CN104505866B - 一种仿真多馈入直流故障恢复特性的等效解耦方法 - Google Patents

一种仿真多馈入直流故障恢复特性的等效解耦方法 Download PDF

Info

Publication number
CN104505866B
CN104505866B CN201410855504.1A CN201410855504A CN104505866B CN 104505866 B CN104505866 B CN 104505866B CN 201410855504 A CN201410855504 A CN 201410855504A CN 104505866 B CN104505866 B CN 104505866B
Authority
CN
China
Prior art keywords
mrow
equivalent
direct current
short
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410855504.1A
Other languages
English (en)
Other versions
CN104505866A (zh
Inventor
夏成军
黄浩宇
蓝海文
周保荣
洪潮
李鸿鑫
姚文峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Research Institute of Southern Power Grid Co Ltd
Original Assignee
South China University of Technology SCUT
Research Institute of Southern Power Grid Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT, Research Institute of Southern Power Grid Co Ltd filed Critical South China University of Technology SCUT
Priority to CN201410855504.1A priority Critical patent/CN104505866B/zh
Publication of CN104505866A publication Critical patent/CN104505866A/zh
Application granted granted Critical
Publication of CN104505866B publication Critical patent/CN104505866B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了一种仿真多馈入直流故障恢复特性的等效解耦方法,包括以下步骤:1、将N直流馈入系统划分为N个区域形成N回直流,使每个区域只包含一回直流;2、设计受端系统解耦等效短路比计算方法并求取解耦等效短路比;3、送端系统采用与受端系统相同的方法计算其解耦等效短路比;4、依据解耦等效短路比,建立解耦后N个单直流馈入系统仿真模型;5、在单直流馈入系统仿真模型上设置等效的故障,以模拟多直流馈入系统故障。具有减小了交直流电网电磁暂态仿真规模,缩短了计算机仿真机时间和易于推广使用等优点。

Description

一种仿真多馈入直流故障恢复特性的等效解耦方法
技术领域
本发明涉及一种电力系统暂态仿真技术,特别涉及一种仿真多馈入直流故障恢复特性的等效解耦方法。
背景技术
当一个系统中存在多条直流输电线路,且其中若干换流站的交流母线间的电气距离较小(或为零)时,则相应的直流输电线路和这些换流站交流母线所在的区域构成了所谓的“多馈入直流输电系统”,即MIDC系统。
对多馈入直流输电系统进行研究,需准确模拟输电系统的复杂动态响应,目前处理的方法是,对各回直流进行详细建模,建立起包含所有直流的大规模交直流系统模型,但问题在于直流输电系统规模日益扩大,交直流混合系统中馈入的直流回数越来越多,仿真软件(如PSCAD/EMTDC、RTDS等)仿真模型越来越大,同时仿真计算量越大,受到仿真软件计算规模瓶颈的限制,制约着对大规模交直流电网的研究。
立足于保留多馈入直流输电系统故障下的动态响应特性,本发明提出一种仿真多馈入直流故障恢复特性的等效解耦方法,将一个N馈入直流系统通过计算每回直流多馈入短路比与N回直流的多馈入短路比的均值的偏差,设计解耦等效短路比,将其等效为N个解耦等效单馈入直流系统;大大简化仿真模型规模,从等效解耦的角度提出解决仿真软件规模限制方案的一种方法。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种仿真多馈入直流故障恢复特性的等效解耦方法,该等效解耦方法克服了仿真软件建模规模上的不足,突破了瓶颈,达到了解耦简化多馈入仿真模型的目标,该方法物理意义明确、结构简单,对大规模交直流电网建模具有一定意义,易于推广使用。
本发明的目的通过下述技术方案实现:一种仿真多馈入直流故障恢复特性的等效解耦方法,包括以下步骤:
1)将N直流馈入系统划分为N个研究区域,使每个区域只含一回直流;
2)设计受端系统解耦等效短路比计算方法并求取解耦等效短路比;
3)送端系统采用与受端系统相同的方法计算其解耦等效短路比;
4)依据解耦等效短路比,建立解耦后N个单直流馈入系统仿真模型;
5)在单直流馈入系统仿真模型上设置等效的故障,以模拟多直流馈入系统故障。
所述步骤1)中,根据所需研究的N回直流,以送端、受端换流母线为边界将其划分为N个区域;
所述步骤2)中,确定受端系统的解耦等效短路比的设计方案。首先计算每回直流多馈入短路比,然后计算每回直流多馈入短路比与N回直流多馈入短路比均值的偏差(令为其中,i=1,2,3,…,N),最后求取每回直流的解耦等效短路比其中i=1,2,3,…,N;
31)第i回直流受端多馈入短路比的计算,如下式进行:
式中,Saci、Pdcni分别为第i条直流逆变站交流母线处的短路容量和直流系统的额定有功功率;Pdcnj为第j条直流额定有功功率;MIIFi j为多馈入直流相互作用因子;
32)对于第i回直流,求取短路比偏差如下:
其中,分别为第i和j回直流受端多馈入短路比,N为多馈入直流系统中直流的总回数。
33)第i回直流受端解耦等效短路比的求取如下式进行:
其中,为第i回直流受端短路比偏差系数。
34)第i回直流受端短路比偏差系数可依据故障点离换流母线的电气距离计算,按如下公式进行计算:
其中,Zii、Zjj为自阻抗;Zij为互阻抗;Zii,x为短路点与第i条直流的换流母线的电气距离形成的转移阻抗。
35)取i=1,2,3…N,重复步骤31)-34)即可得到受端解耦N个等效短路比。
所述步骤3)中,对送端M馈入系统进行解耦。第i回直流送端系统,实施与31)-34)步骤相同的方法进行解耦,可得送端M个解耦等效短路比(i=1,2,3…M);
所述步骤4)中,根据前述求得的送端系统解耦等效短路比受端系统解耦等效短路比(其中i=1,2,3…N)设计多直流馈入系统解耦后的电磁暂态仿真模型。由于主要研究直流系统的故障响应特性,同时为简化仿真系统,受端交流系统采用戴维宁等值电源模拟,其参数按照如下方法计算。
戴维宁等值电源幅值取主网额定电压,初始相角等于0。系统阻抗(戴维宁等值阻抗)按下式计算:
其中,为受端交流系统戴维宁等值电源幅值;Pdcni为第i条直流逆变站交流母线处的额定有功功率。令阻抗角(典型值),计算电阻值及电抗值如下:
送端系统的解耦等值阻抗的计算如式(6)所示,依据的原理与受端等值阻抗的计算原理相同。
其中,分别为第i和j回直流送端多馈入短路比,N为多馈入直流系统中直流的总回数;为第i回直流送端短路比偏差系数;,为送端交流系统戴维宁等值电源幅值;Pdcni为第i条直流逆变站交流母线处的额定有功功率;令阻抗角的值为典型值,即
所述步骤5)中,故障模拟方法。在换流母线上设置故障,通过一定的接地阻抗模拟原交流电网中某处发生的同类型故障,接地阻抗数值取为换流母线与原电网中故障点的转移阻抗。
本发明相对于现有技术具有如下的优点及效果:
1、本发明应用于多直流馈入大电网的故障后恢复特性的电磁暂态仿真(如PSCAD/MTDC、RTDS等)研究;将一个N直流馈入系统仿真模型,通过计算解耦等效短路比将其等效解耦为N个单直流馈入系统的仿真模型,且各直流仍保留原多直流系统的主要故障恢复特性,减小了交直流电网电磁暂态仿真规模,缩短了计算机仿真机时间和易于推广使用。
2、本发明的的仿真多馈入直流故障恢复特性的等效解耦方法,解决了仿真软件规模限制的瓶颈。随着电网的发展,其规模必将越来越复杂,势必对仿真软件的容量提出越来越高的要求,就目前的仿真软件规模限制必将无法满足仿真要求,通过本发明的方法避开了对仿真软件容量的要求。
附图说明
图1是本发明多馈入直流等效解耦的受端N馈入直流系统等效解耦示意图。
图2是DC1故障后双馈入直流系统、短路比为2.4与2.8的单馈入直流系统的仿真对比曲线。由图可知,双馈入直流系统故障后电气量(包括换流母线电压、直流电流、直流电压、受端最小熄弧角、逆变侧控制方式、阀消耗无功及阀传输有功)恢复特性位于短路比为2.4与2.8之间,且与2.4更为接近。
图3是DC1故障后双馈入直流系统故障后电气特性响应与等效解耦后电气响应的对比图。由图可知,短路比为2.51的单回直流故障后电气量特性基本表征了原双馈入直流系统的特性。
图4是DC2故障后双馈入直流系统、短路比为4.0与6.9的单馈入直流系统的仿真对比曲线。由图可知,双馈入直流系统故障后电气量(包括换流母线电压、直流电流、直流电压、受端最小熄弧角、逆变侧控制方式、阀消耗无功及阀传输有功)恢复特性位于短路比为4.0与6.9之间,且与4.0更为接近。
图5是DC2故障后双馈入直流系统故障后电气特性响应与等效解耦后电气响应的对比图。由图可知,短路比为3.66的单回直流故障后电气量特性基本表征了原双馈入直流系统的特性
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例
本实施例中,仿真选取PSCAD/EMTDC作为电磁暂态时域仿真验证平台,将受端双馈人直流系统作为验证算例,按照本发明所述步骤1)~步骤6)进行。两回直流分别记为DC1、DC2,换流母线额定电压均为Uac,单回直流短路比为:SCR1=2.8、SCR2=6.9;在受端双馈入系统中相互作用因子为MIIF1 2=0.30、经过相互因子作用,受端双馈入系统DC1支路短路比为:MISCR1=2.4,DC2支路短路比为MISCR2=4.0。分别在DC1、DC2换流母线上设置100ms三相短路故障。故障发生后,DC1、DC2三个模型各电气量动态响应如图1所示;假定受端DC1、DC2受端系统等效解耦偏差系数为可得到解耦后等效DC1回直流单回直流短路比为解耦后DC2回直流单回直流短路比为DC1回直流故障后动态响应对比如图2和图3所示。同理,DC2电气量动态响应如图4和图5所示。等效解耦后的两个单回直流模型,能准确表征原双馈入直流系统的动态特性,如换流器的无功消耗、有功的输送到达的峰值时间几乎相同,行之有效。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (5)

1.一种仿真多馈入直流故障恢复特性的等效解耦方法,其特征在于,包括以下步骤:
步骤1、将N直流馈入系统划分为N个区域形成N回直流,使每个区域只包含一回直流;
步骤2、设计受端系统解耦等效短路比计算方法并求取解耦等效短路比;
步骤3、送端系统采用与受端系统相同的方法计算其解耦等效短路比;
步骤4、依据解耦等效短路比,建立解耦后N个单直流馈入系统仿真模型;
步骤5、在单直流馈入系统仿真模型上设置等效的故障,以模拟多直流馈入系统故障;
所述步骤2中,确定受端系统的解耦等效短路比的设计方法,首先计算每回直流多馈入短路比,然后计算每回直流多馈入短路比与N回直流多馈入短路比均值的偏差,所述偏差用表示,其中,i=1,2,3…N,最后求取每回直流的解耦等效短路比其中,i=1,2,3…N;所述确定受端系统的解耦等效短路比的设计方法具体包括以下步骤:
步骤31、对于第i回直流,求取短路比偏差如下:
<mrow> <msubsup> <mi>&amp;Delta;MISCR</mi> <mi>i</mi> <mrow> <mi>I</mi> <mi>n</mi> <mi>v</mi> </mrow> </msubsup> <mo>=</mo> <mrow> <mo>(</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msubsup> <mi>MISCR</mi> <mi>j</mi> <mrow> <mi>I</mi> <mi>n</mi> <mi>v</mi> </mrow> </msubsup> <mo>/</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>-</mo> <msubsup> <mi>MISCR</mi> <mi>i</mi> <mrow> <mi>I</mi> <mi>n</mi> <mi>v</mi> </mrow> </msubsup> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
其中,分别为第i和j回直流受端多馈入短路比,N为多馈入直流系统中直流的总回数;
步骤32、第i回直流受端解耦等效短路比的求取如下式进行:
<mrow> <msubsup> <mi>SCR</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>e</mi> <mi>q</mi> <mi>u</mi> </mrow> <mrow> <mi>I</mi> <mi>n</mi> <mi>v</mi> </mrow> </msubsup> <mo>=</mo> <msubsup> <mi>MISCR</mi> <mi>i</mi> <mrow> <mi>I</mi> <mi>n</mi> <mi>v</mi> </mrow> </msubsup> <mo>+</mo> <msubsup> <mi>&amp;omega;</mi> <mi>i</mi> <mrow> <mi>I</mi> <mi>n</mi> <mi>v</mi> </mrow> </msubsup> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <msubsup> <mi>&amp;Delta;MISCR</mi> <mi>i</mi> <mrow> <mi>I</mi> <mi>n</mi> <mi>v</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
其中,为第i回直流受端短路比偏差系数;
步骤33、第i回直流受端短路比偏差系数可依据故障点离换流母线的电气距离计算,按如下公式进行计算:
<mrow> <msubsup> <mi>&amp;omega;</mi> <mi>i</mi> <mrow> <mi>I</mi> <mi>n</mi> <mi>v</mi> </mrow> </msubsup> <mo>=</mo> <mfrac> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mi>i</mi> <mo>,</mo> <mi>x</mi> </mrow> </msub> <mrow> <mfrac> <mn>1</mn> <mrow> <munderover> <munder> <mi>&amp;Sigma;</mi> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> </munder> <mrow> <mi>j</mi> <mo>&amp;NotEqual;</mo> <mi>i</mi> </mrow> <mi>N</mi> </munderover> <mfrac> <mn>1</mn> <mrow> <msub> <mi>Z</mi> <mrow> <mi>j</mi> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> </mrow> </mfrac> <mo>+</mo> <msub> <mi>Z</mi> <mrow> <mi>i</mi> <mi>i</mi> </mrow> </msub> </mrow> </mfrac> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
其中,Zii、Zjj为自阻抗;Zij为互阻抗;Zii,x为短路点与第i条直流的换流母线的电气距离形成的转移阻抗;
步骤34、取i=1,2,3,…,N,重复步骤31至33,即可得到受端系统的N个解耦等效短路比。
2.根据权利要求1所述的仿真多馈入直流故障恢复特性的等效解耦方法,其特征在于,所述步骤1中,根据所需研究的N回直流,以送端、受端换流母线为边界将其划分为N个区域。
3.根据权利要求1所述的仿真多馈入直流故障恢复特性的等效解耦方法,其特征在于,所述步骤3中,对送端M馈入系统进行解耦,第i回直流送端系统,采用31至34步骤中的方法进行解耦,可得送端M个解耦等效短路比其中,i=1,2,3,…,M。
4.根据权利要求1所述的仿真多馈入直流故障恢复特性的等效解耦方法,其特征在于,所述步骤4中,根据求得的送端系统解耦等效短路比和受端系统解耦等效短路比其中,i=1,2,3,…,N,设计多直流馈入系统解耦后的电磁暂态仿真模型;由于主要研究直流系统的故障响应特性,同时为简化仿真系统,受端交流系统采用戴维宁等值电源模拟,其参数按照如下方法计算;
戴维宁等值电源幅值取主网额定电压,初始相角等于0,系统阻抗即戴维宁等值阻抗按下式计算:
<mrow> <mo>|</mo> <msubsup> <mi>Z</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>e</mi> <mi>q</mi> <mi>u</mi> </mrow> <mrow> <mi>I</mi> <mi>n</mi> <mi>v</mi> </mrow> </msubsup> <mo>|</mo> <mo>=</mo> <mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <mrow> <mi>a</mi> <mi>c</mi> <mi>i</mi> </mrow> <mrow> <mi>I</mi> <mi>n</mi> <mi>v</mi> </mrow> </msubsup> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <msub> <mi>P</mi> <mrow> <mi>d</mi> <mi>c</mi> <mi>n</mi> <mi>i</mi> </mrow> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>SCR</mi> <mrow> <mi>i</mi> <mo>,</mo> <mi>e</mi> <mi>q</mi> <mi>u</mi> </mrow> <mrow> <mi>I</mi> <mi>n</mi> <mi>v</mi> </mrow> </msubsup> </mrow> </mfrac> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
其中,为受端交流系统戴维宁等值电源幅值;Pdcni为第i条直流逆变站交流母线处的额定有功功率;令阻抗角的值为典型值,即计算电阻值及电抗值如下:
送端系统的解耦等值阻抗的计算如式(6)所示,依据的原理与受端等值阻抗的计算原理相同;
其中,分别为第i和j回直流送端多馈入短路比,N为多馈入直流系统中直流的总回数;为第i回直流送端短路比偏差系数;为送端交流系统戴维宁等值电源幅值;Pdcni为第i条直流逆变站交流母线处的额定有功功率;令阻抗角的值为典型值,即
5.根据权利要求1所述的仿真多馈入直流故障恢复特性的等效解耦方法,其特征在于,所述步骤5中,在换流母线上设置故障,通过一定的接地阻抗模拟原交流电网中某处发生的同类型故障,接地阻抗数值取为换流母线与原电网中故障点的转移阻抗。
CN201410855504.1A 2014-12-31 2014-12-31 一种仿真多馈入直流故障恢复特性的等效解耦方法 Active CN104505866B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410855504.1A CN104505866B (zh) 2014-12-31 2014-12-31 一种仿真多馈入直流故障恢复特性的等效解耦方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410855504.1A CN104505866B (zh) 2014-12-31 2014-12-31 一种仿真多馈入直流故障恢复特性的等效解耦方法

Publications (2)

Publication Number Publication Date
CN104505866A CN104505866A (zh) 2015-04-08
CN104505866B true CN104505866B (zh) 2017-11-10

Family

ID=52947596

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410855504.1A Active CN104505866B (zh) 2014-12-31 2014-12-31 一种仿真多馈入直流故障恢复特性的等效解耦方法

Country Status (1)

Country Link
CN (1) CN104505866B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105071426B (zh) * 2015-07-27 2018-02-13 中国南方电网有限责任公司电网技术研究中心 多馈入直流输电系统的故障恢复控制方法和系统
CN106410848A (zh) * 2016-11-08 2017-02-15 浙江大学 一种电力电子多馈入电力系统小干扰稳定性评估方法
CN106408218B (zh) * 2016-11-21 2020-03-20 广东电网有限责任公司电力调度控制中心 一种多馈入交直流系统解列方式的稳定性确定方法及系统
CN107565594B (zh) * 2017-10-17 2020-10-30 北京四方继保自动化股份有限公司 考虑受端电压偏差影响的多直流间功率提升量分配方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3423539B2 (ja) * 1996-07-19 2003-07-07 三菱電機株式会社 高速再閉路装置
CN102891497A (zh) * 2012-09-24 2013-01-23 华北电力大学 利用静止同步补偿启动极弱受端高压直流输电系统的方法
CN102969732B (zh) * 2012-11-01 2015-06-17 浙江大学 一种混合双极直流输电系统
CN103219738B (zh) * 2013-03-29 2015-05-20 浙江大学 一种基于三极式结构的直流输电系统
CN203933036U (zh) * 2014-06-06 2014-11-05 南方电网科学研究院有限责任公司 一种直流输电逆变侧接入交流系统拓扑结构

Also Published As

Publication number Publication date
CN104505866A (zh) 2015-04-08

Similar Documents

Publication Publication Date Title
CN104505866B (zh) 一种仿真多馈入直流故障恢复特性的等效解耦方法
CN101505061B (zh) 一种基于时域仿真的戴维南等值参数跟踪的计算方法
CN106549384A (zh) 一种含upfc电力系统的通用潮流计算方法
CN101964525B (zh) 一种支持大规模电流量测的配电网状态估计方法
CN103336866B (zh) 一种电磁暂态仿真中含负电阻支路的处理方法
CN107577870A (zh) 基于同步相量量测的配电网电压功率灵敏度鲁棒估计方法
CN109256970B (zh) Mmc-mtdc输电系统单极接地故障电流计算方法
CN103605829A (zh) 对交直流混联电网进行电磁暂态仿真的等值建模方法
CN106295160A (zh) 交直流互联电网戴维南等值参数在线计算方法
CN107968434A (zh) 一种大容量直流功率扰动下风机暂态过电压分析方法
CN106340907A (zh) 一种电力系统安全稳定控制策略确定方法及装置
CN105305438B (zh) 基于变阻抗和受控交流电压源的新能源电站模型验证方法
CN105048468A (zh) 基于分布式计算的输配电网一体化电压稳定评估方法
CN106990326A (zh) 电力系统短路电流直流分量计算方法
CN104617576B (zh) 考虑直流控制特性的多直流馈出交流电网故障计算方法
CN107064736A (zh) 一种含多t接逆变型分布式电源配电网的故障定位方法
CN107465211A (zh) 孤岛微电网的分布式固定时间协调控制方法
CN106405337B (zh) 逆变型分布式电源接入配电网的故障定位方法
CN103955594A (zh) 一种电力系统动态等值方法
CN107064749A (zh) 一种复杂配电线路的故障定位方法
CN106655234A (zh) 一种线路阻抗和联络线功率对广义短路比影响的分析方法
CN107123983A (zh) 一种基于安全域的变电站接入方案辅助评估方法
CN105429131A (zh) 一种考虑负荷频率特性的负荷模型构建方法
CN106208099A (zh) 一种基于二层规划的电力系统无功优化方法及其应用
CN105095590B (zh) 一种基于三序等值阻抗的机电暂态仿真系统的建模方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant