CN104516087A - Sandwich precision thermal controller for spatial optical remote sensor reflector - Google Patents
Sandwich precision thermal controller for spatial optical remote sensor reflector Download PDFInfo
- Publication number
- CN104516087A CN104516087A CN201410788389.0A CN201410788389A CN104516087A CN 104516087 A CN104516087 A CN 104516087A CN 201410788389 A CN201410788389 A CN 201410788389A CN 104516087 A CN104516087 A CN 104516087A
- Authority
- CN
- China
- Prior art keywords
- control device
- temperature control
- layer
- radiator
- heat insulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 22
- 238000009413 insulation Methods 0.000 claims description 48
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 12
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 229920000728 polyester Polymers 0.000 claims description 6
- 230000005855 radiation Effects 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 abstract description 9
- 239000010410 layer Substances 0.000 description 48
- 238000000034 method Methods 0.000 description 5
- 230000036760 body temperature Effects 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/18—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
- G02B7/182—Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Accommodation For Nursing Or Treatment Tables (AREA)
- Control Of Temperature (AREA)
Abstract
一种用于空间光学遥感器反射镜的夹层式精密热控装置,属于空间光学遥感器热控技术领域,解决现有技术中反射镜镜体受热温度不均匀、稳定性一般和反射镜镜体与支撑结构之间的温度一致性的技术问题;本发明包括内层控温装置、外层控温装置和反射镜支撑结构;所述内层控温装置与外层控温装置结构相同,反射镜支撑结构在内层控温装置与外层控温装置之间,反射镜在内层控温装置内,反射镜支撑结构在内层控温装置与外层控温装置之间;通过控制内辐射器的温度来控制反射镜的温度,并通过控制外辐射器温度来控制支撑结构的温度,有效地保证了反射器和支撑结构温度的一致性。
A sandwich-type precision thermal control device for space optical remote sensor reflectors, belonging to the field of space optical remote sensor thermal control technology, which solves the problems of uneven heating temperature, general stability and reflector body in the prior art The technical problem of temperature consistency between the supporting structure; the present invention includes an inner layer temperature control device, an outer layer temperature control device and a mirror support structure; the inner layer temperature control device has the same structure as the outer layer temperature control device, reflecting The mirror support structure is between the inner layer temperature control device and the outer layer temperature control device, the reflector is inside the inner layer temperature control device, and the reflector support structure is between the inner layer temperature control device and the outer layer temperature control device; The temperature of the reflector is controlled by the temperature of the radiator, and the temperature of the supporting structure is controlled by controlling the temperature of the external radiator, which effectively ensures the consistency of the temperature of the reflector and the supporting structure.
Description
技术领域technical field
本发明属于空间光学遥感器热控技术领域,具体涉及一种用于空间光学遥感器反射镜的夹层式精密热控装置。The invention belongs to the technical field of thermal control of space optical remote sensors, and in particular relates to a sandwich type precision thermal control device used for reflectors of space optical remote sensors.
背景技术Background technique
随着空间观测技术的发展以及空间光学遥感器性能的不断提升,对空间光学遥感器反射镜温度的控制要求也越来越高,因为空间光学遥感器反射镜及其支撑结构的温度稳定性和温度均匀性是影响成像质量的主要因素。传统空间光学遥感器反射镜的热控制方法是在反射镜及其支撑结构组件上设置加热器,通过黏贴在反射镜及其支撑结构上的温度传感器反馈温度,通过温度测控装置调节加热器的加热时间来控制温度,通过这种方法控制空间光学遥感器反射镜及其支撑结构温度由于支撑结构遮挡加热器对反射镜的辐射加热,使得反射镜受热不均匀,导致反射镜镜体受热温度不均匀;加热器距离反射镜远,反射镜镜体温度对加热器的响应时间较长,温度控制过程中反射镜镜体存在温度波动现象,导致反射镜的温度稳定性差;反射镜镜体与支撑结构之间的温度一致性差,影响反射镜面形精度。With the development of space observation technology and the continuous improvement of the performance of space optical remote sensors, the requirements for temperature control of space optical remote sensor reflectors are also getting higher and higher, because the temperature stability of space optical remote sensor reflectors and their supporting structures and Temperature uniformity is the main factor affecting imaging quality. The thermal control method of the reflector of the traditional space optical remote sensor is to install a heater on the reflector and its supporting structure components, feed back the temperature through the temperature sensor pasted on the reflector and its supporting structure, and adjust the temperature of the heater through the temperature measurement and control device. The heating time is used to control the temperature. This method is used to control the temperature of the space optical remote sensor reflector and its supporting structure. Because the support structure blocks the radiation heating of the reflector by the heater, the reflector is heated unevenly, resulting in uneven heating temperature of the reflector body. Uniform; the heater is far away from the reflector, the response time of the reflector body temperature to the heater is long, and the temperature fluctuation phenomenon of the reflector body exists during the temperature control process, resulting in poor temperature stability of the reflector; the reflector body and the support The poor temperature consistency between the structures affects the surface shape accuracy of the reflector.
发明内容Contents of the invention
本发明的目的提供一种用于空间光学遥感器反射镜的夹层式精密热控装置,解决现有技术中反射镜镜体受热温度不均匀、稳定性一般和反射镜镜体与支撑结构之间的温度一致性差的技术问题。The purpose of the present invention is to provide a sandwich type precision thermal control device for space optical remote sensor reflectors, which solves the problem of uneven heating temperature of reflector body, general stability and gap between reflector body and support structure in the prior art The technical problem of poor temperature consistency.
本发明一种用于空间光学遥感器反射镜的夹层式精密热控装置,包括内层控温装置、外层控温装置和反射镜支撑结构;所述内层控温装置与外层控温装置结构相同,反射镜支撑结构在内层控温装置与外层控温装置之间;The present invention is a sandwich type precise thermal control device for space optical remote sensor reflector, comprising an inner layer temperature control device, an outer layer temperature control device and a support structure for the reflector; the inner layer temperature control device and the outer layer temperature control device The device structure is the same, the reflector support structure is between the inner layer temperature control device and the outer layer temperature control device;
内层控温装置包括内辐射器、内隔热垫、钛合金螺钉、内多层隔热组件和内层控温回路;内辐射器的外表面的四个侧壁和底部分别粘贴n个内层控温回路,内层控温回路包括两个内温度传感器和m片内加热器,两个内温度传感器用于采集加热器的温度;内辐射器内表面附有高发射率涂层,内多层隔热组件通过尼龙搭扣包覆在内辐射器的外表面上,内辐射器通过钛合金螺钉和内隔热垫固定连接在反射镜支撑结构上;The inner layer temperature control device includes an inner radiator, an inner heat insulation pad, a titanium alloy screw, an inner multilayer heat insulation component and an inner layer temperature control circuit; the four side walls and the bottom of the outer surface of the inner radiator are respectively pasted with n inner Layer temperature control loop, the inner layer temperature control loop includes two internal temperature sensors and m-chip internal heaters, the two internal temperature sensors are used to collect the temperature of the heater; the inner surface of the inner radiator is coated with a high emissivity coating, and the inner surface The multi-layer heat insulation component is covered with Velcro on the outer surface of the inner radiator, and the inner radiator is fixedly connected to the mirror supporting structure through titanium alloy screws and inner heat insulation pads;
外层控温装置包括外辐射器、外隔热垫、钛合金螺钉、外多层隔热组件和外层控温回路;外辐射器的外表面的四个侧壁和底部分别粘贴n个外层控温回路,外层控温回路包括两个外温度传感器和m片内加热器,两个外温度传感器用于采集加热器的温度;外辐射器内表面附有高发射率涂层,外多层隔热组件通过尼龙搭扣包覆在内辐射器的外表面上,外辐射器通过钛合金螺钉和内隔热垫固定连接在反射镜支撑结构上。The outer layer temperature control device includes an outer radiator, an outer heat insulation pad, a titanium alloy screw, an outer multilayer heat insulation component and an outer layer temperature control circuit; the four side walls and the bottom of the outer surface of the outer radiator are respectively pasted with n outer Layer temperature control circuit, the outer temperature control circuit includes two external temperature sensors and m-chip internal heaters, the two external temperature sensors are used to collect the temperature of the heater; the inner surface of the outer radiator is coated with high emissivity, and the outer surface The multi-layer heat insulation component is coated on the outer surface of the inner radiator by Velcro, and the outer radiator is fixedly connected to the supporting structure of the reflector by titanium alloy screws and inner heat insulation pads.
所述反射镜支撑结构包括支撑架、安装面和柔性支撑;支撑架通过安装面固定连接在外辐射器上,柔性支撑在支撑架上,柔性支撑用于支撑反射镜。The reflector support structure includes a support frame, a mounting surface and a flexible support; the support frame is fixedly connected to the external radiator through the mounting surface, and the flexible support is on the support frame, and the flexible support is used to support the reflector.
所述两个内温度传感器(4)距离m片内加热器(3)的最远距离均不超过5mm。The farthest distance between the two internal temperature sensors (4) and the m-chip internal heater (3) is no more than 5mm.
所述两个外温度传感器(6)距离m片外加热器(5)的最远距离均不超过5mm。The farthest distance between the two external temperature sensors (6) and the m-chip external heater (5) is no more than 5mm.
所述n≥1。Said n≥1.
所述m≥1。Said m≥1.
所述内多层隔热组件为5单元隔热组件,每单元层隔热组件由一层双面镀铝薄膜和一层涤纶网组成。The inner multilayer heat insulation component is a 5-unit heat insulation component, and each unit layer heat insulation component is composed of a layer of double-sided aluminized film and a layer of polyester mesh.
所述外多层隔热组件为10单元隔热组件,每单元层隔热组件由一层双面镀铝薄膜和一层涤纶网组成。The outer multilayer heat insulation component is a 10-unit heat insulation component, and each unit layer heat insulation component is composed of a layer of double-sided aluminized film and a layer of polyester mesh.
本发明的有益技术效果:本发明内辐射器的内表面附有高发射率涂层,外面表粘贴内加热器和内温度传感器,内辐射器与反射镜镜体之间形成高发射率空腔,反射镜镜体受热均匀,保证了反射镜镜体温度的快速响应和温度受控良好。外辐射器的内表面附有高发射率涂层,外表面粘贴外加热器和外温度传感器,外辐射器与内辐射器之间形成高发射率空腔,保证了外辐射器对支撑结构形成有效的辐射加热,支撑结构受热均匀;内辐射器外表面的内多层隔热组件能够有效降低外辐射器对内辐射器温度的影响,保证了反射镜温度的稳定性,外辐射器外表面的外多层隔热组件能够有效降低外部环境对外辐射器温度的影响,保证了支撑结构的稳定性;通过控制内辐射器的温度来控制反射镜的温度,并通过控制外辐射器温度来控制支撑结构的温度,有效地保证了反射器和支撑结构温度的一致性。Beneficial technical effects of the present invention: the inner surface of the inner radiator of the present invention is attached with a high-emissivity coating, the outer surface is pasted with an inner heater and an inner temperature sensor, and a high-emissivity cavity is formed between the inner radiator and the mirror body , the mirror body is evenly heated, which ensures the rapid response and good temperature control of the mirror body temperature. The inner surface of the outer radiator is coated with a high-emissivity coating, and the outer surface is pasted with an external heater and an external temperature sensor. A high-emissivity cavity is formed between the outer radiator and the inner radiator, which ensures that the outer radiator is formed on the supporting structure. Effective radiant heating, the support structure is evenly heated; the inner multi-layer heat insulation component on the outer surface of the inner radiator can effectively reduce the influence of the outer radiator on the temperature of the inner radiator, ensuring the stability of the temperature of the reflector, and the outer surface of the outer radiator The external multi-layer heat insulation component can effectively reduce the influence of the external environment on the temperature of the external radiator and ensure the stability of the supporting structure; the temperature of the reflector is controlled by controlling the temperature of the internal radiator, and the temperature of the external radiator is controlled by controlling the temperature of the external radiator. The temperature of the supporting structure effectively ensures the consistency of the temperature of the reflector and the supporting structure.
附图说明Description of drawings
图1为本发明一种用于空间光学遥感器反射镜的夹层式精密热控装置的结构示意图;Fig. 1 is a structural representation of a sandwich type precision thermal control device for space optical remote sensor reflectors of the present invention;
图2为本发明一种用于空间光学遥感器反射镜的夹层式精密热控装置的原理图;Fig. 2 is a schematic diagram of a sandwich type precision thermal control device for space optical remote sensor reflectors of the present invention;
其中,1、内辐射器,2、外辐射器,3、内加热器,4、内温度传感器,5、外加热器,6、外温度传感器,7、反射镜支撑结构,8、安装面,9、内隔热垫,10、柔性支撑,11、外隔热垫,12、内多层隔热组件,13、外多层隔热组件。Among them, 1. inner radiator, 2. outer radiator, 3. inner heater, 4. inner temperature sensor, 5. outer heater, 6. outer temperature sensor, 7. mirror support structure, 8. mounting surface, 9. Inner heat insulation pad, 10. Flexible support, 11. Outer heat insulation pad, 12. Inner multilayer heat insulation component, 13. Outer multilayer heat insulation component.
具体实施方式Detailed ways
下面结合附图对本发明作进一步阐述。The present invention will be further elaborated below in conjunction with the accompanying drawings.
具体实施方式一:Specific implementation mode one:
参见附图1和附图2,本发明一种用于空间光学遥感器反射镜的夹层式精密热控装置,包括内层控温装置、外层控温装置和反射镜支撑结构,内层控温装置与外层控温装置的结构相同,反射镜支撑结构7在内层控温装置和外层控温装置之间;Referring to accompanying drawing 1 and accompanying drawing 2, the present invention is a kind of interlayer type precision thermal control device for space optical remote sensor reflector, comprises inner layer temperature control device, outer layer temperature control device and reflector supporting structure, inner layer control The structure of the temperature control device is the same as that of the outer layer temperature control device, and the reflector support structure 7 is between the inner layer temperature control device and the outer layer temperature control device;
内层控温装置包括内辐射器1、内隔热垫9、钛合金螺钉、内多层隔热组件12和内层控温回路;内辐射器1的外表面的四个侧壁和底部分别粘贴n个内层控温回路,内层控温回路包括两个内温度传感器4和m片内加热器3,两个内温度传感器4用于采集加热器的温度;内辐射器1内表面附有高发射率涂层,内多层隔热组件12通过尼龙搭扣包覆在内辐射器1的外表面上,内辐射器通过两组钛合金螺钉和内隔热垫9固定连接在反射镜支撑结构7上;The inner layer temperature control device includes an inner radiator 1, an inner heat insulation pad 9, titanium alloy screws, an inner multilayer heat insulation assembly 12 and an inner layer temperature control circuit; the four side walls and the bottom of the outer surface of the inner radiator 1 are respectively Paste n inner layer temperature control loops, the inner layer temperature control loop includes two inner temperature sensors 4 and m-chip inner heaters 3, the two inner temperature sensors 4 are used to collect the temperature of the heater; the inner surface of the inner radiator 1 is attached With a high-emissivity coating, the inner multi-layer heat insulation component 12 is coated on the outer surface of the inner radiator 1 by Velcro, and the inner radiator is fixedly connected to the reflector by two sets of titanium alloy screws and the inner heat insulation pad 9 on the support structure 7;
外层控温装置包括外辐射器2、外隔热垫11、钛合金螺钉、外多层隔热组件13和外层控温回路;外辐射器2的外表面的四个侧壁和底部分别粘贴n个外层控温回路,外层控温回路包括两个外温度传感器6和m片内加热器3,两个外温度传感器6用于采集加热器的温度;外辐射器2内表面附有高发射率涂层,外多层隔热组件13通过尼龙搭扣包覆在内辐射器1的外表面上,外辐射器2通过两组钛合金螺钉和内隔热垫9固定连接在反射镜支撑结构7上。The outer layer temperature control device includes an outer radiator 2, an outer heat insulation pad 11, titanium alloy screws, an outer multilayer heat insulation assembly 13 and an outer layer temperature control circuit; the four side walls and the bottom of the outer surface of the outer radiator 2 are respectively Paste n outer layer temperature control loops, the outer layer temperature control loop includes two outer temperature sensors 6 and m-chip internal heaters 3, the two outer temperature sensors 6 are used to collect the temperature of the heater; the inner surface of the outer radiator 2 is attached There is a high-emissivity coating, and the outer multi-layer heat insulation component 13 is coated on the outer surface of the inner radiator 1 by Velcro, and the outer radiator 2 is fixedly connected to the reflector by two sets of titanium alloy screws and the inner heat insulation pad Mirror support structure 7.
所述反射镜支撑结构7包括支撑架、安装面8和柔性支撑10;支撑架通过安装面8固定连接在外辐射器2上,柔性支撑10在支撑架上,柔性支撑10用于支撑反射镜。The mirror support structure 7 includes a support frame, a mounting surface 8 and a flexible support 10; the support frame is fixedly connected to the outer radiator 2 through the mounting surface 8, the flexible support 10 is on the support frame, and the flexible support 10 is used to support the reflector.
反射镜在内层控温装置内,反射镜支撑机构在内层控温装置和外层控温装置之间。The reflector is inside the inner layer temperature control device, and the reflector supporting mechanism is between the inner layer temperature control device and the outer layer temperature control device.
所述两个内温度传感器(4)距离m片内加热器(3)的最远距离均不超过5mm。The farthest distance between the two internal temperature sensors (4) and the m-chip internal heater (3) is no more than 5 mm.
所述两个外温度传感器(6)距离m片外加热器(5)的最远距离均不超过5mm。The farthest distance between the two external temperature sensors (6) and the m-chip external heater (5) is no more than 5mm.
所述n≥1。Said n≥1.
所述m≥1。Said m≥1.
所述内多层隔热组件12为5单元隔热组件,每单元层隔热组件由一层双面镀铝薄膜和一层涤纶网组成。The inner multilayer heat insulation component 12 is a 5-unit heat insulation component, and each unit layer heat insulation component is composed of a layer of double-sided aluminized film and a layer of polyester mesh.
所述外多层隔热组件13为10单元隔热组件,每单元层隔热组件由一层双面镀铝薄膜和一层涤纶网组成。The outer multilayer heat insulation assembly 13 is a 10-unit heat insulation assembly, and each unit layer heat insulation assembly is composed of a layer of double-sided aluminized film and a layer of polyester mesh.
所述内辐射器1内表面附有涂层为内辐射器1内表面进行黑色阳极氧化处理或涂黑漆,表面发射率不低于0.85。The inner surface of the inner radiator 1 is coated with black anodic oxidation treatment or black paint on the inner surface of the inner radiator 1, and the surface emissivity is not lower than 0.85.
所述外辐射器2内表面附有涂层为外辐射器2内表面进行黑色阳极氧化处理或涂黑漆,表面发射率不低于0.85。The inner surface of the outer radiator 2 is coated with black anodic oxidation treatment or black paint on the inner surface of the outer radiator 2, and the surface emissivity is not lower than 0.85.
具体实施例二:Specific embodiment two:
本实施例与实施例一的区别在于,内辐射器1外表面的四个侧壁和底部分别粘贴1个控温回路,每个控温回路采用2支内温度传感器4和1片内加热器3,两支内温度传感器4距离内加热器3的距离为3mm;The difference between this embodiment and Embodiment 1 is that a temperature control loop is pasted on the four side walls and the bottom of the outer surface of the inner radiator 1, and each temperature control loop uses two internal temperature sensors 4 and one internal heater. 3. The distance between the two inner temperature sensors 4 and the inner heater 3 is 3mm;
外辐射器2外表面的四个侧壁和底部分别粘贴1个控温回路,每个控温回路采用2支外温度传感器6和1片外加热器5,两支外温度传感器6距加热片的距离为3mm。A temperature control circuit is pasted on the four side walls and the bottom of the outer surface of the outer radiator 2, and each temperature control circuit adopts two external temperature sensors 6 and one external heater 5, and the distance between the two external temperature sensors 6 and the heating plate The distance is 3mm.
具体试试方式三:Specific try method three:
本实施例与实施例一的区别在于,内辐射器1外表面的四个侧壁和底部分别粘贴1个控温回路,4个侧壁的每个控温回路采用2支内温度传感器4和2片内加热器3,两支内温度传感器4在2片内加热器3之间,且2支内温度传感器4距两片加热片的距离均为5mm,底部的控温回路采用2支内温度传感器4和4片内加热器3;2只内温度传感器4在4片内加热器3的中间位置,且2支内温度传感器4距4片加热器的距离均为5mm;The difference between this embodiment and Embodiment 1 is that one temperature control circuit is pasted on the four side walls and the bottom of the outer surface of the inner radiator 1, and each temperature control circuit of the four side walls uses two internal temperature sensors 4 and Two internal heaters 3, two internal temperature sensors 4 are between the two internal heaters 3, and the distance between the two internal temperature sensors 4 and the two heating plates is 5mm, and the temperature control circuit at the bottom adopts two internal The temperature sensor 4 and the 4 internal heaters 3; 2 internal temperature sensors 4 are in the middle of the 4 internal heaters 3, and the distance between the 2 internal temperature sensors 4 and the 4 internal heaters is 5mm;
外辐射器2外表面的四个侧壁和底部分别粘贴1个控温回路,4个侧壁的每个控温回路采用2支外温度传感器6和2片外加热器5,两支外温度传感器6在2片外加热器5之间,且2支外温度传感器6距两片加热片的距离均为5mm,底部的控温回路采用2支外温度传感器6和4片外加热器5;2只外温度传感器6在4片外加热器5的中间位置,且2支外温度传感器6距4片加热器的距离均为5mm。The four side walls and the bottom of the outer surface of the outer radiator 2 are respectively pasted with one temperature control circuit, and each temperature control circuit of the four side walls adopts two external temperature sensors 6 and two external heaters 5, and two external temperature sensors The sensor 6 is between the two external heaters 5, and the distance between the two external temperature sensors 6 and the two heating plates is 5mm, and the temperature control circuit at the bottom adopts two external temperature sensors 6 and four external heaters 5; The two external temperature sensors 6 are located in the middle of the four external heaters 5, and the distance between the two external temperature sensors 6 and the four heaters is 5 mm.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410788389.0A CN104516087B (en) | 2014-12-17 | 2014-12-17 | A kind of sandwich-type precision thermal controls apparatus for space optical remote sensor speculum |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410788389.0A CN104516087B (en) | 2014-12-17 | 2014-12-17 | A kind of sandwich-type precision thermal controls apparatus for space optical remote sensor speculum |
Publications (2)
Publication Number | Publication Date |
---|---|
CN104516087A true CN104516087A (en) | 2015-04-15 |
CN104516087B CN104516087B (en) | 2017-06-09 |
Family
ID=52791653
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201410788389.0A Active CN104516087B (en) | 2014-12-17 | 2014-12-17 | A kind of sandwich-type precision thermal controls apparatus for space optical remote sensor speculum |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104516087B (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106291864A (en) * | 2016-08-25 | 2017-01-04 | 中国科学院长春光学精密机械与物理研究所 | Reflecting mirror support structure, mirror assembly and optical remote sensing camera |
CN106304796A (en) * | 2016-09-29 | 2017-01-04 | 中国科学院西安光学精密机械研究所 | Multifunctional composite electronic box for spacecraft |
CN106378979A (en) * | 2016-08-29 | 2017-02-08 | 中国科学院长春光学精密机械与物理研究所 | Space material thermal conductivity improvement method |
CN107703602A (en) * | 2017-09-26 | 2018-02-16 | 中国科学院长春光学精密机械与物理研究所 | A kind of mirror assembly and preparation method thereof |
CN110376704A (en) * | 2019-06-25 | 2019-10-25 | 中国科学院长春光学精密机械与物理研究所 | A kind of temperature control shield of space optical reflectors |
CN111246607A (en) * | 2020-01-14 | 2020-06-05 | 西安应用光学研究所 | Local heating device for airborne photoelectric turret reflector |
CN112666670A (en) * | 2019-09-30 | 2021-04-16 | 中国科学院长春光学精密机械与物理研究所 | Active thermal control device and method of space optical remote sensor |
CN113138376A (en) * | 2021-05-21 | 2021-07-20 | 中国科学院长春光学精密机械与物理研究所 | Device for automatically correcting thermo-optic of laser radar |
CN114509851A (en) * | 2021-12-28 | 2022-05-17 | 北京空间机电研究所 | Temperature-control type radiation cold screen device for heat dissipation of light inlet of large-caliber optical remote sensor |
CN114690367A (en) * | 2020-12-30 | 2022-07-01 | 中国科学院长春光学精密机械与物理研究所 | A thermal control device for reflective mirrors of ground optical facilities |
CN115617096A (en) * | 2022-12-21 | 2023-01-17 | 中国科学院长春光学精密机械与物理研究所 | Precise temperature control device for the primary reflector of large aperture space optical remote sensor |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4782492A (en) * | 1986-05-05 | 1988-11-01 | Polaroid Corporation | Thermally controllable optical devices and system |
CN104062739A (en) * | 2014-06-06 | 2014-09-24 | 苏州华徕光电仪器有限公司 | Flexible supporting structure of large-caliber primary reflector |
JP2014179624A (en) * | 2007-10-09 | 2014-09-25 | Carl Zeiss Smt Gmbh | Temperature control device of optical element |
-
2014
- 2014-12-17 CN CN201410788389.0A patent/CN104516087B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4782492A (en) * | 1986-05-05 | 1988-11-01 | Polaroid Corporation | Thermally controllable optical devices and system |
JP2014179624A (en) * | 2007-10-09 | 2014-09-25 | Carl Zeiss Smt Gmbh | Temperature control device of optical element |
CN104062739A (en) * | 2014-06-06 | 2014-09-24 | 苏州华徕光电仪器有限公司 | Flexible supporting structure of large-caliber primary reflector |
Non-Patent Citations (2)
Title |
---|
郭亮: "基于灵敏度分析的空间高光谱成像仪热控制技术研究", 《中国博士学位论文全文数据库 工程科技II辑》 * |
陈立恒 等: "基于热光学技术的空间光学系统热设计", 《中国光学与应用光学》 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106291864B (en) * | 2016-08-25 | 2019-04-02 | 中国科学院长春光学精密机械与物理研究所 | Reflecting mirror support structure, mirror assembly and optical remote sensing camera |
CN106291864A (en) * | 2016-08-25 | 2017-01-04 | 中国科学院长春光学精密机械与物理研究所 | Reflecting mirror support structure, mirror assembly and optical remote sensing camera |
CN106378979A (en) * | 2016-08-29 | 2017-02-08 | 中国科学院长春光学精密机械与物理研究所 | Space material thermal conductivity improvement method |
CN106304796A (en) * | 2016-09-29 | 2017-01-04 | 中国科学院西安光学精密机械研究所 | Multifunctional composite electronic box for spacecraft |
CN107703602A (en) * | 2017-09-26 | 2018-02-16 | 中国科学院长春光学精密机械与物理研究所 | A kind of mirror assembly and preparation method thereof |
CN110376704A (en) * | 2019-06-25 | 2019-10-25 | 中国科学院长春光学精密机械与物理研究所 | A kind of temperature control shield of space optical reflectors |
CN112666670A (en) * | 2019-09-30 | 2021-04-16 | 中国科学院长春光学精密机械与物理研究所 | Active thermal control device and method of space optical remote sensor |
CN111246607A (en) * | 2020-01-14 | 2020-06-05 | 西安应用光学研究所 | Local heating device for airborne photoelectric turret reflector |
CN114690367A (en) * | 2020-12-30 | 2022-07-01 | 中国科学院长春光学精密机械与物理研究所 | A thermal control device for reflective mirrors of ground optical facilities |
CN113138376A (en) * | 2021-05-21 | 2021-07-20 | 中国科学院长春光学精密机械与物理研究所 | Device for automatically correcting thermo-optic of laser radar |
CN113138376B (en) * | 2021-05-21 | 2023-09-22 | 中国科学院长春光学精密机械与物理研究所 | A device for automatic correction of laser radar thermal optics |
CN114509851A (en) * | 2021-12-28 | 2022-05-17 | 北京空间机电研究所 | Temperature-control type radiation cold screen device for heat dissipation of light inlet of large-caliber optical remote sensor |
CN114509851B (en) * | 2021-12-28 | 2024-05-14 | 北京空间机电研究所 | Temperature-control type radiation cold screen device for heat radiation of light inlet of large-caliber optical remote sensor |
CN115617096A (en) * | 2022-12-21 | 2023-01-17 | 中国科学院长春光学精密机械与物理研究所 | Precise temperature control device for the primary reflector of large aperture space optical remote sensor |
CN115617096B (en) * | 2022-12-21 | 2023-03-10 | 中国科学院长春光学精密机械与物理研究所 | Precise temperature control device for the primary reflector of large aperture space optical remote sensor |
Also Published As
Publication number | Publication date |
---|---|
CN104516087B (en) | 2017-06-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104516087B (en) | A kind of sandwich-type precision thermal controls apparatus for space optical remote sensor speculum | |
CN105562307B (en) | Radiation plate, preparation process and infrared standard radiation device | |
CN208164309U (en) | A kind of photocuring 3D printer and its light supply apparatus | |
JPH0625919Y2 (en) | Infrared heater | |
CN101592346B (en) | oven hearth | |
CN114052297B (en) | Heating assembly and aerosol generating device | |
CN110376704A (en) | A kind of temperature control shield of space optical reflectors | |
CN208207915U (en) | A kind of camera calibration device and its scaling board | |
CN102230841A (en) | Controlled infrared planar radiative heat source with high degree of homogeneity | |
CN104571176A (en) | High-precision zone control temperature simulation device | |
CN104210673A (en) | Thermal control method for star sensor assembly | |
JP2016096037A (en) | Heating head, heater using the same, and heating method | |
JPWO2017131041A1 (en) | Heater, fixing device including the same, image forming apparatus, and heating apparatus | |
JP2015187524A (en) | Ultrasonic vibration heating dryer | |
WO2017020442A1 (en) | Hair straightener heating element | |
CN109237593B (en) | Greenhouse assembly, preparation method thereof and greenhouse with greenhouse assembly | |
CN104768250B (en) | Low energy consumption electric ehated glass plate | |
JP5871885B2 (en) | Contact test apparatus and environmental test method | |
CN205593037U (en) | Multi -functional heating plate | |
CN111791487A (en) | A 3D printer | |
CN210886218U (en) | Baking device of optical coating machine | |
CN105549306A (en) | Light-weight robust thermal control apparatus used for carbon fiber main supporting structure camera | |
CN211339545U (en) | Culture cabin with double-layer heating glass | |
CN105417491B (en) | Preparation method for calibration blackbody light source | |
CN205087164U (en) | A precise level adjustment device for vacuum and low temperature environment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |