CN104477986B - 一种黑色二氧化钛纳米管的制备方法 - Google Patents

一种黑色二氧化钛纳米管的制备方法 Download PDF

Info

Publication number
CN104477986B
CN104477986B CN201410762906.7A CN201410762906A CN104477986B CN 104477986 B CN104477986 B CN 104477986B CN 201410762906 A CN201410762906 A CN 201410762906A CN 104477986 B CN104477986 B CN 104477986B
Authority
CN
China
Prior art keywords
hour
titanium dioxide
deionized water
analytical pure
milliliters
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201410762906.7A
Other languages
English (en)
Other versions
CN104477986A (zh
Inventor
王海
王林江
宋业萍
李字华
孙壮志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Lida Technology Industry Co ltd
Original Assignee
SHENZHEN KONGQUE TECHNOLOGY DEVELOPMENT Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHENZHEN KONGQUE TECHNOLOGY DEVELOPMENT Co Ltd filed Critical SHENZHEN KONGQUE TECHNOLOGY DEVELOPMENT Co Ltd
Priority to CN201410762906.7A priority Critical patent/CN104477986B/zh
Publication of CN104477986A publication Critical patent/CN104477986A/zh
Application granted granted Critical
Publication of CN104477986B publication Critical patent/CN104477986B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种黑色二氧化钛纳米管的制备方法。将预先合成的0.1-0.5克MoO3纳米带粉体加入到10-30毫升去离子水与丙三醇的混合溶剂中,用磁力搅拌器搅拌0.5-1小时;此外,将0.5-2毫升四氯化钛加入到0.1-0.5毫升的水合肼中,用磁力搅拌器搅拌0.5-1小时;然后将含钛前躯体溶液加入到含MoO3的反应容器中,搅拌均匀后将其转入100毫升聚四氟乙烯衬底的不锈钢反应釜中,140-230℃水热反应12-16小时,过滤,将沉淀用无水乙醇洗涤3-6次后,常温干燥即得所述的黑色二氧化钛纳米管。本发明的优点在于:一方面,采用的前驱体是固体粉末,比较容易控制,另外利用该方法操作简便、成本低,并为锂离子电池,光催化,太阳电池等领域提供了新的材料。

Description

一种黑色二氧化钛纳米管的制备方法
技术领域
本发明属于材料化学领域,特别涉及一种黑色二氧化钛纳米管的制备方法。
背景技术
二氧化钛已经广泛应用在锂离子电池,太阳电池,光催化等领域。传统白色二氧化钛吸收光谱主要在5%紫外线波段,且对可见光,近红外和远红外部分的吸收非常有限,这无疑限制了二氧化钛在光电领域方面的应用。此外,其本征电导率只有大约10-10S/cm,低的导电率不利于电子-空穴的传输和分离,进一步影响到二氧化钛在光电应用领域性能的发挥。
黑色二氧化钛已证明具有良好的宽光谱吸收,物理化学稳定性和提高载流子浓度和电子迁移性能,能够满足高效太阳能的需要。从大量文献和专利调研来看,获得黑色二氧化钛的途径主要有高温氢气还原、氢等离子法、铝还原法和二步非金属掺杂法。
纳米管作为一种特殊的一维材料,相比体材料,因其优越的单向导电性而广泛应用在能源和环境领域。利用简单有效的方法合成黑色二氧化钛纳米管无疑是一个巨大挑战。本发明利用MoO3纳米带作为牺牲模板,水合肼作为还原剂,利用Mo离子进行外向迁移掺杂,获得了一种黑色二氧化钛纳米管。
发明内容
本发明的目的在于提供一种工艺简单,成本低的黑色二氧化钛纳米管的制备方法,该法操作简便、成本低、耗能低,得到的产品纯度高,可以大规模合成。
具体步骤为:
(1)将0.1克钼酸铵在磁力搅拌下溶解于30毫升去离子水并加入6毫升分析纯硝酸,搅拌半小时后将上述混合均匀的溶液转入100毫升聚四氟乙烯衬底的不锈钢反应釜中,180℃水热反应24小时,过滤,将沉淀用去离子水洗涤3-6次后,常温干燥即得MoO3纳米带。
(2)将0.1-0.5克步骤(1)得到的MoO3纳米带粉体加入到10-30毫升去离子水与分析纯丙三醇的混合溶剂中,用磁力搅拌器搅拌0.5-1小时;去离子水与分析纯丙三醇的体积比为0.5-1:1-2。
(3)将0.5-2毫升分析纯四氯化钛加入到0.1-0.5毫升的分析纯水合肼中,用磁力搅拌器搅拌0.5-1小时。
(4)将步骤(3)得到的溶液加入到步骤(2)所得溶液中,搅拌均匀后将其转入100毫升聚四氟乙烯衬底的不锈钢反应釜中,140-230℃水热反应12-16小时,过滤,将沉淀用无水乙醇洗涤3-6次后,常温干燥即得管长为1-10微米,管外径为300-500纳米,管壁厚10-20纳米的黑色二氧化钛纳米管。
本发明的优点在于:一方面,采用的前驱体是固体粉末,比较容易控制,另外利用该方法操作简便、成本低,并为锂离子电池,光催化,太阳电池等领域提供了新的材料。
附图说明
图1为本发明制备的黑色二氧化钛纳米管的X射线衍射花样图。
图2为本发明制备的MoO3纳米带的场发射扫描电镜照片。(a)低倍率场发射扫描电镜照片,(b)高倍率场发射扫描电镜照片。
图3为本发明制备的黑色二氧化钛纳米管的场发射扫描电镜照片。(a)-(b)低倍率场发射扫描电镜照片,(c)-(d)高倍率场发射扫描电镜照片。
具体实施方式
为了更好地理解本发明,下面结合实施例进一步阐明本发明的内容,但本
发明的内容不仅仅局限于下面的实施例。
实施例1:
(1)将0.1克钼酸铵在磁力搅拌下溶解于30毫升去离子水并加入6毫升分析纯硝酸,搅拌半小时后将上述混合均匀的溶液转入100毫升聚四氟乙烯衬底的不锈钢反应釜中,180℃水热反应24小时,过滤,将沉淀用去离子水洗涤3次后,常温干燥即得MoO3纳米带。
(2)将0.1克步骤(1)得到的MoO3纳米带粉体加入到10毫升去离子水与分析纯丙三醇的混合溶剂中,用磁力搅拌器搅拌0.5小时;去离子水与分析纯丙三醇的体积比为0.5:1。
(3)将0.5毫升分析纯四氯化钛加入到0.1毫升的分析纯水合肼中,用磁力搅拌器搅拌0.5小时。
(4)将步骤(3)得到的溶液加入到步骤(2)所得溶液中,搅拌均匀后将其转入100毫升聚四氟乙烯衬底的不锈钢反应釜中,140℃水热反应12小时,过滤,将沉淀用无水乙醇洗涤3次后,常温干燥即得管长为1-10微米,管外径为300-500纳米,管壁厚10-20纳米的黑色二氧化钛纳米管。
实施例2:
(1)将0.1克钼酸铵在磁力搅拌下溶解于30毫升去离子水并加入6毫升分析纯硝酸,搅拌半小时后将上述混合均匀的溶液转入100毫升聚四氟乙烯衬底的不锈钢反应釜中,180℃水热反应24小时,过滤,将沉淀用去离子水洗涤5次后,常温干燥即得MoO3纳米带。
(2)将0.5克步骤(1)得到的MoO3纳米带粉体加入到30毫升去离子水与分析纯丙三醇的混合溶剂中,用磁力搅拌器搅拌1小时;去离子水与分析纯丙三醇的体积比为1:2。
(3)将0.5毫升分析纯四氯化钛加入到0.1毫升的分析纯水合肼中,用磁力搅拌器搅拌0.5小时。
(4)将步骤(3)得到的溶液加入到步骤(2)所得溶液中,搅拌均匀后将其转入100毫升聚四氟乙烯衬底的不锈钢反应釜中,230℃水热反应16小时,过滤,将沉淀用无水乙醇洗涤6次后,常温干燥即得管长为1-10微米,管外径为300-500纳米,管壁厚10-20纳米的黑色二氧化钛纳米管。

Claims (1)

1.一种黑色二氧化钛纳米管的制备方法,其特征在于具体步骤为:
(1)将0.1克钼酸铵在磁力搅拌下溶解于30毫升去离子水并加入6毫升分析纯硝酸,搅拌半小时后将上述混合均匀的溶液转入100毫升聚四氟乙烯衬底的不锈钢反应釜中,180℃水热反应24小时,过滤,将沉淀用去离子水洗涤3-6次后,常温干燥即得MoO3纳米带;
(2)将0.1-0.5克步骤(1)得到的MoO3纳米带粉体加入到10-30毫升去离子水与分析纯丙三醇的混合溶剂中,用磁力搅拌器搅拌0.5-1小时;去离子水与分析纯丙三醇的体积比为0.5-1:1-2;
(3)将0.5-2毫升分析纯四氯化钛加入到0.1-0.5毫升的分析纯水合肼中,用磁力搅拌器搅拌0.5-1小时;
(4)将步骤(3)得到的溶液加入到步骤(2)所得溶液中,搅拌均匀后将其转入100毫升聚四氟乙烯衬底的不锈钢反应釜中,140-230℃水热反应12-16小时,过滤,将沉淀用无水乙醇洗涤3-6次后,常温干燥即得管长为1-10微米,管外径为300-500纳米,管壁厚10-20纳米的黑色二氧化钛纳米管。
CN201410762906.7A 2014-12-14 2014-12-14 一种黑色二氧化钛纳米管的制备方法 Active CN104477986B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410762906.7A CN104477986B (zh) 2014-12-14 2014-12-14 一种黑色二氧化钛纳米管的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410762906.7A CN104477986B (zh) 2014-12-14 2014-12-14 一种黑色二氧化钛纳米管的制备方法

Publications (2)

Publication Number Publication Date
CN104477986A CN104477986A (zh) 2015-04-01
CN104477986B true CN104477986B (zh) 2016-01-20

Family

ID=52752630

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410762906.7A Active CN104477986B (zh) 2014-12-14 2014-12-14 一种黑色二氧化钛纳米管的制备方法

Country Status (1)

Country Link
CN (1) CN104477986B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105600820B (zh) * 2015-12-30 2017-06-06 中国科学院上海硅酸盐研究所 一种绿色二氧化钛及其制备方法、改性方法和应用
CN109559901A (zh) * 2017-09-25 2019-04-02 银隆新能源股份有限公司 聚吡咯/钼/二氧化钛纳米管三元复合电极的制备方法
CN113955726B (zh) * 2021-10-20 2022-12-09 安徽工程大学 一种氮化钛微纳米管/硫复合材料及其制备方法以及锂硫电池正极及锂硫电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7510694B2 (en) * 2003-11-13 2009-03-31 Council Of Scientific & Industrial Research Process for simultaneous preparation of nanocrystalline anatase titanium dioxide powder and hydrazine monohydrochloride
CN102502812A (zh) * 2011-11-09 2012-06-20 山东轻工业学院 一种八面体形貌纳米二氧化钛的制备方法
CN102527423A (zh) * 2011-12-31 2012-07-04 杭州电子科技大学 一种钼氮共掺杂TiO2颗粒的制备方法及用途
CN103127957A (zh) * 2013-02-19 2013-06-05 东南大学 介孔PW/MoO3-TiO2-SiO2催化剂及其制备方法和应用
CN103130267A (zh) * 2013-02-19 2013-06-05 上海师范大学 一种可见光响应黑色二氧化钛光催化剂的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102972B2 (ja) * 1987-09-16 1995-11-08 住友大阪セメント株式会社 超微粒子酸化チタン粉末およびこれを配合してなる化粧料

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7510694B2 (en) * 2003-11-13 2009-03-31 Council Of Scientific & Industrial Research Process for simultaneous preparation of nanocrystalline anatase titanium dioxide powder and hydrazine monohydrochloride
CN102502812A (zh) * 2011-11-09 2012-06-20 山东轻工业学院 一种八面体形貌纳米二氧化钛的制备方法
CN102527423A (zh) * 2011-12-31 2012-07-04 杭州电子科技大学 一种钼氮共掺杂TiO2颗粒的制备方法及用途
CN103127957A (zh) * 2013-02-19 2013-06-05 东南大学 介孔PW/MoO3-TiO2-SiO2催化剂及其制备方法和应用
CN103130267A (zh) * 2013-02-19 2013-06-05 上海师范大学 一种可见光响应黑色二氧化钛光催化剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Complex α-MoO3 Nanostructures with External Bonding Capacity for Self-Assembly";Xiong Wen Lou et al.;《J. AM. CHEM. SOC.》;20030211;第125卷;2697-2704 *

Also Published As

Publication number Publication date
CN104477986A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
Yang et al. Rational design of carbon-doped TiO2 modified g-C3N4 via in-situ heat treatment for drastically improved photocatalytic hydrogen with excellent photostability
Jian et al. Construction of carbon quantum dots/proton-functionalized graphitic carbon nitride nanocomposite via electrostatic self-assembly strategy and its application
Song et al. Ultrathin MXene “bridge” to accelerate charge transfer in ultrathin metal-free 0D/2D black phosphorus/g-C3N4 heterojunction toward photocatalytic hydrogen production
Li et al. Defect engineering of air-treated WO3 and its enhanced visible-light-driven photocatalytic and electrochemical performance
Lu et al. K2SO4-assisted hexagonal/monoclinic WO3 phase junction for efficient photocatalytic degradation of RhB
Sun et al. Fabrication of novel g-C3N4 nanocrystals decorated Ag3PO4 hybrids: enhanced charge separation and excellent visible-light driven photocatalytic activity
Xie et al. Phosphate-bridged TiO2–BiVO4 nanocomposites with exceptional visible activities for photocatalytic water splitting
Huang et al. In situ composition-transforming fabrication of BiOI/BiOIO3 heterostructure: semiconductor p–n junction and dominantly exposed reactive facets
Senthil et al. Facile synthesis of α-Fe 2 O 3/WO 3 composite with an enhanced photocatalytic and photo-electrochemical performance
Wang et al. An anti-symmetric dual (ASD) Z-scheme photocatalytic system:(ZnIn2S4/Er3+: Y3Al5O12@ ZnTiO3/CaIn2S4) for organic pollutants degradation with simultaneous hydrogen evolution
Chen et al. Microwave-assisted preparation of flower-like C60/BiOBr with significantly enhanced visible-light photocatalytic performance
Shi et al. Synergistic coupling of piezoelectric and plasmonic effects regulates the Schottky barrier in Ag nanoparticles/ultrathin g-C3N4 nanosheets heterostructure to enhance the photocatalytic activity
Li et al. Synthesis of TiO 2@ ZnIn 2 S 4 hollow nanospheres with enhanced photocatalytic hydrogen evolution
She et al. Facile preparation of mixed-phase CdS and its enhanced photocatalytic selective oxidation of benzyl alcohol under visible light irradiation
CN104226337A (zh) 一种石墨烯负载片层状二硫化钼纳米复合物及其制备方法
Zhao et al. New core–shell hybrid material IR-MOF3@ COF-LZU1 for highly efficient visible-light photocatalyst degrading nitroaromatic explosives
CN103007913A (zh) Ti3+掺杂TiO2复合石墨烯光催化剂的制备方法
Chen et al. Fabrication of Ag/AgBr/AgVO3 heterojunctions with improved photocatalytic performance originated from enhanced separation rate of photogenerated carriers
CN106587166B (zh) 一种氧化铁介晶纳米粒子及其合成方法和应用方法
CN103537307A (zh) 石墨烯-磷酸银复合光催化剂及其制备方法和应用
CN104477986B (zh) 一种黑色二氧化钛纳米管的制备方法
Liu et al. One-pot preparation of a novel CoWO4/ZnWO4 pn heterojunction photocatalyst for enhanced photocatalytic activity under visible light irradiation
CN107649153A (zh) 一种溶剂热法制备BiOCl光催化剂的方法
Ouyang et al. S, N co-doped graphene quantum dots decorated CdSe for enhanced photoelectric properties
Pei et al. Synthesis of N doped graphene quantum dots-interspersed CdWO4 heterostructure nanorods as an effective photocatalyst with enhanced photoelectrochemical performance

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
C41 Transfer of patent application or patent right or utility model
GR01 Patent grant
TA01 Transfer of patent application right

Effective date of registration: 20151230

Address after: 1301 Silver Star high tech Industrial Park Longhua District Guanlan Street sightseeing road 518000 Guangdong city of Shenzhen province 9 building D90E room

Applicant after: SHENZHEN PAVO-TECH DEVELOPMENT Co.,Ltd.

Address before: 541004 the Guangxi Zhuang Autonomous Region Guilin Construction Road No. 12

Applicant before: Guilin University of Technology

CP03 Change of name, title or address

Address after: 518110 Building 1, No. 25, Guanlan Avenue, Xikeng community, Fucheng street, Longhua District, Shenzhen, Guangdong

Patentee after: Shenzhen Lida Technology Industry Co.,Ltd.

Address before: 518000, Room D90E, 9th Floor, Yinxing High tech Industrial Park, Guanlan Street, Longhua New District, Shenzhen, Guangdong Province, China

Patentee before: SHENZHEN PAVO-TECH DEVELOPMENT Co.,Ltd.

CP03 Change of name, title or address