CN104465387A - Manufacturing method of semiconductor device - Google Patents
Manufacturing method of semiconductor device Download PDFInfo
- Publication number
- CN104465387A CN104465387A CN201310442556.1A CN201310442556A CN104465387A CN 104465387 A CN104465387 A CN 104465387A CN 201310442556 A CN201310442556 A CN 201310442556A CN 104465387 A CN104465387 A CN 104465387A
- Authority
- CN
- China
- Prior art keywords
- semiconductor device
- mask layer
- source gas
- selective epitaxial
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 133
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 claims abstract description 161
- 230000008569 process Effects 0.000 claims abstract description 138
- 238000005530 etching Methods 0.000 claims abstract description 73
- 239000000758 substrate Substances 0.000 claims abstract description 63
- 230000007547 defect Effects 0.000 claims abstract description 39
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 23
- 239000000463 material Substances 0.000 claims description 65
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 31
- 229910052710 silicon Inorganic materials 0.000 claims description 31
- 239000010703 silicon Substances 0.000 claims description 31
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 21
- 229910052732 germanium Inorganic materials 0.000 claims description 18
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 18
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 12
- 229910052796 boron Inorganic materials 0.000 claims description 12
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 claims description 7
- 238000005229 chemical vapour deposition Methods 0.000 claims description 6
- -1 SiGeB Inorganic materials 0.000 claims 2
- 230000002950 deficient Effects 0.000 abstract description 11
- 238000000059 patterning Methods 0.000 abstract description 3
- 239000010410 layer Substances 0.000 description 144
- 239000010408 film Substances 0.000 description 114
- 239000007789 gas Substances 0.000 description 73
- 238000000407 epitaxy Methods 0.000 description 35
- 239000002184 metal Substances 0.000 description 18
- 229910021332 silicide Inorganic materials 0.000 description 17
- 239000012495 reaction gas Substances 0.000 description 15
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 14
- 239000013039 cover film Substances 0.000 description 10
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- CPELXLSAUQHCOX-UHFFFAOYSA-N Hydrogen bromide Chemical compound Br CPELXLSAUQHCOX-UHFFFAOYSA-N 0.000 description 8
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 8
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 8
- 238000002955 isolation Methods 0.000 description 7
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 7
- 125000006850 spacer group Chemical group 0.000 description 7
- 229920005591 polysilicon Polymers 0.000 description 6
- HMDDXIMCDZRSNE-UHFFFAOYSA-N [C].[Si] Chemical compound [C].[Si] HMDDXIMCDZRSNE-UHFFFAOYSA-N 0.000 description 5
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 5
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 4
- 238000005137 deposition process Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910000042 hydrogen bromide Inorganic materials 0.000 description 4
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 4
- 229910000043 hydrogen iodide Inorganic materials 0.000 description 4
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 229920002120 photoresistant polymer Polymers 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000001039 wet etching Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000002542 deteriorative effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000005468 ion implantation Methods 0.000 description 2
- 238000013386 optimize process Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 239000002210 silicon-based material Substances 0.000 description 2
- 239000002356 single layer Substances 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910007991 Si-N Inorganic materials 0.000 description 1
- 229910006294 Si—N Inorganic materials 0.000 description 1
- 229910021417 amorphous silicon Inorganic materials 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/021—Manufacture or treatment of FETs having insulated gates [IGFET]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/791—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions
- H10D30/797—Arrangements for exerting mechanical stress on the crystal lattice of the channel regions being in source or drain regions, e.g. SiGe source or drain
Landscapes
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
一种半导体器件的制作方法,包括:提供半导体衬底,且所述半导体衬底表面具有栅极结构;形成覆盖所述半导体衬底和栅极结构的掩膜层;图形化所述掩膜层,以所述图形化的掩膜层为掩膜,刻蚀与栅极结构相邻的半导体衬底,形成凹槽;采用第一选择性外延工艺在所述凹槽内形成应力膜;采用第二选择性外延工艺对所述掩膜层进行刻蚀处理,且所述第二选择性外延工艺对缺陷膜的刻蚀速率大于对应力膜的刻蚀速率;交替进行所述第一选择性外延工艺和所述第二选择性外延工艺,直至形成填充满所述凹槽的应力层。本发明在应力层形成过程中,对掩膜层表面进行刻蚀处理,避免在掩膜层表面形成缺陷膜,优化半导体器件的电学性能。
A method for manufacturing a semiconductor device, comprising: providing a semiconductor substrate, and the surface of the semiconductor substrate has a gate structure; forming a mask layer covering the semiconductor substrate and the gate structure; patterning the mask layer , using the patterned mask layer as a mask, etching the semiconductor substrate adjacent to the gate structure to form a groove; using the first selective epitaxial process to form a stress film in the groove; using the second Two selective epitaxial processes etch the mask layer, and the etching rate of the defect film in the second selective epitaxial process is greater than the etching rate of the corresponding stress film; alternately perform the first selective epitaxial process process and the second selective epitaxial process until a stress layer filling the groove is formed. In the process of forming the stress layer, the invention performs etching treatment on the surface of the mask layer, avoids the formation of defective films on the surface of the mask layer, and optimizes the electrical performance of the semiconductor device.
Description
技术领域technical field
本发明涉及半导体制作领域,特别涉及半导体器件的制作方法。The invention relates to the field of semiconductor manufacturing, in particular to a manufacturing method of a semiconductor device.
背景技术Background technique
随着半导体技术的不断发展,载流子迁移率增强技术获得了广泛的研究和应用,提高沟道区的载流子迁移率能够增大MOS器件的驱动电流,提高器件的性能。With the continuous development of semiconductor technology, carrier mobility enhancement technology has been widely studied and applied. Improving the carrier mobility in the channel region can increase the driving current of MOS devices and improve the performance of the devices.
现有半导体器件制作工艺中,由于应力可以改变硅材料的能隙和载流子迁移率,因此通过应力来提高半导体器件的性能成为越来越常用的手段。具体地,通过适当控制应力,可以提高载流子(NMOS器件中的电子,PMOS器件中的空穴)迁移率,进而提高驱动电流,以此极大地提高半导体器件的性能。In the existing manufacturing process of semiconductor devices, since stress can change the energy gap and carrier mobility of silicon materials, it has become more and more common means to improve the performance of semiconductor devices through stress. Specifically, by properly controlling the stress, the mobility of carriers (electrons in NMOS devices, holes in PMOS devices) can be increased, thereby increasing the driving current, thereby greatly improving the performance of semiconductor devices.
目前,采用嵌入式锗硅(Embedded SiGe)或/和嵌入式碳硅(Embedded SiC)技术,即在需要形成PMOS区域的源区和漏区的区域先形成锗硅材料,然后再进行掺杂形成PMOS器件的源区和漏区,在NMOS区域的源区和漏区的区域先形成碳硅材料,然后再进行掺杂形成NMOS器件的源区和漏区;形成所述锗硅材料是为了引入硅和锗硅(SiGe)之间晶格失配形成的压应力,以提高PMOS器件的性能。形成所述碳硅材料是为了引入硅和碳硅(SiC)之间晶格失配形成的拉应力,以提高NMOS器件的性能。At present, embedded silicon germanium (Embedded SiGe) or/and embedded silicon carbon (Embedded SiC) technology is used, that is, the silicon germanium material is first formed in the region where the source region and the drain region of the PMOS region need to be formed, and then doped to form The source region and the drain region of the PMOS device, in the region of the source region and the drain region of the NMOS region, a carbon silicon material is first formed, and then doped to form the source region and the drain region of the NMOS device; the silicon germanium material is formed to introduce Compressive stress created by lattice mismatch between silicon and silicon germanium (SiGe) to enhance the performance of PMOS devices. The silicon carbon material is formed to introduce tensile stress formed by lattice mismatch between silicon and silicon carbon (SiC), so as to improve the performance of the NMOS device.
嵌入式锗硅和嵌入式碳硅技术的应用在一定程度上可以提高半导体器件的载流子迁移率,但是在实际应用中发现,半导体器件的制作工艺仍存在需要解决的问题。The application of embedded silicon germanium and embedded silicon carbon technologies can improve the carrier mobility of semiconductor devices to a certain extent, but in practical applications, it is found that there are still problems to be solved in the manufacturing process of semiconductor devices.
发明内容Contents of the invention
本发明解决的问题是提供一种优化的半导体器件的制作方法,避免在掩膜层表面形成缺陷膜,提高半导体器件的可靠性,优化半导体器件的电学性能。The problem to be solved by the invention is to provide an optimized manufacturing method of a semiconductor device, which avoids the formation of defective films on the surface of the mask layer, improves the reliability of the semiconductor device, and optimizes the electrical performance of the semiconductor device.
为解决上述问题,本发明提供一种半导体器件的制作方法,包括:提供半导体衬底,且所述半导体衬底表面具有栅极结构;形成覆盖所述半导体衬底和栅极结构的掩膜层;图形化所述掩膜层,以所述图形化的掩膜层为掩膜,刻蚀与栅极结构相邻的半导体衬底,形成凹槽;采用第一选择性外延工艺在所述凹槽内形成应力膜;采用第二选择性外延工艺对所述掩膜层进行刻蚀处理,同时在应力膜表面形成覆盖膜,且所述第二选择性外延工艺对缺陷膜的刻蚀速率大于对应力膜的刻蚀速率;交替进行所述第一选择性外延工艺和所述第二选择性外延工艺,直至形成填充满所述凹槽的应力层。In order to solve the above problems, the present invention provides a method for manufacturing a semiconductor device, comprising: providing a semiconductor substrate, and the surface of the semiconductor substrate has a gate structure; forming a mask layer covering the semiconductor substrate and the gate structure ; patterning the mask layer, using the patterned mask layer as a mask, etching the semiconductor substrate adjacent to the gate structure to form a groove; using a first selective epitaxy process in the groove A stress film is formed in the groove; the mask layer is etched by a second selective epitaxy process, and a cover film is formed on the surface of the stress film at the same time, and the etching rate of the defect film by the second selective epitaxy process is greater than Etching rate of the stress film: performing the first selective epitaxial process and the second selective epitaxial process alternately until the stress layer filling the groove is formed.
可选的,所述第一选择性外延工艺的反应气体包括第一刻蚀气体,所述第二选择性外延工艺的反应气体包括第二刻蚀气体,且所述第二刻蚀气体流量大于第一刻蚀气体流量。Optionally, the reaction gas of the first selective epitaxy process includes a first etching gas, the reaction gas of the second selective epitaxy process includes a second etching gas, and the flow rate of the second etching gas is greater than First etching gas flow.
可选的,所述第一刻蚀气体流量为1sccm至300sccm,所述第二刻蚀气体流量为5sccm至500sccm。Optionally, the flow rate of the first etching gas is 1 sccm to 300 sccm, and the flow rate of the second etching gas is 5 sccm to 500 sccm.
可选的,所述第一刻蚀气体为HCl,所述第二刻蚀气体为HCl。Optionally, the first etching gas is HCl, and the second etching gas is HCl.
可选的,形成应力膜的同时,在掩膜层表面形成所述缺陷膜。Optionally, while forming the stress film, the defect film is formed on the surface of the mask layer.
可选的,所述覆盖膜的材料为Si、SiGe、SiGeB、SiC或SiCP。Optionally, the material of the covering film is Si, SiGe, SiGeB, SiC or SiCP.
可选的,所述覆盖膜与应力膜的应力类型相同。Optionally, the stress type of the covering film is the same as that of the stress film.
可选的,所述覆盖膜的材料为SiGe时,所述第二选择性外延工艺的反应气体包括第二刻蚀气体,反应气体还包括硅源气体、锗源气体和H2。Optionally, when the material of the capping film is SiGe, the reaction gas of the second selective epitaxial process includes a second etching gas, and the reaction gas further includes silicon source gas, germanium source gas and H 2 .
可选的,所述覆盖膜的材料为SiGe时,所述第二选择性外延工艺的具体工艺参数为:硅源气体为SiH4或SiH2Cl2,锗源气体为GeH4,硅源气体流量为5sccm至500sccm,锗源气体流量为5sccm至500sccm,H2流量为1000sccm至50000sccm,第二刻蚀气体流量为5sccm至5000sccm,反应腔室温度为400度至900度,腔室压强为1托至100托。Optionally, when the material of the covering film is SiGe, the specific process parameters of the second selective epitaxial process are: the silicon source gas is SiH 4 or SiH 2 Cl 2 , the germanium source gas is GeH 4 , the silicon source gas is The flow rate is 5sccm to 500sccm, the germanium source gas flow rate is 5sccm to 500sccm, the H2 flow rate is 1000sccm to 50000sccm, the second etching gas flow rate is 5sccm to 5000sccm, the reaction chamber temperature is 400 degrees to 900 degrees, and the chamber pressure is 1 Torr to 100 Torr.
可选的,所述应力膜的材料为Si、SiGe、SiGeB、SiC或SiCP。Optionally, the material of the stress film is Si, SiGe, SiGeB, SiC or SiCP.
可选的,所述第一选择性外延工艺的具体工艺参数为:反应气体除包括第一刻蚀气体外,反应气体还包括硅源气体、锗源气体和H2,其中,硅源气体为SiH4或SiH2Cl2,锗源气体为GeH4,硅源气体流量为5sccm至500sccm,锗源气体流量为5sccm至500sccm,H2流量为1000sccm至50000sccm,第一刻蚀气体流量为1sccm至300sccm,反应腔室温度为400度至900度,腔室压强为1托至100托。Optionally, the specific process parameters of the first selective epitaxy process are: the reaction gas includes not only the first etching gas, but also the silicon source gas, the germanium source gas and H 2 , wherein the silicon source gas is SiH 4 or SiH 2 Cl 2 , germanium source gas is GeH 4 , silicon source gas flow rate is 5 sccm to 500 sccm, germanium source gas flow rate is 5 sccm to 500 sccm, H 2 flow rate is 1000 sccm to 50000 sccm, first etching gas flow rate is 1 sccm to 300 sccm, the reaction chamber temperature is 400 to 900 degrees, and the chamber pressure is 1 torr to 100 torr.
可选的,反应气体还包括硼源气体,所述硼源气体为B2H6,硼源气体流量为5sccm至500sccm。Optionally, the reaction gas further includes a boron source gas, the boron source gas is B 2 H 6 , and the flow rate of the boron source gas is 5 sccm to 500 sccm.
可选的,所述掩膜层的材料为氮化硅。Optionally, the material of the mask layer is silicon nitride.
可选的,采用化学气相沉积工艺形成所述掩膜层。Optionally, the mask layer is formed by using a chemical vapor deposition process.
可选的,所述化学气相沉积工艺的具体工艺参数为:向反应腔室内通入NH3和硅源气体,所述硅源气体为SiH4或SiH2Cl2,其中NH3流量为5sccm至1000sccm,硅源气体流量为5sccm至500sccm,反应腔室温度为300度至800度,反应腔室压强为0.05托至50托。Optionally, the specific process parameters of the chemical vapor deposition process are: feed NH 3 and silicon source gas into the reaction chamber, the silicon source gas is SiH 4 or SiH 2 Cl 2 , wherein the flow rate of NH 3 is 5 sccm to 1000 sccm, the flow rate of the silicon source gas is 5 sccm to 500 sccm, the temperature of the reaction chamber is 300 degrees to 800 degrees, and the pressure of the reaction chamber is 0.05 Torr to 50 Torr.
可选的,形成的半导体器件为NMOS晶体管、PMOS晶体管或CMOS晶体管。Optionally, the formed semiconductor device is an NMOS transistor, a PMOS transistor or a CMOS transistor.
与现有技术相比,本发明的技术方案具有以下优点:Compared with the prior art, the technical solution of the present invention has the following advantages:
本实施例中,采用第一选择性外延工艺在凹槽内形成应力膜后,由于掩膜层与应力膜材料结构相近,导致掩膜层表面形成了缺陷膜;采用第二选择性外延工艺对掩膜层进行刻蚀处理,刻蚀去除位于掩膜层表面的缺陷膜;交替进行所述第一选择性外延工艺和所述第二选择性外延工艺,直至形成填充满所述凹槽的应力层;由于在应力层形成过程中,交替进行了对掩膜层的刻蚀处理,因此,当应力层形成后,掩膜层表面的缺陷膜被完全刻蚀去除,减小了后续去除掩膜层的工艺难度,且掩膜层被完全去除,有利于形成于栅极结构顶部接触紧密的金属硅化物,避免在不期望区域形成金属硅化物,提高半导体器件的可靠性,优化半导体器件的电学性能。In this embodiment, after the first selective epitaxial process is used to form the stress film in the groove, due to the similar structure of the mask layer and the stress film material, a defect film is formed on the surface of the mask layer; The mask layer is etched, and the defect film located on the surface of the mask layer is etched and removed; the first selective epitaxial process and the second selective epitaxial process are alternately performed until the stress filling the groove is formed. layer; since the mask layer is alternately etched during the formation of the stress layer, when the stress layer is formed, the defect film on the surface of the mask layer is completely removed by etching, which reduces the subsequent removal of the mask layer. The process difficulty of the layer, and the mask layer is completely removed, which is conducive to the formation of metal silicides in close contact on the top of the gate structure, avoiding the formation of metal silicides in undesired areas, improving the reliability of semiconductor devices, and optimizing the electronics of semiconductor devices performance.
同时,本实施例中,所述第二选择性外延工艺,选择性外延工艺中既包括刻蚀工艺,刻蚀去除位于掩膜层表面的缺陷膜;选择性外延工艺中还包括沉积工艺,在应力膜表面形成覆盖膜;因此,本实施例中,在去除位于掩膜层表面的缺陷膜的同时,在应力膜表面形成了覆盖膜,相较于只进行刻蚀处理,本发明避免在第二选择性外延工艺刻蚀去除部分应力膜造成填充凹槽的工艺时间变长,提高了半导体器件的生产效率,缩短了生产周期。At the same time, in this embodiment, the second selective epitaxy process includes an etching process to remove the defect film on the surface of the mask layer in the selective epitaxy process; a deposition process is also included in the selective epitaxy process. A cover film is formed on the surface of the stress film; therefore, in this embodiment, while removing the defect film on the surface of the mask layer, a cover film is formed on the surface of the stress film. Compared with only etching, the present invention avoids Second, selective epitaxial process etching removes part of the stress film, resulting in longer process time for filling the groove, improving the production efficiency of semiconductor devices and shortening the production cycle.
进一步,本实施例中,采用了优化的工艺进行所述第二选择性外延工艺,所述第二选择性外延工艺中的第二刻蚀气体流量大于第一选择性外延工艺的第一刻蚀气体流量,保证在第二选择性外延工艺完成后,完全去除位于掩膜层表面的缺陷膜,提高半导体器件的电学性能。Further, in this embodiment, an optimized process is used to carry out the second selective epitaxy process, and the flow rate of the second etching gas in the second selective epitaxy process is greater than that of the first etching gas in the first selective epitaxy process. The gas flow rate ensures that after the second selective epitaxial process is completed, the defect film on the surface of the mask layer is completely removed, and the electrical performance of the semiconductor device is improved.
附图说明Description of drawings
图1为一实施例形成半导体器件的流程示意图;Fig. 1 is a schematic flow chart of forming a semiconductor device according to an embodiment;
图2至图8为本发明另一实施例半导体器件制作过程的剖面结构示意图。2 to 8 are schematic cross-sectional structure diagrams of the manufacturing process of a semiconductor device according to another embodiment of the present invention.
具体实施方式Detailed ways
由背景技术可知,现有技术半导体器件的形成工艺仍存在需要解决的问题。It can be seen from the background art that there are still problems to be solved in the formation process of semiconductor devices in the prior art.
针对半导体器件的形成工艺进行研究,发现半导体器件的形成工艺包括如下步骤,请参考图1:步骤S1、提供半导体衬底,所述半导体衬底包括第一区域和第二区域;步骤S2、在所述第一区域半导体衬底表面形成第一栅极结构,在所述第二区域半导体衬底表面形成第二栅极结构,且所述第一栅极结构、第二栅极结构两侧具有偏移侧墙;步骤S3、形成覆盖半导体衬底、第一栅极结构和第二栅极结构的掩膜层;步骤S4、图形化所述掩膜层,以图形化的掩膜层为掩膜,刻蚀与第一栅极结构相邻的半导体衬底形成凹槽;步骤S5、采用选择性外延工艺形成填充满所述凹槽的应力层;步骤S6、去除所述掩膜层;步骤S7、在所述第一栅极结构和第二栅极结构顶部形成金属硅化物。According to research on the formation process of semiconductor devices, it is found that the formation process of semiconductor devices includes the following steps, please refer to Figure 1: step S1, providing a semiconductor substrate, the semiconductor substrate includes a first region and a second region; step S2, in A first gate structure is formed on the surface of the semiconductor substrate in the first region, a second gate structure is formed on the surface of the semiconductor substrate in the second region, and both sides of the first gate structure and the second gate structure have Offset sidewalls; step S3, forming a mask layer covering the semiconductor substrate, the first gate structure and the second gate structure; step S4, patterning the mask layer, using the patterned mask layer as a mask film, etching the semiconductor substrate adjacent to the first gate structure to form a groove; Step S5, using a selective epitaxy process to form a stress layer filling the groove; Step S6, removing the mask layer; Step S7, forming a metal silicide on top of the first gate structure and the second gate structure.
上述工艺步骤形成的半导体器件,去除掩膜层的工艺难度大,且在去除掩膜层工艺完成后,在半导体衬底、第一栅极结构顶部和侧壁、第二栅极结构顶部和侧壁均形成了金属硅化物,影响半导体器件的电学性能,导致半导体器件的可靠性变差。For the semiconductor device formed by the above process steps, the process of removing the mask layer is very difficult, and after the process of removing the mask layer is completed, the semiconductor device, the top and side walls of the first gate structure, and the top and side walls of the second gate structure Metal silicides are formed on the walls, which affects the electrical performance of the semiconductor device, resulting in poor reliability of the semiconductor device.
针对半导体器件的形成工艺进一步研究发现,上述问题产生的原因为:掩膜层材料中存在较多浮动的Si键,且应力层的材料中含有较多的Si原子,因此所述浮动的Si键的存在,导致应力层材料与掩膜层材料结构相似,在采用选择性外延工艺形成应力层时,在掩膜层表面也会生长应力层材料,即在掩膜层表面形成缺陷膜;应力层形成工艺完成后,在掩膜层表面具有缺陷膜,所述缺陷膜覆盖在掩膜层表面,导致掩膜层不能被去除;后续在第一栅极结构顶部和第二栅极结构顶部形成金属硅化物时,由于掩膜层未能去除且掩膜层表面形成有缺陷膜,缺陷膜为形成金属硅化物提供Si原子,则在掩膜层表面都形成了金属硅化物,导致在不期望区域形成了金属硅化物,从而导致半导体器件的电学性能变差,半导体器件的可靠性变差。Further studies on the formation process of semiconductor devices have found that the above problems are caused by the fact that there are more floating Si bonds in the material of the mask layer, and the material of the stress layer contains more Si atoms, so the floating Si bonds The existence of the stress layer material is similar to that of the mask layer material. When the stress layer is formed by the selective epitaxy process, the stress layer material will also grow on the mask layer surface, that is, a defect film is formed on the mask layer surface; the stress layer After the formation process is completed, there is a defect film on the surface of the mask layer, and the defect film covers the surface of the mask layer, so that the mask layer cannot be removed; subsequently, a metal layer is formed on the top of the first gate structure and the top of the second gate structure. In the case of silicide, since the mask layer cannot be removed and a defective film is formed on the surface of the mask layer, the defect film provides Si atoms for the formation of metal silicide, and metal silicide is formed on the surface of the mask layer, resulting in A metal silicide is formed, thereby deteriorating the electrical performance of the semiconductor device and deteriorating the reliability of the semiconductor device.
同时,由于位于凹槽上方的掩膜层表面也形成缺陷膜,导致填充凹槽的工艺窗口减小,工艺窗口的减小,导致在凹槽内形成高质量应力层的难度增加,形成的应力层的质量变差。At the same time, since the defect film is also formed on the surface of the mask layer above the groove, the process window for filling the groove is reduced, and the reduction of the process window increases the difficulty of forming a high-quality stress layer in the groove, and the formed stress The quality of the layer deteriorates.
为此,本发明提供一种优化的半导体器件的形成方法,采用第一选择性外延工艺在凹槽内形成应力膜后,采用第二选择性外延工艺对掩膜层进行刻蚀处理;交替进行所述第一选择性外延工艺和第二选择性外延工艺,直至形成填充满所述凹槽的应力层;通过刻蚀处理去除生长在掩膜层表面的缺陷膜,提高半导体器件的可靠性,改善半导体器件的电学性能。To this end, the present invention provides an optimized method for forming a semiconductor device. After the stress film is formed in the groove by the first selective epitaxial process, the mask layer is etched by the second selective epitaxial process; The first selective epitaxial process and the second selective epitaxial process until the stress layer filling the groove is formed; the defect film grown on the surface of the mask layer is removed by etching to improve the reliability of the semiconductor device, Improve the electrical performance of semiconductor devices.
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。In order to make the above objects, features and advantages of the present invention more comprehensible, specific embodiments of the present invention will be described in detail below in conjunction with the accompanying drawings.
本发明形成的半导体器件为NMOS晶体管、PMOS晶体管或CMOS晶体管。本实施例以形成的半导体器件为CMOS晶体管作示范性说明。The semiconductor device formed in the present invention is an NMOS transistor, a PMOS transistor or a CMOS transistor. In this embodiment, the formed semiconductor device is a CMOS transistor for exemplary illustration.
图2至图8为本发明提供的半导体器件制作过程的剖面结构示意图。2 to 8 are schematic cross-sectional structure diagrams of the manufacturing process of the semiconductor device provided by the present invention.
请参考图2,提供半导体衬底200,且所述半导体衬底200表面具有栅极结构。Referring to FIG. 2 , a semiconductor substrate 200 is provided, and the surface of the semiconductor substrate 200 has a gate structure.
本实施例中,以所述半导体衬底200包括第一区域I和第二区域II,形成的半导体器件为CMOS晶体管作示范性说明,所述第一区域I和第二区域II的位置可以互换。In this embodiment, the semiconductor substrate 200 includes the first region I and the second region II, and the semiconductor device formed is a CMOS transistor for exemplary illustration, and the positions of the first region I and the second region II can be mutually Change.
本实施例中,所述栅极结构包括位于第一区域I半导体衬底200表面的第一栅极结构210以及位于第二区域II半导体衬底200表面的第二栅极结构220。In this embodiment, the gate structure includes a first gate structure 210 located on the surface of the semiconductor substrate 200 in the first region I and a second gate structure 220 located on the surface of the semiconductor substrate 200 in the second region II.
在本发明其他实施例中,若半导体衬底只包括第一区域或第二区域中的一种,则所述栅极结构只包括第一区域半导体衬底表面的栅极结构或第二区域半导体衬底表面的栅极结构。In other embodiments of the present invention, if the semiconductor substrate only includes one of the first region or the second region, the gate structure only includes the gate structure on the surface of the semiconductor substrate in the first region or the semiconductor substrate in the second region. Gate structures on the substrate surface.
所述半导体衬底200为单晶硅、多晶硅、非晶硅或绝缘体上的硅其中的一种;所述半导体衬底200也可以为Si衬底、Ge衬底、SiGe衬底或GaAs衬底。The semiconductor substrate 200 is one of monocrystalline silicon, polycrystalline silicon, amorphous silicon or silicon-on-insulator; the semiconductor substrate 200 can also be a Si substrate, a Ge substrate, a SiGe substrate or a GaAs substrate .
所述半导体衬底200表面还可以形成若干外延界面层或应变层以提高半导体器件的电学性能。Several epitaxial interface layers or strain layers can also be formed on the surface of the semiconductor substrate 200 to improve the electrical performance of the semiconductor device.
本实施例中,所述半导体衬底200为Si衬底。In this embodiment, the semiconductor substrate 200 is a Si substrate.
本实施例中,在所述半导体衬底200内还具有隔离结构201,防止第一区域I和第二区域II之间电学连接。所述隔离结构201的填充材料可以为氧化硅、氮化硅或氮氧化硅中的一种或几种。In this embodiment, an isolation structure 201 is further provided in the semiconductor substrate 200 to prevent electrical connection between the first region I and the second region II. The filling material of the isolation structure 201 may be one or more of silicon oxide, silicon nitride or silicon oxynitride.
为满足半导体器件不断小型化的发展趋势,在第一区域I半导体衬底表面可以具有一个第一栅极结构,也可以具有多个第一栅极结构,且多个第一栅极结构的材料和结构可以相同也可以不同;第二区域II半导体衬底表面可以具有一个第二栅极结构,也可以具有多个第二栅极结构,且多个第二栅极结构的材料和结构可以相同也可以不同。In order to meet the development trend of continuous miniaturization of semiconductor devices, there may be one first gate structure or multiple first gate structures on the surface of the semiconductor substrate in the first region I, and the materials of the multiple first gate structures and structures can be the same or different; the surface of the second region II semiconductor substrate can have a second gate structure or multiple second gate structures, and the materials and structures of multiple second gate structures can be the same It can also be different.
本实施例中,以第一区域I半导体衬底200表面形成一个第一栅极结构210,第二区域II半导体衬底200表面形成两个第二栅极结构220且两个第二栅极结构220的材料和结构相同,且其中一个第二栅极结构220侧壁与隔离结构201相邻作示范性说明。在本发明其他实施例中,所述第一栅极结构或第二栅极结构可以部分位于隔离结构表面或远离隔离结构,不应过分限制第一栅极结构或第二栅极结构与隔离结构之间的位置关系。In this embodiment, one first gate structure 210 is formed on the surface of the semiconductor substrate 200 in the first region I, two second gate structures 220 are formed on the surface of the semiconductor substrate 200 in the second region II, and the two second gate structures The material and structure of 220 are the same, and the sidewall of one of the second gate structures 220 is adjacent to the isolation structure 201 for exemplary illustration. In other embodiments of the present invention, the first gate structure or the second gate structure may be partly located on the surface of the isolation structure or away from the isolation structure, and the relationship between the first gate structure or the second gate structure and the isolation structure should not be restricted too much. positional relationship between them.
所述第一栅极结构210包括位于所述半导体衬底200表面的第一栅氧化层211、位于所述第一栅氧化层211表面的第一栅电极层212。The first gate structure 210 includes a first gate oxide layer 211 on the surface of the semiconductor substrate 200 , and a first gate electrode layer 212 on the surface of the first gate oxide layer 211 .
所述第二栅极结构220包括位于所述半导体衬底200表面的第二栅氧化层221、位于所述第二栅氧化层221表面的第二栅电极层222。The second gate structure 220 includes a second gate oxide layer 221 on the surface of the semiconductor substrate 200 , and a second gate electrode layer 222 on the surface of the second gate oxide layer 221 .
所述第一栅氧化层211或第二栅氧化层221的材料为氧化硅或高k介质材料,所述第一栅电极层212或第二栅电极层222的材料为多晶硅、掺杂的多晶硅或金属。The material of the first gate oxide layer 211 or the second gate oxide layer 221 is silicon oxide or a high-k dielectric material, and the material of the first gate electrode layer 212 or the second gate electrode layer 222 is polysilicon, doped polysilicon or metal.
请继续参考图2,在半导体衬底200表面形成偏移侧墙202,所述偏移侧墙202位于第一栅极结构210或第二栅极结构220两侧。Please continue to refer to FIG. 2 , an offset spacer 202 is formed on the surface of the semiconductor substrate 200 , and the offset spacer 202 is located on both sides of the first gate structure 210 or the second gate structure 220 .
所述偏移侧墙202保护第一栅极结构210或第二栅极结构220两侧不被后续工艺破坏;为了防止半导体器件发生短沟道效应,在栅极结构两侧的半导体衬底200内会形成口袋(Pocket)区,所述偏移侧墙202即为形成口袋区的掩膜。The offset spacer 202 protects both sides of the first gate structure 210 or the second gate structure 220 from being damaged by the subsequent process; in order to prevent the short channel effect of the semiconductor device, the semiconductor substrate 200 on both sides of the gate structure A pocket area is formed inside, and the offset sidewall 202 is a mask for forming the pocket area.
所述偏移侧墙202的材料为氮氧化硅或氮化硅,所述偏移侧墙202可以为单层结构也可以为多层结构。The material of the offset sidewall 202 is silicon oxynitride or silicon nitride, and the offset sidewall 202 can be a single-layer structure or a multi-layer structure.
本实施例中,所述偏移侧墙202为氮化硅的单层结构。In this embodiment, the offset sidewall 202 is a single-layer structure of silicon nitride.
在形成所述偏移侧墙202之前,还可以对所述第一栅极结构210或第二栅极结构220两侧的半导体衬底200进行轻掺杂离子注入,形成轻掺杂区(LDD),防止半导体器件发生热载流子效应。Before forming the offset spacer 202, lightly doped ion implantation can also be performed on the semiconductor substrate 200 on both sides of the first gate structure 210 or the second gate structure 220 to form a lightly doped region (LDD ), to prevent the hot carrier effect in semiconductor devices.
在形成所述偏移侧墙202之后,还可以对第一栅极结构210或第二栅极结构220两侧的半导体衬底200进行离子注入形成口袋区,所述口袋区与所述轻掺杂区的类型相反,防止半导体器件发生短沟道效应。After the offset spacer 202 is formed, ion implantation can be performed on the semiconductor substrate 200 on both sides of the first gate structure 210 or the second gate structure 220 to form a pocket region, and the pocket region and the lightly doped The impurity region is of the opposite type, which prevents the short channel effect of the semiconductor device.
需要说明的是,所述偏移侧墙202的形成是可选的而非必需的。It should be noted that the formation of the offset sidewall 202 is optional but not necessary.
请参考图3,形成覆盖所述半导体衬底200和栅极结构的掩膜层203。Referring to FIG. 3 , a mask layer 203 covering the semiconductor substrate 200 and the gate structure is formed.
具体的,本实施例中,所述掩膜层203覆盖半导体衬底200、偏移侧墙202、第一栅极结构210和第二栅极结构220。Specifically, in this embodiment, the mask layer 203 covers the semiconductor substrate 200 , the offset spacer 202 , the first gate structure 210 and the second gate structure 220 .
所述掩膜层203的作用为:作为后续刻蚀半导体衬底200形成凹槽的掩膜,保护第一区域I的第一栅极结构210不被凹槽的形成工艺所破坏。The function of the mask layer 203 is to serve as a mask for subsequent etching of the semiconductor substrate 200 to form a groove, and to protect the first gate structure 210 in the first region I from being damaged by the formation process of the groove.
掩膜层203作为后续形成凹槽工艺的掩膜,掩膜层203的材料必须满足以下两个条件:首先,在后续采用选择性外延工艺形成应力层时,所述应力层仅仅填充满凹槽,因此,掩膜层203与半导体衬底200材料间必须具有较高的选择性;其次,在后续形成凹槽以及清洗凹槽工艺中存在氢氟酸溶液,因此,所述掩膜层203的材料必须具有较高的抗氢氟酸溶液刻蚀的能力。为满足上述对掩膜层203材料的要求,作为一个实施例,所述掩膜层203的材料为氮化硅,所述掩膜层203的厚度为50埃至200埃。The mask layer 203 is used as a mask for the subsequent groove formation process, and the material of the mask layer 203 must meet the following two conditions: first, when the stress layer is formed by the subsequent selective epitaxy process, the stress layer only fills the groove , therefore, there must be a high selectivity between the mask layer 203 and the material of the semiconductor substrate 200; secondly, there is a hydrofluoric acid solution in the subsequent groove formation and groove cleaning process, therefore, the mask layer 203 The material must have a high ability to resist etching by hydrofluoric acid solution. In order to meet the above requirements on the material of the mask layer 203 , as an embodiment, the material of the mask layer 203 is silicon nitride, and the thickness of the mask layer 203 is 50 angstroms to 200 angstroms.
采用化学气相沉积工艺形成所述掩膜层203。The mask layer 203 is formed by chemical vapor deposition process.
作为一个实施例,所述化学气相沉积的具体工艺参数为:向反应腔室内通入NH3和硅源气体,所述硅源气体为SiH4或SiH2Cl2,其中NH3流量为5sccm至1000sccm,硅源气体流量为5sccm至500sccm,反应腔室温度为300度至800度,反应腔室压强为0.05托至50托。As an example, the specific process parameters of the chemical vapor deposition are: feed NH 3 and silicon source gas into the reaction chamber, the silicon source gas is SiH 4 or SiH 2 Cl 2 , wherein the flow rate of NH 3 is 5 sccm to 1000 sccm, the flow rate of the silicon source gas is 5 sccm to 500 sccm, the temperature of the reaction chamber is 300 degrees to 800 degrees, and the pressure of the reaction chamber is 0.05 Torr to 50 Torr.
请参考图4,图形化所述掩膜层203,在掩膜层203中形成开口204,所述开口204暴露出与第二栅极结构220相邻的第二区域II半导体衬底200表面,且所述开口204的位置和宽度对应后续形成凹槽的位置和宽度。Referring to FIG. 4, the mask layer 203 is patterned to form an opening 204 in the mask layer 203, the opening 204 exposing the surface of the second region II semiconductor substrate 200 adjacent to the second gate structure 220, And the position and width of the opening 204 correspond to the position and width of the subsequently formed groove.
作为一个实施例,所述开口204的形成过程为:形成覆盖所述掩膜层203的光刻胶层,所述光刻胶层具有与开口204对应的图形,以所述光刻胶层为掩膜,刻蚀掩膜层203,在所述掩膜层203中形成开口204,所述开口204暴露出与第二栅极结构220相邻的第二区域II半导体衬底200表面。As an embodiment, the forming process of the opening 204 is: forming a photoresist layer covering the mask layer 203, the photoresist layer has a pattern corresponding to the opening 204, and the photoresist layer is mask, etch the mask layer 203 to form an opening 204 in the mask layer 203 , and the opening 204 exposes the surface of the second region II semiconductor substrate 200 adjacent to the second gate structure 220 .
在本发明其他实施例中,第二栅极结构远离隔离结构,则在第二栅极结构两侧的掩膜层中都形成开口,后续在第二栅极结构两侧的第二区域半导体衬底内均形成凹槽。In other embodiments of the present invention, if the second gate structure is far away from the isolation structure, openings are formed in the mask layer on both sides of the second gate structure, and then the semiconductor substrate in the second region on both sides of the second gate structure is Grooves are formed in the bottom.
需要说明的是,本实施例以所述开口暴露出第二区域半导体衬底表面做示范性说明,在本发明其他实施例中,所述开口暴露出第一栅极结构相邻的第一区域半导体衬底表面。It should be noted that, in this embodiment, the opening exposes the surface of the semiconductor substrate in the second region as an exemplary illustration. In other embodiments of the present invention, the opening exposes the first region adjacent to the first gate structure. surface of the semiconductor substrate.
请参考图5,以所述图形化掩膜层203为掩膜,刻蚀与栅极结构相邻的半导体衬底200形成凹槽205。Referring to FIG. 5 , using the patterned mask layer 203 as a mask, the semiconductor substrate 200 adjacent to the gate structure is etched to form a groove 205 .
具体的,以所述图形化掩膜层203为掩膜,沿开口204(请参考图4)刻蚀与第二栅极结构220相邻的第二区域II半导体衬底200,形成凹槽205。Specifically, using the patterned mask layer 203 as a mask, the second region II semiconductor substrate 200 adjacent to the second gate structure 220 is etched along the opening 204 (please refer to FIG. 4 ) to form a groove 205 .
所述凹槽205的形状为U形、方形或sigma(Σ)形。The shape of the groove 205 is U-shape, square or sigma (Σ) shape.
作为一个实施例,所述凹槽205的形状为Σ形。As an embodiment, the shape of the groove 205 is Σ-shape.
Σ形的凹槽侧壁向器件沟道方向内凹,这种形状可以有效缩短器件沟道长度,满足器件尺寸小型化的要求;且Σ形的凹槽具有在栅极间隙体下方较大下切的特点,这种形状凹槽内形成应力材料可以对器件沟道区产生更大的应力。The sidewall of the Σ-shaped groove is concave toward the direction of the device channel. This shape can effectively shorten the length of the device channel and meet the requirements of device size miniaturization; and the Σ-shaped groove has a large undercut under the gate spacer. The characteristics of the stress material formed in the groove of this shape can generate greater stress on the channel region of the device.
所述凹槽205的形成工艺可以为干法刻蚀、湿法刻蚀或干法刻蚀和湿法刻蚀相结合的刻蚀工艺。The formation process of the groove 205 may be dry etching, wet etching or an etching process combining dry etching and wet etching.
作为一个实施例,以Σ形凹槽205的形成工艺做示范性说明:首先以所述掩膜层203为掩膜,采用干法刻蚀工艺,沿开口204刻蚀所述半导体衬底200,形成倒梯形的预凹槽,然后采用湿法刻蚀工艺继续刻蚀所述预凹槽,形成Σ形的凹槽205。As an example, the formation process of the Σ-shaped groove 205 is exemplified: firstly, the semiconductor substrate 200 is etched along the opening 204 by using the mask layer 203 as a mask, using a dry etching process, An inverted trapezoidal pre-groove is formed, and then a wet etching process is used to continuously etch the pre-groove to form a Σ-shaped groove 205 .
请参考图6,采用第一选择性外延工艺在所述凹槽205内形成应力膜206。Referring to FIG. 6 , a stress film 206 is formed in the groove 205 by a first selective epitaxial process.
所述应力膜206的材料为Si、SiGe、SiGeB、SiC或SiCP。The material of the stress film 206 is Si, SiGe, SiGeB, SiC or SiCP.
作为一个实施例,所述应力膜206为第二区域II沟道区提供压应力作用,则所述应力膜206的材料为压应力材料,所述应力膜206的材料为SiGe或SiGeB,所述应力膜206的材料还可以为Si。As an example, the stress film 206 provides compressive stress for the channel region of the second region II, and the material of the stress film 206 is a compressive stress material, and the material of the stress film 206 is SiGe or SiGeB. The material of the stress film 206 can also be Si.
作为另一实施例,所述应力膜为第二区域沟道区提供拉应力作用,则应力膜的材料为拉应力材料,所述应力膜的材料为SiC或SiCP,所述应力膜的材料还可以为Si。As another embodiment, the stress film provides tensile stress for the channel region of the second region, the material of the stress film is a tensile stress material, the material of the stress film is SiC or SiCP, and the material of the stress film is also Can be Si.
所述第一选择性外延工艺的反应气体包括第一刻蚀气体,且所述第一刻蚀气体为HCl(氯化氢),HCl作为第一刻蚀气体具有较高的选择性刻蚀能力;所述第一刻蚀气体也可以为其他含卤素气体,例如,HBr(溴化氢)或HI(碘化氢)。The reaction gas of the first selective epitaxial process includes a first etching gas, and the first etching gas is HCl (hydrogen chloride), and HCl as the first etching gas has a relatively high selective etching capability; The first etching gas may also be other halogen-containing gases, for example, HBr (hydrogen bromide) or HI (hydrogen iodide).
作为一个实施例,所述第一选择性外延工艺的具体工艺参数为:反应气体除包括第一刻蚀气体外,反应气体还包括硅源气体、锗源气体和H2,其中,硅源气体为SiH4或SiH2Cl2,锗源气体为GeH4,硅源气体流量为5sccm至500sccm,锗源气体流量为5sccm至500sccm,H2流量为1000sccm至50000sccm,第一刻蚀气体流量为1sccm至300sccm,反应腔室温度为400度至900度,腔室压强为1托至100托。As an example, the specific process parameters of the first selective epitaxy process are: in addition to the first etching gas, the reaction gas also includes silicon source gas, germanium source gas and H 2 , wherein the silicon source gas SiH 4 or SiH 2 Cl 2 , germanium source gas is GeH 4 , silicon source gas flow rate is 5 sccm to 500 sccm, germanium source gas flow rate is 5 sccm to 500 sccm, H 2 flow rate is 1000 sccm to 50000 sccm, first etching gas flow rate is 1 sccm to 300 sccm, the temperature of the reaction chamber is 400°C to 900°C, and the chamber pressure is 1 Torr to 100 Torr.
需要说明的是,若应力膜206的材料为SiGeB,则反应气体还包括硼源气体,所述硼源气体为B2H6,硼源气体流量为5sccm至500sccm。It should be noted that, if the material of the stress film 206 is SiGeB, the reaction gas further includes a boron source gas, the boron source gas is B 2 H 6 , and the flow rate of the boron source gas is 5 sccm to 500 sccm.
选择性外延工艺包括沉积工艺和刻蚀工艺,本实施例中,由于第一选择性外延工艺的刻蚀气体流量较小,具体的,所述第一刻蚀气体流量为1sccm至300sccm,因此,本实施例中第一选择性外延工艺以沉积工艺为主,选择性外延工艺中的沉积速率大于刻蚀速率,在凹槽205内形成应力膜206。The selective epitaxial process includes a deposition process and an etching process. In this embodiment, since the flow rate of the etching gas in the first selective epitaxial process is relatively small, specifically, the flow rate of the first etching gas is 1 sccm to 300 sccm, therefore, In this embodiment, the first selective epitaxy process is mainly a deposition process, and the deposition rate in the selective epitaxy process is greater than the etching rate, and the stress film 206 is formed in the groove 205 .
所述应力膜206的厚度可以根据实际需要来确定,例如,所述应力膜206的厚度为30埃、50埃或80埃。根据第一选择性外延工艺的反应气体流量以及所需形成应力膜206的厚度后,可以确定第一选择性外延工艺的反应时间。The thickness of the stress film 206 can be determined according to actual needs, for example, the thickness of the stress film 206 is 30 angstroms, 50 angstroms or 80 angstroms. According to the reaction gas flow rate of the first selective epitaxy process and the required thickness of the stress film 206 , the reaction time of the first selective epitaxy process can be determined.
当第一选择性外延工艺完成后,在凹槽205内形成应力膜206,且掩膜层203表面也形成有少量应力膜206的材料,即形成应力膜206的同时,在掩膜层203表面形成缺陷膜207。这主要是如下原因造成的:After the first selective epitaxial process is completed, a stress film 206 is formed in the groove 205, and a small amount of material of the stress film 206 is also formed on the surface of the mask layer 203, that is, when the stress film 206 is formed, a stress film 206 is formed on the surface of the mask layer 203. A defective film 207 is formed. This is mainly caused by the following reasons:
尽管采用氮化硅作为掩膜层203的材料,基本可以满足选择性好和抗腐蚀能力强的要求,但是,由于所述掩膜层203的材料为氮化硅,Si-N键的对Si原子的束缚能力有限,导致掩膜层203的材料中存在较多的浮动Si键,后续采用选择性外延工艺形成应力膜206时,在掩膜层203表面也会生长应力膜206材料,即形成了缺陷膜207,且所述缺陷膜207的厚度随着填充凹槽205的工艺不断进行而增加。Although silicon nitride is used as the material of the mask layer 203, it can basically meet the requirements of good selectivity and strong corrosion resistance, but since the material of the mask layer 203 is silicon nitride, the Si-N bond has a negative effect on Si The binding ability of atoms is limited, resulting in the presence of many floating Si bonds in the material of the mask layer 203. When the stress film 206 is formed by the subsequent selective epitaxy process, the material of the stress film 206 will also grow on the surface of the mask layer 203, that is, the formation of The defect film 207 is formed, and the thickness of the defect film 207 increases as the process of filling the groove 205 continues.
作为一个实施例,所述第一栅电极层212或第二栅电极层222的材料为多晶硅或掺杂的多晶硅,则后续去除掩膜层203后,会在第一栅极结构210顶部或第二栅极结构220顶部形成自对准金属硅化物。若掩膜层203表面存在缺陷膜207,则后续在应力层形成后必须先去除缺陷膜207再去除掩膜层203,而去除缺陷膜207会导致应力层也会被去除,因此不能采用在应力层形成后去除缺陷膜207的工艺。As an example, the material of the first gate electrode layer 212 or the second gate electrode layer 222 is polysilicon or doped polysilicon, then after the mask layer 203 is subsequently removed, the top of the first gate structure 210 or the second A salicide is formed on top of the two-gate structure 220 . If there is a defect film 207 on the surface of the mask layer 203, then after the stress layer is formed, the defect film 207 must be removed first and then the mask layer 203, and removing the defect film 207 will cause the stress layer to be removed, so it cannot be used in the stress layer. A process of removing the defective film 207 after layer formation.
若在应力层形成后,掩膜层203表面形成了缺陷膜207,则后续无法去除掩膜层203;且由于缺陷膜207中含有含量较多的Si原子,则在第一栅极结构210顶部或第二栅极结构220顶部形成的金属硅化物时,所述金属硅化物形成在缺陷膜207表面,导致在不期望区域形成了金属硅化物,降低了半导体器件的可靠性,影响半导体器件的电学性能;且在靠近凹槽205的掩膜层203表面形成有缺陷膜207,导致填充凹槽205的工艺窗口渐渐变小,工艺窗口的减小不利于形成高质量的应力层,填充凹槽205的难度增加,影响半导体器件载流子迁移率的提高。If the defect film 207 is formed on the surface of the mask layer 203 after the stress layer is formed, the mask layer 203 cannot be removed subsequently; Or the metal silicide formed on the top of the second gate structure 220, the metal silicide is formed on the surface of the defect film 207, resulting in the formation of metal silicide in the undesired area, which reduces the reliability of the semiconductor device and affects the reliability of the semiconductor device. Electrical properties; and a defective film 207 is formed on the surface of the mask layer 203 close to the groove 205, causing the process window for filling the groove 205 to gradually become smaller, and the reduction of the process window is not conducive to forming a high-quality stress layer and filling the groove The difficulty of 205 increases, which affects the improvement of carrier mobility in semiconductor devices.
请参考图7,采用第二选择性外延工艺对所述掩膜层203进行刻蚀处理,同时在应力膜206表面形成覆盖膜208,且所述第二选择性外延工艺对缺陷膜207的刻蚀速率大于对应力膜206的刻蚀速率。Please refer to FIG. 7 , the mask layer 203 is etched by a second selective epitaxial process, and a cover film 208 is formed on the surface of the stress film 206 at the same time, and the etching of the defect film 207 by the second selective epitaxial process The etch rate is greater than the etch rate for the stress film 206 .
在第一选择性外延工艺完成后,在掩膜层203表面形成有缺陷膜207,但是由于选择性外延工艺具有选择性的特性,掩膜层203表面的缺陷膜207的厚度远小于应力膜206的厚度,并且,掩膜层203的材料与应力膜206的材料结构差别比半导体衬底200材料与应力膜206的材料结构差别大,因此,在掩膜层203表面形成的缺陷膜207的致密性差且不稳定,缺陷膜207的材料比应力膜206的材料抗刻蚀能力差的多,因此,所述第二选择性外延工艺对缺陷膜207的刻蚀速率大于对应力膜206的刻蚀速率;所述第二选择性外延工艺刻蚀去除应力膜206的厚度比缺陷膜207的厚度小得多,当第二选择性外延工艺完成后,所述第二选择性外延工艺将掩膜层203表面的缺陷膜207完全刻蚀去除。After the first selective epitaxial process is completed, a defective film 207 is formed on the surface of the mask layer 203, but due to the selective nature of the selective epitaxial process, the thickness of the defective film 207 on the surface of the mask layer 203 is much smaller than the stress film 206 thickness, and the material structure difference between the material of the mask layer 203 and the stress film 206 is larger than the material structure difference between the material of the semiconductor substrate 200 and the stress film 206, therefore, the defect film 207 formed on the surface of the mask layer 203 is compact poor and unstable, and the material of the defect film 207 has much poorer etching resistance than the material of the stress film 206, therefore, the etching rate of the defect film 207 in the second selective epitaxial process is greater than that of the stress film 206 rate; the second selective epitaxial process etching removes the thickness of the stress film 206 much smaller than the thickness of the defect film 207, and when the second selective epitaxial process is completed, the second selective epitaxial process will mask the mask layer The defective film 207 on the surface of 203 is completely etched away.
由于选择性外延工艺包括沉积工艺和刻蚀工艺,选择性外延工艺也会对缺陷膜207进行刻蚀处理,且在刻蚀处理的同时,也会发生沉积反应,在应力膜206表面形成覆盖膜208,提高了半导体器件的生产效率,避免第二选择性外延工艺在去除缺陷膜207的同时,也较大程度的刻蚀应力膜206,本实施例缩短了半导体器件的生产周期;通过控制第二选择性外延工艺刻蚀气体的流量从而提高第二选择性外延工艺的刻蚀速率,增加第二选择性外延工艺对掩膜层203表面缺陷膜207的刻蚀速率,达到去除缺陷膜207的目的。Since the selective epitaxy process includes a deposition process and an etching process, the selective epitaxy process will also etch the defect film 207, and at the same time as the etching process, a deposition reaction will also occur, forming a covering film on the surface of the stress film 206 208, improving the production efficiency of the semiconductor device, avoiding the second selective epitaxial process to etch the stress film 206 to a greater extent while removing the defect film 207, this embodiment shortens the production cycle of the semiconductor device; by controlling the first The flow rate of the etching gas in the second selective epitaxial process improves the etching rate of the second selective epitaxial process, increases the etching rate of the second selective epitaxial process to the defect film 207 on the surface of the mask layer 203, and reaches the rate of removing the defective film 207 Purpose.
所述第二选择性外延工艺的的反应气体包括第二刻蚀气体,所述第二刻蚀气体为HCl(氯化氢),HCl作为第二刻蚀气体具有较高的选择性刻蚀能力,需要说明的时,所述第二刻蚀气体也可以为其他含卤素气体,例如,HBr(溴化氢)或HI(碘化氢)。The reaction gas of the second selective epitaxy process includes a second etching gas, the second etching gas is HCl (hydrogen chloride), and HCl as the second etching gas has a relatively high selective etching ability, which requires When stated, the second etching gas may also be other halogen-containing gases, for example, HBr (hydrogen bromide) or HI (hydrogen iodide).
所述第二刻蚀气体流量大于第一刻蚀气体流量。本实施例中,所述第二刻蚀气体流量为5sccm至500sccm。The flow rate of the second etching gas is greater than the flow rate of the first etching gas. In this embodiment, the flow rate of the second etching gas is 5 sccm to 500 sccm.
所述覆盖膜208的材料为Si、SiGe、SiGeB、SiC或SiCP。The material of the covering film 208 is Si, SiGe, SiGeB, SiC or SiCP.
在本实施例中,所述覆盖膜208为第二区域II沟道区提供压应力作用,则所述覆盖膜208的材料为压应力材料,所述覆盖膜208的材料为SiGe或SiGeB,所述覆盖膜208的材料还可以为Si。In this embodiment, the cover film 208 provides compressive stress for the channel region of the second region II, and the material of the cover film 208 is a compressive stress material, and the material of the cover film 208 is SiGe or SiGeB, so The material of the covering film 208 can also be Si.
在本发明其他实施例中,所述覆盖膜为第一区域沟道区提供拉应力作用,则覆盖膜的材料为拉应力材料,所述覆盖膜的材料为SiC或SiCP,所述覆盖膜的材料还可以为Si。In other embodiments of the present invention, the covering film provides tensile stress for the channel region of the first region, and the material of the covering film is a tensile stress material, and the material of the covering film is SiC or SiCP. The material can also be Si.
需要说明的是,所述覆盖膜208与应力膜206的应力类型相同。It should be noted that the stress type of the cover film 208 is the same as that of the stress film 206 .
所述覆盖膜208的材料为SiGe时,所述第二选择性外延工艺的反应气体还包括硅源气体、锗源气体和H2;所述硅源气体为硅源气体为SiH4或SiH2Cl2,锗源气体为GeH4。When the material of the covering film 208 is SiGe, the reaction gas of the second selective epitaxy process also includes silicon source gas, germanium source gas and H 2 ; the silicon source gas is SiH 4 or SiH 2 Cl 2 , germanium source gas is GeH 4 .
本实施例中,所述第二选择性外延工艺的具体工艺参数为:硅源气体流量为5sccm至500sccm,锗源气体流量为5sccm至500sccm,H2流量为1000sccm至50000sccm,第二刻蚀气体流量为5sccm至5000sccm,反应腔室温度为400度至900度,腔室压强为1托至100托。In this embodiment, the specific process parameters of the second selective epitaxy process are: the silicon source gas flow rate is 5 sccm to 500 sccm, the germanium source gas flow rate is 5 sccm to 500 sccm, the H2 flow rate is 1000 sccm to 50000 sccm, the second etching gas The flow rate is 5sccm to 5000sccm, the reaction chamber temperature is 400°C to 900°C, and the chamber pressure is 1 Torr to 100 Torr.
需要说明的是,若覆盖膜208的材料为SiGeB,则反应气体还包括硼源气体,所述硼源气体为B2H6,硼源气体流量为5sccm至500sccm。It should be noted that, if the material of the covering film 208 is SiGeB, the reaction gas further includes a boron source gas, the boron source gas is B 2 H 6 , and the flow rate of the boron source gas is 5 sccm to 500 sccm.
本实施例中,第二选择性外延工艺完成后,掩膜层203表面的缺陷膜207被完全去除,而应力膜206几乎未受到刻蚀工艺的影响,且在应力膜206表面发生了沉积反应,在应力膜206表面形成覆盖膜208,提高了半导体器件的生产效率。In this embodiment, after the second selective epitaxial process is completed, the defect film 207 on the surface of the mask layer 203 is completely removed, while the stress film 206 is hardly affected by the etching process, and a deposition reaction occurs on the surface of the stress film 206 , forming the cover film 208 on the surface of the stress film 206, which improves the production efficiency of the semiconductor device.
请参考图8,交替进行所述第一选择性外延工艺和所述第二选择性外延工艺,直至形成填充满所述凹槽205(请参考图7)的应力层209。Referring to FIG. 8 , the first selective epitaxial process and the second selective epitaxial process are alternately performed until the stress layer 209 filling the groove 205 (please refer to FIG. 7 ) is formed.
所述应力层209顶部可以高于半导体衬底200表面,也可以与半导体衬底200表面平齐。本实施例以所述应力层209顶部与半导体衬底200表面平齐做示范性说明。The top of the stress layer 209 may be higher than the surface of the semiconductor substrate 200 , or may be flush with the surface of the semiconductor substrate 200 . In this embodiment, the top of the stress layer 209 is flush with the surface of the semiconductor substrate 200 for exemplary illustration.
通过交替进行所述第一选择性外延工艺和第二选择性外延工艺,循环进行形成应力膜206且在掩膜层203表面形成缺陷膜207(请参考图6)、在应力膜206表面形成覆盖膜208且去除位于掩膜层203表面的缺陷膜207的步骤,最终形成填充满所述凹槽205的应力层209。循环形成的应力膜206厚度可以相同也可以不同,循环形成的覆盖膜208厚度可以相同也可以不同。By alternately performing the first selective epitaxial process and the second selective epitaxial process, the stress film 206 is formed cyclically, the defect film 207 is formed on the surface of the mask layer 203 (please refer to FIG. 6 ), and the covering layer is formed on the surface of the stress film 206. film 208 and removing the defective film 207 located on the surface of the mask layer 203 , finally forming a stress layer 209 filling the groove 205 . The thickness of the stress film 206 formed cyclically may be the same or different, and the thickness of the covering film 208 formed cyclically may be the same or different.
需要说明的是,进行所述第一选择性外延工艺和第二选择性外延工艺的次数可以通过凹槽205深度、第一选择性外延工艺的反应气体流量、第二选择性外延工艺的反应气体流量、第一应力层厚度和第二应力层厚度确定,不应过分限制第一选择性外延工艺和第二选择性外延工艺进行的次数。It should be noted that the number of times for performing the first selective epitaxy process and the second selective epitaxy process can be determined by the depth of the groove 205, the reaction gas flow rate of the first selective epitaxy process, and the reaction gas flow rate of the second selective epitaxy process. The flow rate, the thickness of the first stress layer and the thickness of the second stress layer are determined, and the times of the first selective epitaxial process and the second selective epitaxial process should not be excessively limited.
作为一个实施例,所述第一栅电极层212和第二栅电极层222的材料为多晶硅或掺杂的多晶硅,则后续的工艺还包括去除掩膜层203,在第一栅极结构210和第二栅极结构220表面形成金属硅化物。由于本实施例中,应力层209形成后,在所述掩膜层203表面不存在缺陷膜,因此,所述去除掩膜层203的工艺简单,且掩膜层203可以被完全去除,后续在第一栅极结构210和第二栅极结构220表面形成金属硅化物时,所述金属硅化物与第一栅极结构和210和第二栅极结构220接触紧密,且所述金属硅化物只形成于第一栅极结构210和第二栅极结构220顶部,有利于提高半导体器件的可靠性,减小半导体器件的接触电阻,提高半导体器件的运行速率,优化半导体器件的电学性能。As an example, the material of the first gate electrode layer 212 and the second gate electrode layer 222 is polysilicon or doped polysilicon, then the subsequent process also includes removing the mask layer 203, and the first gate structure 210 and the A metal silicide is formed on the surface of the second gate structure 220 . Since in this embodiment, after the stress layer 209 is formed, there is no defect film on the surface of the mask layer 203, therefore, the process of removing the mask layer 203 is simple, and the mask layer 203 can be completely removed. When the metal silicide is formed on the surface of the first gate structure 210 and the second gate structure 220, the metal silicide is in close contact with the first gate structure 210 and the second gate structure 220, and the metal silicide only Formed on the top of the first gate structure 210 and the second gate structure 220, it is beneficial to improve the reliability of the semiconductor device, reduce the contact resistance of the semiconductor device, increase the operating speed of the semiconductor device, and optimize the electrical performance of the semiconductor device.
综上,本发明提供的技术方案具有以下优点:In summary, the technical solution provided by the present invention has the following advantages:
首先,本发明实施例中,采用了优化的工艺形成填充满凹槽的应力层,即交替进行第一选择性外延工艺和第二选择性外延工艺,所述第一选择性外延工艺在凹槽内形成应力膜,所述第二选择性外延工艺对掩膜层进行刻蚀处理;由于掩膜层中含有浮动的Si键,因此采用第一选择性外延工艺形成应力膜后,在掩膜层表面形成了缺陷膜,所述缺陷膜会造成填充凹槽的工艺窗口减小且后续难以去除掩膜层;而在第一选择性外延工艺后采取第二选择性外延工艺对掩膜层进行刻蚀处理,所述第二选择性外延工艺将缺陷膜刻蚀去除,避免填充凹槽的工艺窗口减小,提高形成应力层的质量,从而提高半导体器件的载流子迁移率;所述第二选择性外延工艺将缺陷膜去除后,掩膜层能够被完全去除,使得后续形成金属硅化物只形成于栅极结构顶部,避免金属硅化物在不期望区域形成,提高半导体器件的可靠性,从而优化半导体器件的电学性能。First, in the embodiment of the present invention, an optimized process is used to form a stress layer that fills the groove, that is, the first selective epitaxy process and the second selective epitaxy process are alternately performed, and the first selective epitaxy process is formed in the groove The stress film is formed inside, and the mask layer is etched by the second selective epitaxy process; since the mask layer contains floating Si bonds, after the stress film is formed by the first selective epitaxy process, the mask layer A defect film is formed on the surface, and the defect film will reduce the process window for filling the groove and make it difficult to remove the mask layer subsequently; and after the first selective epitaxial process, the second selective epitaxial process is used to etch the mask layer etch treatment, the second selective epitaxial process etches and removes the defect film, avoids the reduction of the process window for filling the groove, improves the quality of forming the stress layer, thereby improving the carrier mobility of the semiconductor device; the second After the selective epitaxial process removes the defect film, the mask layer can be completely removed, so that the subsequent formation of metal silicide is only formed on the top of the gate structure, avoiding the formation of metal silicide in undesired areas, and improving the reliability of semiconductor devices, thereby Optimizing the electrical performance of semiconductor devices.
其次,本实施例中,所述第二选择性外延工艺在对掩膜层进行刻蚀处理的同时,所述第二选择性外延工艺形成位于应力膜表面的覆盖膜,提高了半导体器件的生产效率,缩短了半导体器件的生产周期。Secondly, in this embodiment, while the mask layer is etched in the second selective epitaxial process, the second selective epitaxial process forms a cover film on the surface of the stress film, which improves the production of semiconductor devices. Efficiency shortens the production cycle of semiconductor devices.
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。Although the present invention is disclosed above, the present invention is not limited thereto. Any person skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention, so the protection scope of the present invention should be based on the scope defined in the claims.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310442556.1A CN104465387A (en) | 2013-09-24 | 2013-09-24 | Manufacturing method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201310442556.1A CN104465387A (en) | 2013-09-24 | 2013-09-24 | Manufacturing method of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN104465387A true CN104465387A (en) | 2015-03-25 |
Family
ID=52911250
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201310442556.1A Pending CN104465387A (en) | 2013-09-24 | 2013-09-24 | Manufacturing method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN104465387A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105280514A (en) * | 2015-10-14 | 2016-01-27 | 上海华力微电子有限公司 | Method for detecting SiGe residue |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050252443A1 (en) * | 2004-05-17 | 2005-11-17 | Pang-Yen Tsai | Epitaxy layer and method of forming the same |
US20050279997A1 (en) * | 2004-06-17 | 2005-12-22 | Samsung Electronics Co., Ltd. | Methods of selectively forming epitaxial semiconductor layer on single crystalline semiconductor and semiconductor devices fabricated using the same |
CN1988110A (en) * | 2005-12-22 | 2007-06-27 | 台湾积体电路制造股份有限公司 | Method for manufacturing semiconductor device |
US20110117732A1 (en) * | 2009-11-17 | 2011-05-19 | Asm America, Inc. | Cyclical epitaxial deposition and etch |
CN102082084A (en) * | 2009-11-26 | 2011-06-01 | 中芯国际集成电路制造(上海)有限公司 | Method for forming epitaxial layer by utilizing selective epitaxial process |
-
2013
- 2013-09-24 CN CN201310442556.1A patent/CN104465387A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050252443A1 (en) * | 2004-05-17 | 2005-11-17 | Pang-Yen Tsai | Epitaxy layer and method of forming the same |
US20050279997A1 (en) * | 2004-06-17 | 2005-12-22 | Samsung Electronics Co., Ltd. | Methods of selectively forming epitaxial semiconductor layer on single crystalline semiconductor and semiconductor devices fabricated using the same |
CN1988110A (en) * | 2005-12-22 | 2007-06-27 | 台湾积体电路制造股份有限公司 | Method for manufacturing semiconductor device |
US20110117732A1 (en) * | 2009-11-17 | 2011-05-19 | Asm America, Inc. | Cyclical epitaxial deposition and etch |
CN102082084A (en) * | 2009-11-26 | 2011-06-01 | 中芯国际集成电路制造(上海)有限公司 | Method for forming epitaxial layer by utilizing selective epitaxial process |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105280514A (en) * | 2015-10-14 | 2016-01-27 | 上海华力微电子有限公司 | Method for detecting SiGe residue |
CN105280514B (en) * | 2015-10-14 | 2018-01-26 | 上海华力微电子有限公司 | A kind of method for detecting germanium silicon residual |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105470132B (en) | The forming method of fin field effect pipe | |
TWI689971B (en) | Forming non-line-of-sight source drain extension in an nmos finfet using n-doped selective epitaxial growth | |
CN104616979B (en) | The forming method of semiconductor devices | |
CN103871968B (en) | MOS transistor manufacturing method | |
CN104425377B (en) | The forming method of CMOS transistor | |
CN104701164A (en) | Semiconductor device and method for manufacturing same | |
CN105448679A (en) | Semiconductor device forming method | |
CN105719969A (en) | Fin-type field effect transistor forming method | |
CN103531539A (en) | Method for forming CMOS tube | |
CN105226021A (en) | Semiconductor structure and forming method thereof | |
CN104752216B (en) | The forming method of transistor | |
CN104465486B (en) | The forming method of semiconductor devices | |
CN109148296B (en) | Semiconductor structure and method of forming the same | |
CN103390558B (en) | The forming method of transistor | |
CN105097457A (en) | Formation method of semiconductor device | |
CN104183491B (en) | The forming method of transistor | |
CN104681443B (en) | A kind of method for making semiconductor devices | |
CN104752348B (en) | The forming method of semiconductor devices | |
CN104979288B (en) | The forming method of semiconductor devices | |
CN104465387A (en) | Manufacturing method of semiconductor device | |
CN104701166B (en) | The forming method of semiconductor devices | |
CN103681324B (en) | The manufacture method of MOS transistor | |
CN112864017B (en) | Semiconductor device and method for forming the same | |
CN104253090A (en) | Method for forming CMOS (Complementary Metal-Oxide-Semiconductor) transistor | |
CN103730421A (en) | Formation method of CMOS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20150325 |
|
RJ01 | Rejection of invention patent application after publication |