CN104538481B - InGaAs/QWIP双色红外探测器及其制备方法 - Google Patents

InGaAs/QWIP双色红外探测器及其制备方法 Download PDF

Info

Publication number
CN104538481B
CN104538481B CN201510039185.1A CN201510039185A CN104538481B CN 104538481 B CN104538481 B CN 104538481B CN 201510039185 A CN201510039185 A CN 201510039185A CN 104538481 B CN104538481 B CN 104538481B
Authority
CN
China
Prior art keywords
layer
ingaas
qwip
gaas
infrared detectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510039185.1A
Other languages
English (en)
Other versions
CN104538481A (zh
Inventor
代盼
陆书龙
谭明
吴渊渊
季莲
其他发明人请求不公开姓名
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUZHOU SUNA PHOTOELECTRIC Co Ltd
Original Assignee
SUZHOU SUNA PHOTOELECTRIC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUZHOU SUNA PHOTOELECTRIC Co Ltd filed Critical SUZHOU SUNA PHOTOELECTRIC Co Ltd
Priority to CN201510039185.1A priority Critical patent/CN104538481B/zh
Publication of CN104538481A publication Critical patent/CN104538481A/zh
Application granted granted Critical
Publication of CN104538481B publication Critical patent/CN104538481B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/103Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN homojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种InGaAs/QWIP双色红外探测器,其包括PIN‑InGaAs红外探测器单元和GaAs/AlGaAs QWIP结构单元,且所述PIN‑InGaAs红外探测器单元与GaAs/AlGaAs QWIP结构单元通过晶片键合方式集成为所述双色红外探测器。本发明还公开了所述双色红外探测器的制备方法。本发明通过采用等离子体晶片键合方法,将InGaAs红外探测器和QWIP集成为双色红外探测器,实现了对于近红外辐射和远红外辐射的双色探测,同时还可减小键合界面的光子损失,避免高温键合方法键合时因热膨胀引起的界面电阻增大,界面缺陷增加等问题。本发明所获器件结构简单,性能优良、稳定,且制备工艺简单可控,成本低廉,适于规模化生产。

Description

InGaAs/QWIP双色红外探测器及其制备方法
技术领域
本发明涉及一种半导体器件,尤其涉及一种InGaAs/QWIP双色红外探测器及其制备方法,属于光探测器技术领域。
背景技术
红外线自被发现以来,渐渐被人们熟知并在信息技术与通讯、医疗保健与生命科学、国防与航空等领域中发挥出越来越重要的作用。红外光谱是一种人眼不可见的光谱,其波长范围从0.75微米至1000微米,介于可见光红与微波之间。按其波长来分,可分为近红外、中红外、远红外、极远红外四类。随着红外应用的不断推广与发展,先进的红外探测技术要求探测器具有更高的空间分辨率和更好的目标识别能力。红外探测技术也正朝着高分辨率、多波段的方向发展。而双色红外探测,则是多波段探测的开端。双色红外探测器能对双波段辐射信息进行处理,大大提高了系统的抗干扰和目标识别能力。
在长波红外工作的QWIP(量子阱红外探测器)一般采用晶格匹配的GaAs/AlGaAs材料体系,概因GaAs/AlGaAs量子阱材料具有结构简单、价格较低、易于生长并获得大面积均匀材料的特点。另外由于GaAs/AlGaAs量子阱材料容易进行能带裁剪、应用于长波红外探测的技术路线明确,故而是大尺寸焦平面阵列的优选材料。又,QWIP利用子能带能级间光跃迁实现对红外辐射光子的共振吸收,能够实现8~12微米波段的探测。由于GaAs基QWIP器件在高动态阻抗、快速响应以及低功耗等方面的优势足以满足大面积FPA制作的需要,已成为国际上红外FPA研究的热点。
但是,目前以QWIP为基础的双色红外探测器,多是在长波红外有源区采用GaAs/AlGaAs准匹配体系的多量子阱结构,峰值响应远红外波段;另外增加一有源区采用InGaAs/GaAs/AlGaAs应变体系的微带超晶格结构,响应中波红外波段;并不能实现近红外和远红外波段这两个波长差异较大的波段的探测。
发明内容
本发明的主要目的在于提出一种InGaAs/QWIP双色红外探测器及其制备方法,该双色红外探测器具有对近红外辐射和远红外辐射的探测能力,器件结构简单,性能稳定,且制备工艺简单可控,成本低廉,适于规模化生产,从而克服现有技术的不足。
为实现前述发明目的,本发明采用的技术方案包括:
一种InGaAs/QWIP双色红外探测器,包括PIN-InGaAs红外探测器单元和GaAs/AlGaAsQWIP结构单元,且所述PIN-InGaAs红外探测器单元与GaAs/AlGaAs QWIP结构单元通过晶片键合方式集成形成所述双色红外探测器。
进一步的,所述PIN-InGaAs红外探测器单元能吸收波长为0.7~1.6微米的红外辐射。
进一步的,所述GaAs/AlGaAs QWIP结构单元能借助异质界面的量子效应,通过子带间跃迁吸收波长为8~12微米的红外辐射。
进一步的,所述PIN-InGaAs红外探测器单元包括依次设置的缓冲层、下掺杂层、吸收层、上掺杂层和第一键合层,所述GaAs/AlGaAs QWIP结构单元包括依次设置的缓冲层、量子阱层、接触层和第二键合层,其中所述第一键合层与第二键合层之间通过晶片键合方式结合。
较为优选的,所述双色红外探测器表面还设置有增透膜。
一种制备所述InGaAs/QWIP双色红外探测器的方法,包括:
在第一衬底上依次生长缓冲层、下掺杂层、吸收层、上掺杂层和第一键合层,获得用以形成PIN-InGaAs红外探测器单元的第一外延层;
在第二衬底上依次生长缓冲层、量子阱层、接触层和第二键合层,获得用以形成GaAs/AlGaAs QWIP结构单元的第二外延层;
将第一外延层的第一键合层与第二外延层的第二键合层以晶片键合方式结合而形成集成器件,并除去第一衬底;
对第二外延层进行台面刻蚀,并在所形成的器件上制作N型电极,获得所述InGaAs/QWIP双色红外探测器。
作为较佳实施方案之一,所述制备方法还可包括:在N-InP衬底上依次生长n型InP缓冲层、n+-InP下掺杂层、InGaAs吸收层、p+-InP上掺杂层和p+-InP键合层,其中上掺杂层、吸收层和下掺杂层构成PIN结构,从而获得所述第一外延层。
作为较佳实施方案之一,所述制备方法还可包括:在N-GaAs衬底上依次生长n型GaAs缓冲层、GaAs/AlGaAs量子阱、n-GaAs层和n+-GaAs键合层,从而获得所述第二外延层。
进一步的,所述GaAs/AlGaAs多量子阱的周期数为10~50,且多量子阱内AlGaAs层中的Al含量为0.1~0.4mol%。
进一步的,在GaAs/AlGaAs量子阱中GaAs层的生长过程包括:先生长厚度为2~8nm、掺杂浓度为5×1017~3×1018cm-3的GaAs层,再生长厚度为0.1~1nm、非故意掺杂的GaAs层。
作为较佳实施方案之一,所述制备方法还可包括:通过等离子体法在常温下将所述第一外延层的第一键合层与第二外延层的第二键合层以晶片键合方式结合而形成集成器件。
进一步的,该制备方法还包括:在所述InGaAs/QWIP双色红外探测器表面制作增透膜、减反膜或其它减反增透结构。
进一步的,该制备方法还可包括一系列尺寸外形及适于安装的封装工艺步骤,以完成完整双色红外探测器的结构。
与现有技术相比,本发明至少具有如下有益效果:
(1)通过晶片键合的方式将InGaAs红外探测器和QWIP集成为双色红外探测器,实现了对近红外辐射(波长0.7~1.6微米)和远红外辐射(波长8~12微米)的双色探测,大大提高了探测器的目标识别能力;
(2)通过采用等离子体键合的方法将InGaAs红外探测器和QWIP集成,还可有效减小了键合界面的光子损失,避免了高温键合方法键合时因热膨胀引起的界面电阻增大、界面缺陷增加等问题。
(3)剥离掉的InP衬底可以重复利用,有利于批量生产和降低成本;采用GaAs衬底作为支撑衬底,既可对探测器结构进行支撑,又具有较高的机械强度,有利于器件的制备。
附图说明
以下便结合实施例及附图对本发明的具体实施方式作进一步的详述,以使本发明的技术方案更易于理解和掌握。
图1为本发明一典型实施例中一种InGaAs/QWIP双色红外探测器内InGaAs红外探测器单元的结构示意图;
图2为本发明一典型实施例中一种InGaAs/QWIP双色红外探测器内GaAs/AlGaAsQWIP单元的结构示意图;
图3为本发明一典型实施例中一种InGaAs/QWIP双色红外探测器的制备工艺流程图。
具体实施方式
为使本发明的上述目的、技术方案和优点能更明显易理解,下面特结合若干典型实施例对本发明详细说明如下。
在本发明的一较为具体的实施案例之中,主要是基于等离子体晶片键合技术,通过将N-InP衬底上生长的PIN-InGaAs红外探测器和在N-GaAs衬底上的GaAs/AlGaAs QWIP结构键合集成,实现了InGaAs/QWIP双色红外探测器。
进一步的,该InGaAs/QWIP双色红外探测器的制备工艺包括:在N-InP衬底上生长一PIN-InGaAs红外探测器单元;在N-GaAs衬底上的GaAs/AlGaAs QWIP结构单元;通过等离子体晶片键合将二者集成为一双色红外探测器。
进一步的,请参阅图1-图3,在一典型实施案例中,一种InGaAs/QWIP双色红外探测器的制作方法包括如下步骤:
1)采用分子束外延方法(MBE)在InP衬底上依次生长缓冲层,下掺杂层、吸收层、上掺杂层,键合层。
如图1所示,可以先在N-InP衬底上生长n型InP缓冲层,在缓冲层上生长n+-InP下掺杂层,其厚度为100~300nm,掺杂浓度为1×1018~1×1019cm-3;再生长InGaAs吸收层,其厚度为1~3微米不掺杂;再生长p+-InP上掺杂层,其厚度为100~300nm,掺杂浓度为1×1018~2×1019cm-3;其中,上掺杂层与吸收层和下掺杂层构成PIN结构;而后,在PIN结构之上生长厚度为50~200nm、重掺杂(例如掺杂浓度2×1019cm-3)p+-InP键合层,用于与QWIP结构的键合。其中各层的生长速率可以是0.5~1ml/s。InP生长所用五族源的流量和三族源的流量的比,简称V/III为40~80,InGaAs生长所用V/III为40,各层材料的生长温度为470~550℃。
显然的,在其他实施例中,上述外延层的生长还可以用金属有机气相外延(MOCVD)等方法实现。
2)在N-GaAs衬底上的GaAs/AlGaAs多量子阱QWIP结构;
如图2所示,可以先在N-GaAs衬底上生长n型GaAs缓冲层,其厚度为100~500nm,掺杂浓度为1×1018~1×1019cm-3,生长速率是0.5~1.5ml/s;再在缓冲层上生长GaAs/AlGaAs量子阱,其周期数为10~50个,生长速率是0.1~0.5ml/s;其中量子阱中GaAs和AlGaAs的厚度分别为1~15nm和10~100nm,进一步的,量子阱中的AlGaAs为非故意掺杂,Al组分为0.28,而GaAs可分两步生长,可先生长一厚度是2~8nm nm,掺杂浓度是5×1017~3×1018cm-3的GaAs,再生长一厚度为0.1~1nm,非故意掺杂的GaAs,用以防止Si向生长前端聚集引起正负压电流不对称,其生长温度为600~700℃,V/III为20~60。而后,在GaAs/AlGaAs多量子阱上生长一n-GaAs接触层,其掺杂浓度是1×1018~1×1019cm-3,厚度是600~1200nm,其中部分区域用于n型欧姆接触电极。之后,在形成的器件结构上生长厚度为50~150nm、重掺杂(例如1×1019cm-3)的n+-GaAs键合层,用于与PIN-InGaAs红外探测器单元的键合。
3)通过等离子体晶片键合将二者集成为一双色红外探测器。
利用Ar等离子体对键合面进行活化处理,通过给步骤1、2所获的两个外延片施加压力,经过合适的键合时间,在超高真空环境中完成GaAs/AlGaAs QWIP与InGaAs探测器外延层之间的低温等离子体键合,键合之后去除InP衬底。其中,通过采用p+-InP键合层和n+-GaAs键合层,一方面这两种材料分别与各自的探测器结构晶格匹配,避免了失配位错的产生,另一方面二者可形成隧道结,大大降低了界面电阻,提高器件的电学性能。同时,该两者形成的隧道结也为电极的制备提供了便利,其可减少一次电极制备,避免了将器件制备成四端器件的复杂工艺,使得器件工艺更简化。
用干法刻蚀方法生长SiO2作为刻蚀掩膜层,通过等离子体增强ICP干法刻蚀的方法,刻蚀出n-GaAs台面。通过PECVD方法淀积氮化硅钝化层对刻蚀侧壁进行钝化。在n-GaAs台面,n+-InP下掺杂层和n-GaAs衬底上,通过电子束蒸发的方法分别制备AuGe/Ni/Au,Ni/AuGe/Ni/Au和AuGe/Ni/Au,n型电极。
最后,还可利用光学镀膜的方法在探测器表面制备TiO2/SiO2增透膜,以减小样品表面的反射率,提高光子利用率,最终形成晶片键合的InGaAs/QWIP双色红外探测器器件,其具有1.69μm和8.8μm的吸光度峰位,能够有效探测近红外和远红外两个波长范围的红外辐射,且在两个波段内都分别能够获得良好的量子效率和较低的暗电流。
应当理解,上述实施例仅为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (8)

1.一种InGaAs/QWIP双色红外探测器的制备方法,其特征在于,所述双色红外探测器包括PIN-InGaAs红外探测器单元和GaAs/AlGaAs QWIP结构单元,且所述PIN-InGaAs红外探测器单元与GaAs/AlGaAs QWIP结构单元通过晶片键合方式集成形成所述双色红外探测器;并且,所述制备方法包括:
在第一衬底上依次生长缓冲层、下掺杂层、吸收层、上掺杂层和第一键合层,获得用以形成PIN-InGaAs红外探测器单元的第一外延层;
在第二衬底上依次生长缓冲层、量子阱层、接触层和第二键合层,获得用以形成GaAs/AlGaAs QWIP结构单元的第二外延层;
将第一外延层的第一键合层与第二外延层的第二键合层以晶片键合方式直接结合而形成集成器件,并除去第一衬底;
对第二外延层进行台面刻蚀,并在所形成的器件上制作N型电极,获得所述InGaAs/QWIP双色红外探测器。
2.根据权利要求1所述的InGaAs/QWIP双色红外探测器的制备方法,其特征在于:所述PIN-InGaAs红外探测器单元能吸收波长为0.7~1.6微米的红外辐射,所述GaAs/AlGaAs QWIP结构单元能吸收波长为8~12微米的红外辐射。
3.根据权利要求1或2所述的InGaAs/QWIP双色红外探测器的制备方法,其特征在于:所述双色红外探测器表面还设置有增透膜。
4.根据权利要求1所述InGaAs/QWIP双色红外探测器的制备方法,其特征在于包括:
在N-InP衬底上依次生长n型InP缓冲层、n+-InP下掺杂层、InGaAs吸收层、p+-InP上掺杂层和p+-InP键合层,其中上掺杂层、吸收层和下掺杂层构成PIN结构,从而获得所述第一外延层。
5.根据权利要求1所述InGaAs/QWIP双色红外探测器的制备方法,其特征在于包括:在N-GaAs衬底上依次生长n型GaAs缓冲层、GaAs/AlGaAs量子阱、n-GaAs层和n+-GaAs键合层,从而获得所述第二外延层。
6.根据权利要求1所述InGaAs/QWIP双色红外探测器的制备方法,其特征在于所述GaAs/AlGaAs多量子阱的周期数为10~50,且多量子阱内AlGaAs层中的Al的比例为0.1~0.4。
7.根据权利要求6所述InGaAs/QWIP双色红外探测器的制备方法,其特征在于在GaAs/AlGaAs量子阱中GaAs层的生长过程包括:先生长厚度为2~8nm、掺杂浓度为5×1017~3×1018cm-3的GaAs层,再生长厚度为0.1~1nm、非故意掺杂的GaAs层。
8.根据权利要求1所述InGaAs/QWIP双色红外探测器的制备方法,其特征在于包括:通过等离子体法在常温下将所述第一外延层的第一键合层与第二外延层的第二键合层以晶片键合方式结合而形成集成器件。
CN201510039185.1A 2015-01-27 2015-01-27 InGaAs/QWIP双色红外探测器及其制备方法 Active CN104538481B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510039185.1A CN104538481B (zh) 2015-01-27 2015-01-27 InGaAs/QWIP双色红外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510039185.1A CN104538481B (zh) 2015-01-27 2015-01-27 InGaAs/QWIP双色红外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN104538481A CN104538481A (zh) 2015-04-22
CN104538481B true CN104538481B (zh) 2016-10-05

Family

ID=52853980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510039185.1A Active CN104538481B (zh) 2015-01-27 2015-01-27 InGaAs/QWIP双色红外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN104538481B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2644992C2 (ru) * 2016-05-31 2018-02-15 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Кабардино-Балкарский государственный университет им. Х.М. Бербекова" (КБГУ) Способ изготовления фотопреобразователя
CN106569036B (zh) * 2016-11-14 2018-12-04 中广核工程有限公司 离子辐照试样辐照损伤区域的电阻率和电导率的测试方法
CN108520904B (zh) * 2018-06-12 2023-09-12 中国科学院上海技术物理研究所 一种基于共振遂穿效应的GaAs基双色量子阱红外探测器
CN112447869B (zh) * 2019-08-28 2022-07-12 中国科学院苏州纳米技术与纳米仿生研究所 双色光电探测器及其制备方法
CN113948596B (zh) * 2021-09-18 2022-06-21 中山德华芯片技术有限公司 一种红外探测器芯片及其制备方法与应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1877869A (zh) * 2005-06-09 2006-12-13 中国科学院半导体研究所 一种双色量子阱红外探测器面阵的制作方法
CN101894831B (zh) * 2009-05-20 2012-08-22 中国科学院半导体研究所 紫外-红外双波段探测器及其制作方法
US20110042647A1 (en) * 2009-08-18 2011-02-24 U.S. Government As Represented By The Secretary Of The Army Corrugated-quantum well infrared photodetector with reflective sidewall and method
CN103247637B (zh) * 2013-04-27 2015-08-05 中国科学院苏州纳米技术与纳米仿生研究所 红外探测器及其制作方法

Also Published As

Publication number Publication date
CN104538481A (zh) 2015-04-22

Similar Documents

Publication Publication Date Title
US11817524B1 (en) Concentrator photovoltaic subassembly and method of constructing the same
CN104538481B (zh) InGaAs/QWIP双色红外探测器及其制备方法
US9954128B2 (en) Structures for increased current generation and collection in solar cells with low absorptance and/or low diffusion length
CN106847933A (zh) 单片集成紫外‑红外双色雪崩光电二极管及其制备方法
US8367452B2 (en) Infrared detector, infrared detecting apparatus, and method of manufacturing infrared detector
CN104576811A (zh) 近中红外波双色探测器及其制备方法
JP6950101B2 (ja) フレキシブル二重接合太陽電池
US20150034153A1 (en) Compound photovoltaic cell
US10181539B2 (en) Photoelectric conversion element and photoelectric conversion device including the same
CN103178150A (zh) 天线耦合太赫兹探测器
Shi et al. Silicon-based PbS-CQDs infrared photodetector with high sensitivity and fast response
US10541345B2 (en) Structures for increased current generation and collection in solar cells with low absorptance and/or low diffusion length
CN106384755A (zh) InP基量子阱远红外探测器及其制作方法
CN101847672A (zh) 10-14微米同时响应的双色量子阱红外探测器及其制作方法
JP2016082041A (ja) 化合物半導体太陽電池、及び、化合物半導体太陽電池の製造方法
CN102832289A (zh) 基于光子频率上转换的太赫兹成像器件、转换方法
US11901473B2 (en) Thermophotovoltaic cells with integrated air-bridge for improved efficiency
CN102130208A (zh) 用分子束外延方法制作光电探测单元或焦平面器件的方法
Peters et al. Resonant ultrathin infrared detectors enabling high quantum efficiency
CN104659140B (zh) 一种多结太阳能电池
Dong et al. Solar cells with InGaN/GaN and InP/InGaAsP and InGaP/GaAs multiple quantum wells
CN108807582A (zh) 一种太阳能电池及其芯片和该芯片的制备方法
CN114551618B (zh) 一种宽谱铟镓砷焦平面的结构及其制备方法
US11367800B1 (en) Optically-thin III-V solar cells and methods for constructing the same
Kang et al. An InP-based mid-wave infrared up-converter utilizing cascade carrier transportation

Legal Events

Date Code Title Description
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant