第一延伸部51并与同一像素内的透射电极60相连(如图6所示)。
在本实施例中,所述金属层,即所述反射电极70的材料具体可以为:铝、铝合金、钼、钼合金或者钛等具备反射性和优良导电性的金属。
在本实施例中,形成所述反射电极70后,并不马上去除所述图案化的光阻层,而是接着执行步骤S15。
最后,执行步骤S15,当步骤S14中暴露出所述第二延伸部52时,刻蚀去除所述第二延伸部52;当步骤S14中暴露出所述第一延伸部51和第二延伸部52时,刻蚀去除所述第一延伸部51和第二延伸部52。作为一种优选的实施方式,步骤S15紧接着步骤S14执行,在没有去除步骤S14中所使用的图案化光阻层的情况下,以所述图案化光阻层为掩模刻蚀所述第二延伸部52,或刻蚀所述第一延伸部51和第二延伸部52。由此,可不增加掩模板,降低制造成本。当然,在本发明的其他实施例中,完成步骤S14后,也可将光阻层去除,在执行步骤S15时,再重新形成图案化光阻层,通过刻蚀等工艺去除所述第二延伸部52,或去除所述第一延伸部51和第二延伸部52。
在步骤S15中,所述刻蚀所述第二延伸部52,或刻蚀所述第一延伸部51和第二延伸部52采用干法刻蚀工艺,所述干法刻蚀工艺具有很好的各向异性的刻蚀特性,从而能够很好地控制只去除第二延伸部52,或去除所述第一延伸部51和第二延伸部52,而不会刻蚀掉其它材料。可根据绝缘层50的材料、厚度以及刻蚀机台的具体情况,通过实验获知所述干法刻蚀工艺的工艺参数,在此不再赘述,但是本领域技术人员应是知晓的。
如图7所示,刻蚀去除所述第二延伸部52后,所形成的侧面53与所述透射电极60间具有角度为70度-110度的夹角,优选的,可取85度-95度,特别的,所述夹角的度数为90度-95度。通过刻蚀去除所述第二延伸部52,克服或者基本克服了现有技术中第二延伸部52使得其上液晶分子沿着该第二延伸部52的倾斜面排列所造成的漏光缺陷,从而避免了漏光的产生,提高了半透半反式液晶显示器的显示效果。
通过刻蚀去除所述第二延伸部52,暴露出了部分透射电极60,即相对于刻蚀去除所述第二延伸部52前,暴露出的透射电极60增多了。可知的,在刻蚀去除所述第二延伸部52前,所述第二延伸部52覆盖的部分,既不能透射光线,因为第二倾斜面52通常是不透光材质;也不能反射光线。即使所述第二延伸部52覆盖的部分可以透射光线或反射光线,但由于所述第二延伸部52使得其上液晶分子沿着该第二延伸部52的倾斜面排列,会造成的漏光。由此,所述第二延伸部52所在的区域将不能用于显示。而通过刻蚀去除所述第二延伸部52,可增加透射区的面积,同时不减少反射区的面积,相邻像素的透射区域和反射区域在平行于基板的方向上的间距非常小,甚至可以做到间距为0,从而提高了显示区域的面积,增加了有效开口率,提高了半透半反式液晶显示器的显示质量。
如图8所示,当步骤S14中暴露出所述第一延伸部51和第二延伸部52时,刻蚀去除所述第一延伸部51和第二延伸部52,得到所形成的侧面53和侧面54与所述透射电极60间具有角度为70度-110度的夹角,优选的,可取85度-95度,特别的,所述夹角的度数为90度-95度。由此,可克服或者基本克服现有技术中第一延伸部51和第二延伸部52使得其上液晶分子沿着该第一延伸部51和第二延伸部52的倾斜面排列所造成的漏光缺陷,更好地避免了漏光的产生,提高了半透半反式液晶显示器的显示效果。需要说明的是,透射电极60和反射电极70之间的连接除了利用在绝缘层50侧壁上金属进行连接之外,也可在绝缘层50内部形成接触孔,在接触孔内形成金属,由接触孔内的金属进行透射电极60和反射电极70之间的连接。
优选的,无论步骤S14和S15是只刻蚀去除所述第二延伸部52,不去除第一延伸部51;还是同时刻蚀去除所述第二延伸部52和第一延伸部51;在步骤S13和S14之间还可以增加一刻蚀过孔的步骤,该过孔用于导通所述反射电极70和所述薄膜晶体管的漏极或源极。
相应的,本发明还提供了一种利用上述半透半反式液晶显示器阵列基板的制造方法制得的半透半反式液晶显示器阵列基板。具体请参考图2和图7,所述半透半反式液晶显示器阵列基板1包括:基板100;形成于所述基板上的像素阵列;所述像素阵列中每一像素包括反射电极和透射电极;所述反射电极形成于一绝缘层上,相邻像素的反射电极和透射电极在透光方向上交叠并且通过所述绝缘层绝缘;所述绝缘层在相邻像素的反射电极和透射电极的交界处具有与所述透射电极夹角为70度-110度的侧面。
具体的,所述像素阵列包括多条栅极线12、与所述多条栅极线12交叉(优选为垂直交叉)的多条数据线13,位于相邻一对栅极线12和相邻一对数据线13所限定的像素区域内的像素单元。该像素单元包括反射电极70和透射电极60以及与所述栅极线12和数据线13耦接的用于像素开关的开关单元14。优选的,该开关单元14为薄膜晶体管,其栅极与所述栅极线12电连接,其源极或漏极与所述数据线13电连接,所述漏极或源极与所述像素单元的透射电极60和反射电极70电连接。这里的“电连接”可以是直接物理连接,也可以是间接导通,只要使得电位相同即可;例如,所述漏极或源极与所述像素单元的透射电极60直接物理连接,透射电极60与反射电极70直接物理连接,这样所述漏极或源极通过所述透射电极60与所述反射电极70电连接;再例如,所述漏极或源极与所述像素单元的透射电极60直接物理连接,所述漏极或源极与反射电极70直接物理连接,这样所述透射电极60通过所述漏极或源极与所述反射电极70电连接。
像素单元内的反射电极形70形成于绝缘层50的表面上,优选的,在同一像素区域内的反射电极70和/或绝缘层50与透射电极具有交叠部分。相邻像素单元的反射电极70与透射电极60具有交叠部分,优选的,同一行像素的反射电极70和透射电极60间隔排列,在相邻像素单元的反射电极70与透射电极60交界处所述绝缘层50具有侧面53,该侧面53与相邻像素单元的透射电极60(或基板100)具有角度a,a取为70度-110度,夹角a优选为85度-95度,例如90度。
优选的,所述绝缘层50具有向与其在同一像素内的透射电极60延伸的第一延伸部51,反射电极70覆盖所述第一延伸部51并与同一像素内的透射电极60相连。所述绝缘层的厚度可为2微米-4微米,如3微米。
可知的,前述半透半反式液晶显示器阵列基板的制造方法所产生的结构及所具有的有益效果,半透半反式液晶显示器阵列基板同样具有,在此不再赘述。
请参考图9,本发明还提供了一种半透半反式液晶显示屏。如图9所示,半透半反式液晶显示屏包括:阵列基板1,彩膜基板2,所述彩膜基板2与所述阵列基板1相对设置;液晶层3,设置于于所述阵列基板1和所述彩膜基板2之间;该阵列基板1采用本发明提供的阵列基板。为了形成下基板双盒厚的半透射半反射液晶显示屏,同一像素单元的反射电极和透射电极电位相同;而反射电极处的液晶层厚度D1与透射电极处的液晶层厚度D2的选取应当使得反射区域和透射区域的光电曲线一致,一般D1为D2的一半。因此,考虑到半透半反式液晶显示屏的盒厚需要,所述绝缘层50采用有机膜,厚度可为2微米-4微米,优选为3微米,
可知的,彩膜基板2上设置有彩色滤光片、黑矩阵等。所述半透半反式液晶显示屏是双盒厚的,即反射电极-彩膜基板的距离与透射电极-彩膜基板的距离是不相等的。关于该两点,本领域现有技术中已公开,本发明在此不再赘述。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (16)

1.一种半透半反式液晶显示器阵列基板的制造方法,包括:
步骤S11、提供一形成有至少两个透射电极的基板;
步骤S12、在所述形成有至少两个透射电极的基板上形成绝缘层,刻蚀所述绝缘层以暴露出所述透射电极;
步骤S13、对所述绝缘层实施固化工艺,使得所述绝缘层具有向与其在同一像素内的透射电极延伸的第一延伸部,以及具有向与其在相邻像素的透射电极延伸的第二延伸部;
步骤S14、在所述绝缘层表面形成反射电极;
步骤S15、刻蚀去除所述第二延伸部。
2.如权利要求1所述的半透半反式液晶显示器阵列基板的制造方法,其特征在于,在所述绝缘层表面形成反射电极的步骤S14包括:
在所述绝缘层和所述暴露出的透射电极表面上形成金属层;
在所述金属层上形成光阻层,并图案化所述光阻层;
以所述图案化光阻层为掩模刻蚀所述金属层形成反射电极,并暴露所述透射电极和所述第二延伸部。
3.如权利要求2所述的半透半反式液晶显示器阵列基板的制造方法,其特征在于,步骤S15中刻蚀去除所述第二延伸部以所述图案化光阻层为掩模。
4.如权利要求1所述的半透半反式液晶显示器阵列基板的制造方法,其特征在于,反射电极覆盖所述第一延伸部并与同一像素内的透射电极相连。
5.如权利要求4所述的半透半反式液晶显示器阵列基板的制造方法,其特征在于,所述形成有至少两个透射电极的基板还包括作为像素开关的薄膜晶体管,所述薄膜晶体管的漏极与所述透射电极电连接或者所述薄膜晶体管的源极与所述透射电极电连接。
6.如权利要求4所述的半透半反式液晶显示器阵列基板的制造方法,其特征在于,所述形成有至少两个透射电极的基板还包括作为像素开关的薄膜晶体管,在步骤S13和S14之间具有刻蚀过孔的步骤,所述过孔用于导通所述反射电极和所述薄膜晶体管的漏极或者所述过孔用于导通所述反射电极和所述薄膜晶体管的源极。
7.一种半透半反式液晶显示器阵列基板的制造方法,包括:
步骤S11、提供一形成有至少两个透射电极的基板;
步骤S12、在所述形成有至少两个透射电极的基板上形成绝缘层,刻蚀所述绝缘层以暴露出所述透射电极;
步骤S13、对所述绝缘层实施固化工艺,使得所述绝缘层具有向与其在同一像素内的透射电极延伸的第一延伸部,以及具有向与其在相邻像素的透射电极延伸的第二延伸部;
步骤S14、在所述绝缘层表面形成反射电极;
步骤S15、刻蚀去除所述第一延伸部和所述第二延伸部。
8.如权利要求7所述的半透半反式液晶显示器阵列基板的制造方法,其特征在于,在所述绝缘层表面形成反射电极的步骤S14包括:
在所述绝缘层和所述暴露出的透射电极表面上形成金属层;
在所述金属层上形成光阻层,并图案化所述光阻层;
以所述图案化光阻层为掩模刻蚀所述金属层形成反射电极,并暴露所述透射电极和第一延伸部和所述第二延伸部。
9.如权利要求8所述的半透半反式液晶显示器阵列基板的制造方法,其特征在于,步骤S15中刻蚀去除第一延伸部和所述第二延伸部以所述图案化光阻层为掩模。
10.如权利要求7所述的半透半反式液晶显示器阵列基板的制造方法,其特征在于,所述形成有至少两个透射电极的基板还包括作为像素开关的薄膜晶体管,所述薄膜晶体管的漏极与所述透射电极电连接或者源极与所述透射电极电连接;
在步骤S13和S14之间具有刻蚀过孔的步骤,所述过孔用于导通所述反射电极和所述薄膜晶体管的漏极或者所述过孔用于导通所述反射电极和所述薄膜晶体管的源极。
11.如权利要求2或8所述的半透半反式液晶显示器阵列基板的制造方法,其特征在于,该方法还包括去除所述图案化光阻层的步骤。
12.如权利要求1-10中任一项所述的半透半反式液晶显示器阵列基板的制造方法,其特征在于,刻蚀去除所述第二延伸部后所述绝缘层在相邻像素的反射电极和透射电极的交界处形成侧面,所述侧面与所述透射电极具有角度为70度-110度的夹角。
13.如权利要求1-10中任一项所述的半透半反式液晶显示器阵列基板的制造方法,其特征在于,所述绝缘层的材料为有机膜。
14.如权利要求13中任一项所述的半透半反式液晶显示器阵列基板的制造方法,其特征在于,所述绝缘层的厚度为2微米-4微米。
15.如权利要求14所述的半透半反式液晶显示器阵列基板的制造方法,其特征在于,所述绝缘层的厚度为3微米。
16.如权利要求1-10中任一项所述的半透半反式液晶显示器阵列基板的制造方法,其特征在于,所述固化工艺为退火工艺或者紫外光照射工艺。
CN201410778276.2A 2011-06-09 2011-06-09 半透半反式液晶显示器阵列基板的制造方法 Active CN104570440B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410778276.2A CN104570440B (zh) 2011-06-09 2011-06-09 半透半反式液晶显示器阵列基板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410778276.2A CN104570440B (zh) 2011-06-09 2011-06-09 半透半反式液晶显示器阵列基板的制造方法
CN201110155180.7A CN102819133B (zh) 2011-06-09 2011-06-09 半透半反式液晶显示器阵列基板、制造方法及液晶显示屏

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201110155180.7A Division CN102819133B (zh) 2011-06-09 2011-06-09 半透半反式液晶显示器阵列基板、制造方法及液晶显示屏

Publications (2)

Publication Number Publication Date
CN104570440A CN104570440A (zh) 2015-04-29
CN104570440B true CN104570440B (zh) 2017-06-16

Family

ID=53086903

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410778276.2A Active CN104570440B (zh) 2011-06-09 2011-06-09 半透半反式液晶显示器阵列基板的制造方法

Country Status (1)

Country Link
CN (1) CN104570440B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105223740B (zh) * 2015-11-05 2019-01-22 深圳市华星光电技术有限公司 阵列基板及其制造方法、液晶显示面板
CN105977148A (zh) 2016-07-01 2016-09-28 深圳市华星光电技术有限公司 绝缘层的制造方法、阵列的制造方法及阵列基板

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1740855A (zh) * 2004-08-25 2006-03-01 鸿富锦精密工业(深圳)有限公司 半穿透半反射式液晶显示装置
CN101131539A (zh) * 2007-02-15 2008-02-27 友达光电股份有限公司 液晶显示面板、液晶显示器的光反射结构及其制造方法
CN101135786A (zh) * 2006-08-30 2008-03-05 胜华科技股份有限公司 半透式液晶显示器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004085720A (ja) * 2002-08-23 2004-03-18 Sharp Corp アクティブマトリクス基板、反射透過型液晶表示パネル、および反射透過型液晶表示装置
JP4932421B2 (ja) * 2006-10-13 2012-05-16 株式会社 日立ディスプレイズ 液晶表示装置とその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1740855A (zh) * 2004-08-25 2006-03-01 鸿富锦精密工业(深圳)有限公司 半穿透半反射式液晶显示装置
CN101135786A (zh) * 2006-08-30 2008-03-05 胜华科技股份有限公司 半透式液晶显示器
CN101131539A (zh) * 2007-02-15 2008-02-27 友达光电股份有限公司 液晶显示面板、液晶显示器的光反射结构及其制造方法

Also Published As

Publication number Publication date
CN104570440A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
US7133104B2 (en) Transflective liquid crystal display device having color filter-on-thin film transistor (COT) structure and method of fabricating the same
JP2019517009A (ja) アレイ基板、表示装置及び製造方法
CN104950541B (zh) Boa型液晶显示面板及其制作方法
CN101393897B (zh) 制造液晶显示装置的方法
CN107479287B (zh) 阵列基板及其制作方法
CN102466926B (zh) 液晶显示器及其制造方法
CN102645799B (zh) 一种液晶显示器件、阵列基板和彩膜基板及其制造方法
CN105652541B (zh) 阵列基板的制作方法及液晶显示面板
US7989814B2 (en) Thin film transistor array panel and method of manufacturing the same
CN101097925A (zh) 水平电场施加型薄膜晶体管基板及其制造方法
CN102914922A (zh) 面内切换模式液晶显示装置
CN102736325A (zh) 一种像素结构及其制造方法、显示装置
KR20070120384A (ko) 액정표시장치용 어레이 기판 및 그 제조 방법
JP2008020772A (ja) 液晶表示パネル
CN106932956A (zh) 阵列基板、显示面板及显示装置
TWI242096B (en) Liquid crystal display device
CN108490701A (zh) 显示面板及其制造方法、显示装置
CN100353244C (zh) 液晶显示器及其制作方法及其晶体管数组基板及制作方法
CN104570440B (zh) 半透半反式液晶显示器阵列基板的制造方法
CN106707635A (zh) 阵列基板及其制造方法、液晶显示面板及液晶显示装置
TWI673552B (zh) 顯示面板及其製作方法
KR20080038599A (ko) 고개구율 액정표시장치 및 그 제조방법
CN102819133B (zh) 半透半反式液晶显示器阵列基板、制造方法及液晶显示屏
CN209674155U (zh) 阵列基板及液晶显示装置
CN101577255A (zh) Tft阵列基板制造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant